@article{ZahoGhirlandoAlfonsoetal.2015, author = {Zaho, Huaying and Ghirlando, Rodolfo and Alfonso, Carlos and Arisaka, Fumio and Attali, Ilan and Bain, David L. and Bakhtina, Marina M. and Becker, Donald F. and Bedwell, Gregory J. and Bekdemir, Ahmet and Besong, Tabot M. D. and Birck, Catherine and Brautigam, Chad A. and Brennerman, William and Byron, Olwyn and Bzowska, Agnieszka and Chaires, Jonathan B. and Chaton, Catherine T. and Coelfen, Helmbut and Connaghan, Keith D. and Crowley, Kimberly A. and Curth, Ute and Daviter, Tina and Dean, William L. and Diez, Ana I. and Ebel, Christine and Eckert, Debra M. and Eisele, Leslie E. and Eisenstein, Edward and England, Patrick and Escalante, Carlos and Fagan, Jeffrey A. and Fairman, Robert and Finn, Ron M. and Fischle, Wolfgang and Garcia de la Torre, Jose and Gor, Jayesh and Gustafsson, Henning and Hall, Damien and Harding, Stephen E. and Hernandez Cifre, Jose G. and Herr, Andrew B. and Howell, Elizabeth E. and Isaac, Richard S. and Jao, Shu-Chuan and Jose, Davis and Kim, Soon-Jong and Kokona, Bashkim and Kornblatt, Jack A. and Kosek, Dalibor and Krayukhina, Elena and Krzizike, Daniel and Kusznir, Eric A. and Kwon, Hyewon and Larson, Adam and Laue, Thomas M. and Le Roy, Aline and Leech, Andrew P. and Lilie, Hauke and Luger, Karolin and Luque-Ortega, Juan R. and Ma, Jia and May, Carrie A. and Maynard, Ernest L. and Modrak-Wojcik, Anna and Mok, Yee-Foong and M{\"u}cke, Norbert and Nagel-Steger, Luitgard and Narlikar, Geeta J. and Noda, Masanori and Nourse, Amanda and Obsil, Thomas and Park, Chad K and Park, Jin-Ku and Pawelek, Peter D. and Perdue, Erby E. and Perkins, Stephen J. and Perugini, Matthew A. and Peterson, Craig L. and Peverelli, Martin G. and Piszczek, Grzegorz and Prag, Gali and Prevelige, Peter E. and Raynal, Bertrand D. E. and Rezabkova, Lenka and Richter, Klaus and Ringel, Alison E. and Rosenberg, Rose and Rowe, Arthur J. and Rufer, Arne C. and Scott, David J. and Seravalli, Javier G. and Solovyova, Alexandra S. and Song, Renjie and Staunton, David and Stoddard, Caitlin and Stott, Katherine and Strauss, Holder M. and Streicher, Werner W. and Sumida, John P. and Swygert, Sarah G. and Szczepanowski, Roman H. and Tessmer, Ingrid and Toth, Ronald T. and Tripathy, Ashutosh and Uchiyama, Susumu and Uebel, Stephan F. W. and Unzai, Satoru and Gruber, Anna Vitlin and von Hippel, Peter H. and Wandrey, Christine and Wang, Szu-Huan and Weitzel, Steven E and Wielgus-Kutrowska, Beata and Wolberger, Cynthia and Wolff, Martin and Wright, Edward and Wu, Yu-Sung and Wubben, Jacinta M. and Schuck, Peter}, title = {A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0126420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151903}, pages = {e0126420}, year = {2015}, abstract = {Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304\(\pm\)0.188) S (4.4\%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of \(\pm\)0.030 S (0.7\%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.}, language = {en} } @article{BousquetAntoBachertetal.2021, author = {Bousquet, Jean and Anto, Josep M. and Bachert, Claus and Haahtela, Tari and Zuberbier, Torsten and Czarlewski, Wienczyslawa and Bedbrook, Anna and Bosnic-Anticevich, Sinthia and Walter Canonica, G. and Cardona, Victoria and Costa, Elisio and Cruz, Alvaro A. and Erhola, Marina and Fokkens, Wytske J. and Fonseca, Joao A. and Illario, Maddalena and Ivancevich, Juan-Carlos and Jutel, Marek and Klimek, Ludger and Kuna, Piotr and Kvedariene, Violeta and Le, LTT and Larenas-Linnemann, D{\´e}sir{\´e}e E. and Laune, Daniel and Louren{\c{c}}o, Olga M. and Mel{\´e}n, Erik and Mullol, Joaquim and Niedoszytko, Marek and Odemyr, Mika{\"e}la and Okamoto, Yoshitaka and Papadopoulos, Nikos G. and Patella, Vincenzo and Pfaar, Oliver and Pham-Thi, Nh{\^a}n and Rolland, Christine and Samolinski, Boleslaw and Sheikh, Aziz and Sofiev, Mikhail and Suppli Ulrik, Charlotte and Todo-Bom, Ana and Tomazic, Peter-Valentin and Toppila-Salmi, Sanna and Tsiligianni, Ioanna and Valiulis, Arunas and Valovirta, Erkka and Ventura, Maria-Teresa and Walker, Samantha and Williams, Sian and Yorgancioglu, Arzu and Agache, Ioana and Akdis, Cezmi A. and Almeida, Rute and Ansotegui, Ignacio J. and Annesi-Maesano, Isabella and Arnavielhe, Sylvie and Basaga{\~n}a, Xavier and D. Bateman, Eric and B{\´e}dard, Annabelle and Bedolla-Barajas, Martin and Becker, Sven and Bennoor, Kazi S. and Benveniste, Samuel and Bergmann, Karl C. and Bewick, Michael and Bialek, Slawomir and E. Billo, Nils and Bindslev-Jensen, Carsten and Bjermer, Leif and Blain, Hubert and Bonini, Matteo and Bonniaud, Philippe and Bosse, Isabelle and Bouchard, Jacques and Boulet, Louis-Philippe and Bourret, Rodolphe and Boussery, Koen and Braido, Fluvio and Briedis, Vitalis and Briggs, Andrew and Brightling, Christopher E. and Brozek, Jan and Brusselle, Guy and Brussino, Luisa and Buhl, Roland and Buonaiuto, Roland and Calderon, Moises A. and Camargos, Paulo and Camuzat, Thierry and Caraballo, Luis and Carriazo, Ana-Maria and Carr, Warner and Cartier, Christine and Casale, Thomas and Cecchi, Lorenzo and Cepeda Sarabia, Alfonso M. and H. Chavannes, Niels and Chkhartishvili, Ekaterine and Chu, Derek K. and Cingi, Cemal and Correia de Sousa, Jaime and Costa, David J. and Courbis, Anne-Lise and Custovic, Adnan and Cvetkosvki, Biljana and D'Amato, Gennaro and da Silva, Jane and Dantas, Carina and Dokic, Dejan and Dauvilliers, Yves and De Feo, Giulia and De Vries, Govert and Devillier, Philippe and Di Capua, Stefania and Dray, Gerard and Dubakiene, Ruta and Durham, Stephen R. and Dykewicz, Mark and Ebisawa, Motohiro and Gaga, Mina and El-Gamal, Yehia and Heffler, Enrico and Emuzyte, Regina and Farrell, John and Fauquert, Jean-Luc and Fiocchi, Alessandro and Fink-Wagner, Antje and Fontaine, Jean-Fran{\c{c}}ois and Fuentes Perez, Jos{\´e} M. and Gemicioğlu, Bilun and Gamkrelidze, Amiran and Garcia-Aymerich, Judith and Gevaert, Philippe and Gomez, Ren{\´e} Maximiliano and Gonz{\´a}lez Diaz, Sandra and Gotua, Maia and Guldemond, Nick A. and Guzm{\´a}n, Maria-Antonieta and Hajjam, Jawad and Huerta Villalobos, Yunuen R. and Humbert, Marc and Iaccarino, Guido and Ierodiakonou, Despo and Iinuma, Tomohisa and Jassem, Ewa and Joos, Guy and Jung, Ki-Suck and Kaidashev, Igor and Kalayci, Omer and Kardas, Przemyslaw and Keil, Thomas and Khaitov, Musa and Khaltaev, Nikolai and Kleine-Tebbe, Jorg and Kouznetsov, Rostislav and Kowalski, Marek L. and Kritikos, Vicky and Kull, Inger and La Grutta, Stefania and Leonardini, Lisa and Ljungberg, Henrik and Lieberman, Philip and Lipworth, Brian and Lodrup Carlsen, Karin C. and Lopes-Pereira, Catarina and Loureiro, Claudia C. and Louis, Renaud and Mair, Alpana and Mahboub, Bassam and Makris, Micha{\"e}l and Malva, Joao and Manning, Patrick and Marshall, Gailen D. and Masjedi, Mohamed R. and Maspero, Jorge F. and Carreiro-Martins, Pedro and Makela, Mika and Mathieu-Dupas, Eve and Maurer, Marcus and De Manuel Keenoy, Esteban and Melo-Gomes, Elisabete and Meltzer, Eli O. and Menditto, Enrica and Mercier, Jacques and Micheli, Yann and Miculinic, Neven and Mihaltan, Florin and Milenkovic, Branislava and Mitsias, Dimitirios I. and Moda, Giuliana and Mogica-Martinez, Maria-Dolores and Mohammad, Yousser and Montefort, Steve and Monti, Ricardo and Morais-Almeida, Mario and M{\"o}sges, Ralph and M{\"u}nter, Lars and Muraro, Antonella and Murray, Ruth and Naclerio, Robert and Napoli, Luigi and Namazova-Baranova, Leyla and Neffen, Hugo and Nekam, Kristoff and Neou, Angelo and Nordlund, Bj{\"o}rn and Novellino, Ettore and Nyembue, Dieudonn{\´e} and O'Hehir, Robyn and Ohta, Ken and Okubo, Kimi and Onorato, Gabrielle L. and Orlando, Valentina and Ouedraogo, Solange and Palamarchuk, Julia and Pali-Sch{\"o}ll, Isabella and Panzner, Peter and Park, Hae-Sim and Passalacqua, Gianni and P{\´e}pin, Jean-Louis and Paulino, Ema and Pawankar, Ruby and Phillips, Jim and Picard, Robert and Pinnock, Hilary and Plavec, Davor and Popov, Todor A. and Portejoie, Fabienne and Price, David and Prokopakis, Emmanuel P. and Psarros, Fotis and Pugin, Benoit and Puggioni, Francesca and Quinones-Delgado, Pablo and Raciborski, Filip and Rajabian-S{\"o}derlund, Rojin and Regateiro, Frederico S. and Reitsma, Sietze and Rivero-Yeverino, Daniela and Roberts, Graham and Roche, Nicolas and Rodriguez-Zagal, Erendira and Rolland, Christine and Roller-Wirnsberger, Regina E. and Rosario, Nelson and Romano, Antonino and Rottem, Menachem and Ryan, Dermot and Salim{\"a}ki, Johanna and Sanchez-Borges, Mario M. and Sastre, Joaquin and Scadding, Glenis K. and Scheire, Sophie and Schmid-Grendelmeier, Peter and Sch{\"u}nemann, Holger J. and Sarquis Serpa, Faradiba and Shamji, Mohamed and Sisul, Juan-Carlos and Sofiev, Mikhail and Sol{\´e}, Dirceu and Somekh, David and Sooronbaev, Talant and Sova, Milan and Spertini, Fran{\c{c}}ois and Spranger, Otto and Stellato, Cristiana and Stelmach, Rafael and Thibaudon, Michel and To, Teresa and Toumi, Mondher and Usmani, Omar and Valero, Antonio A. and Valenta, Rudolph and Valentin-Rostan, Marylin and Pereira, Marilyn Urrutia and van der Kleij, Rianne and Van Eerd, Michiel and Vandenplas, Olivier and Vasankari, Tuula and Vaz Carneiro, Antonio and Vezzani, Giorgio and Viart, Fr{\´e}d{\´e}ric and Viegi, Giovanni and Wallace, Dana and Wagenmann, Martin and Wang, De Yun and Waserman, Susan and Wickman, Magnus and Williams, Dennis M. and Wong, Gary and Wroczynski, Piotr and Yiallouros, Panayiotis K. and Yusuf, Osman M. and Zar, Heather J. and Zeng, St{\´e}phane and Zernotti, Mario E. and Zhang, Luo and Shan Zhong, Nan and Zidarn, Mihaela}, title = {ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice}, series = {Allergy}, volume = {76}, journal = {Allergy}, number = {1}, doi = {10.1111/all.14422}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228339}, pages = {168 -- 190}, year = {2021}, abstract = {Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.}, language = {en} } @article{KleinschnitzGrundWingleretal.2010, author = {Kleinschnitz, Christoph and Grund, Henrike and Wingler, Kirstin and Armitage, Melanie E. and Jones, Emma and Mittal, Manish and Barit, David and Schwarz, Tobias and Geis, Christian and Kraft, Peter and Barthel, Konstanze and Schuhmann, Michael K. and Herrmann, Alexander M. and Meuth, Sven G. and Stoll, Guido and Meurer, Sabine and Schrewe, Anja and Becker, Lore and Gailus-Durner, Valerie and Fuchs, Helmut and Klopstock, Thomas and de Angelis, Martin Hrabe and Jandeleit-Dahm, Karin and Shah, Ajay M. and Weissmann, Norbert and Schmidt, Harald H. H. W.}, title = {Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68416}, year = {2010}, abstract = {Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90\% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox42/2) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox42/2 mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.}, subject = {Schlaganfall}, language = {en} } @article{BeckerCaminitiFiorellaetal.2013, author = {Becker, Martin and Caminiti, Saverio and Fiorella, Donato and Francis, Louise and Gravino, Pietro and Haklay, Mordechai (Muki) and Hotho, Andreas and Loreto, Virrorio and Mueller, Juergen and Ricchiuti, Ferdinando and Servedio, Vito D. P. and Sirbu, Alina and Tria, Franesca}, title = {Awareness and Learning in Participatory Noise Sensing}, series = {PLOS ONE}, volume = {8}, journal = {PLOS ONE}, number = {12}, issn = {1932-6203}, doi = {10.1371/journal.pone.0081638}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127675}, pages = {e81638}, year = {2013}, abstract = {The development of ICT infrastructures has facilitated the emergence of new paradigms for looking at society and the environment over the last few years. Participatory environmental sensing, i.e. directly involving citizens in environmental monitoring, is one example, which is hoped to encourage learning and enhance awareness of environmental issues. In this paper, an analysis of the behaviour of individuals involved in noise sensing is presented. Citizens have been involved in noise measuring activities through the WideNoise smartphone application. This application has been designed to record both objective (noise samples) and subjective (opinions, feelings) data. The application has been open to be used freely by anyone and has been widely employed worldwide. In addition, several test cases have been organised in European countries. Based on the information submitted by users, an analysis of emerging awareness and learning is performed. The data show that changes in the way the environment is perceived after repeated usage of the application do appear. Specifically, users learn how to recognise different noise levels they are exposed to. Additionally, the subjective data collected indicate an increased user involvement in time and a categorisation effect between pleasant and less pleasant environments.}, language = {en} } @article{BeckerMartin1972, author = {Becker, Charles R. and Martin, T. P.}, title = {Infrared absorption by Impurity-pair resonant modes in NaCl:F}, isbn = {1098-0121}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37840}, year = {1972}, abstract = {New resonant-mode infrared absorption lines have been observed in NaCl with high concentrations of fluorine impurities. The quadratic concentration dependence of the strength of these lines indicates that they are due to pairs of fluorine impurities. At the resonant frequencies, the motion of some host ions appears to be as important as the motion of the impurities themselves.}, subject = {Festk{\"o}rperphysik}, language = {en} } @misc{IshigamaBeckerMartinetal.1972, author = {Ishigama, M. and Becker, Charles R. and Martin, T. P. and Prettl, W.}, title = {Impurity-pair mode in NaCl:KF}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31255}, year = {1972}, abstract = {No abstract available}, language = {en} } @phdthesis{Becker2018, author = {Becker, Martin}, title = {Understanding Human Navigation using Bayesian Hypothesis Comparison}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163522}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Understanding human navigation behavior has implications for a wide range of application scenarios. For example, insights into geo-spatial navigation in urban areas can impact city planning or public transport. Similarly, knowledge about navigation on the web can help to improve web site structures or service experience. In this work, we focus on a hypothesis-driven approach to address the task of understanding human navigation: We aim to formulate and compare ideas — for example stemming from existing theory, literature, intuition, or previous experiments — based on a given set of navigational observations. For example, we may compare whether tourists exploring a city walk "short distances" before taking their next photo vs. they tend to "travel long distances between points of interest", or whether users browsing Wikipedia "navigate semantically" vs. "click randomly". For this, the Bayesian method HypTrails has recently been proposed. However, while HypTrails is a straightforward and flexible approach, several major challenges remain: i) HypTrails does not account for heterogeneity (e.g., incorporating differently behaving user groups such as tourists and locals is not possible), ii) HypTrails does not support the user in conceiving novel hypotheses when confronted with a large set of possibly relevant background information or influence factors, e.g., points of interest, popularity of locations, time of the day, or user properties, and finally iii) formulating hypotheses can be technically challenging depending on the application scenario (e.g., due to continuous observations or temporal constraints). In this thesis, we address these limitations by introducing various novel methods and tools and explore a wide range of case studies. In particular, our main contributions are the methods MixedTrails and SubTrails which specifically address the first two limitations: MixedTrails is an approach for hypothesis comparison that extends the previously proposed HypTrails method to allow formulating and comparing heterogeneous hypotheses (e.g., incorporating differently behaving user groups). SubTrails is a method that supports hypothesis conception by automatically discovering interpretable subgroups with exceptional navigation behavior. In addition, our methodological contributions also include several tools consisting of a distributed implementation of HypTrails, a web application for visualizing geo-spatial human navigation in the context of background information, as well as a system for collecting, analyzing, and visualizing mobile participatory sensing data. Furthermore, we conduct case studies in many application domains, which encompass — among others — geo-spatial navigation based on photos from the photo-sharing platform Flickr, browsing behavior on the social tagging system BibSonomy, and task choosing behavior on a commercial crowdsourcing platform. In the process, we develop approaches to cope with application specific subtleties (like continuous observations and temporal constraints). The corresponding studies illustrate the variety of domains and facets in which navigation behavior can be studied and, thus, showcase the expressiveness, applicability, and flexibility of our methods. Using these methods, we present new aspects of navigational phenomena which ultimately help to better understand the multi-faceted characteristics of human navigation behavior.}, subject = {Bayes-Verfahren}, language = {en} } @article{SchneiderKruseBernardellideMattosetal.2021, author = {Schneider, Verena and Kruse, Daniel and Bernardelli de Mattos, Ives and Z{\"o}phel, Saskia and Tiltmann, Kendra-Kathrin and Reigl, Amelie and Khan, Sarah and Funk, Martin and Bodenschatz, Karl and Groeber-Becker, Florian}, title = {A 3D in vitro model for burn wounds: monitoring of regeneration on the epidermal level}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {9}, issn = {2227-9059}, doi = {10.3390/biomedicines9091153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246068}, year = {2021}, abstract = {Burns affect millions every year and a model to mimic the pathophysiology of such injuries in detail is required to better understand regeneration. The current gold standard for studying burn wounds are animal models, which are under criticism due to ethical considerations and a limited predictiveness. Here, we present a three-dimensional burn model, based on an open-source model, to monitor wound healing on the epidermal level. Skin equivalents were burned, using a preheated metal cylinder. The healing process was monitored regarding histomorphology, metabolic changes, inflammatory response and reepithelialization for 14 days. During this time, the wound size decreased from 25\% to 5\% of the model area and the inflammatory response (IL-1β, IL-6 and IL-8) showed a comparable course to wounding and healing in vivo. Additionally, the topical application of 5\% dexpanthenol enhanced tissue morphology and the number of proliferative keratinocytes in the newly formed epidermis, but did not influence the overall reepithelialization rate. In summary, the model showed a comparable healing process to in vivo, and thus, offers the opportunity to better understand the physiology of thermal burn wound healing on the keratinocyte level.}, language = {en} } @article{SchofferSchueleinArandetal.2016, author = {Schoffer, Olaf and Sch{\"u}lein, Stefanie and Arand, Gerlinde and Arnholdt, Hans and Baaske, Dieter and Bargou, Ralf C. and Becker, Nikolaus and Beckmann, Matthias W. and Bodack, Yves and B{\"o}hme, Beatrix and Bozkurt, Tayfun and Breitsprecher, Regine and Buchali, Andre and Burger, Elke and Burger, Ulrike and Dommisch, Klaus and Elsner, Gudrun and Fernschild, Karin and Flintzer, Ulrike and Funke, Uwe and Gerken, Michael and G{\"o}bel, Hubert and Grobe, Norbert and Gumpp, Vera and Heinzerling, Lucie and Kempfer, Lana Raffaela and Kiani, Alexander and Klinkhammer-Schalke, Monika and Kl{\"o}cking, Sabine and Kreibich, Ute and Knabner, Katrin and Kuhn, Peter and Lutze, Stine and M{\"a}der, Uwe and Maisel, Tanja and Maschke, Jan and Middeke, Martin and Neubauer, Andreas and Niedostatek, Antje and Opazo-Saez, Anabelle and Peters, Christoph and Schell, Beatrice and Schenkirsch, Gerhard and Schmalenberg, Harald and Schmidt, Peter and Schneider, Constanze and Schubotz, Birgit and Seide, Anika and Strecker, Paul and Taubenheim, Sabine and Wackes, Matthias and Weiß, Steffen and Welke, Claudia and Werner, Carmen and Wittekind, Christian and Wulff, J{\"o}rg and Zettl, Heike and Klug, Stefanie J.}, title = {Tumour stage distribution and survival of malignant melanoma in Germany 2002-2011}, series = {BMC Cancer}, volume = {16}, journal = {BMC Cancer}, number = {936}, doi = {10.1186/s12885-016-2963-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164544}, year = {2016}, abstract = {Background Over the past two decades, there has been a rising trend in malignant melanoma incidence worldwide. In 2008, Germany introduced a nationwide skin cancer screening program starting at age 35. The aims of this study were to analyse the distribution of malignant melanoma tumour stages over time, as well as demographic and regional differences in stage distribution and survival of melanoma patients. Methods Pooled data from 61 895 malignant melanoma patients diagnosed between 2002 and 2011 and documented in 28 German population-based and hospital-based clinical cancer registries were analysed using descriptive methods, joinpoint regression, logistic regression and relative survival. Results The number of annually documented cases increased by 53.2\% between 2002 (N = 4 779) and 2011 (N = 7 320). There was a statistically significant continuous positive trend in the proportion of stage UICC I cases diagnosed between 2002 and 2011, compared to a negative trend for stage UICC II. No trends were found for stages UICC III and IV respectively. Age (OR 0.97, 95\% CI 0.97-0.97), sex (OR 1.18, 95\% CI 1.11-1.25), date of diagnosis (OR 1.05, 95\% CI 1.04-1.06), 'diagnosis during screening' (OR 3.24, 95\% CI 2.50-4.19) and place of residence (OR 1.23, 95\% CI 1.16-1.30) had a statistically significant influence on the tumour stage at diagnosis. The overall 5-year relative survival for invasive cases was 83.4\% (95\% CI 82.8-83.9\%). Conclusions No distinct changes in the distribution of malignant melanoma tumour stages among those aged 35 and older were seen that could be directly attributed to the introduction of skin cancer screening in 2008. "}, language = {en} } @article{WohlfarthSchmitteckertHaertleetal.2017, author = {Wohlfarth, Carolin and Schmitteckert, Stefanie and H{\"a}rtle, Janina D. and Houghton, Lesley A. and Dweep, Harsh and Fortea, Marina and Assadi, Ghazaleh and Braun, Alexander and Mederer, Tanja and P{\"o}hner, Sarina and Becker, Philip P. and Fischer, Christine and Granzow, Martin and M{\"o}nnikes, Hubert and Mayer, Emeran A. and Sayuk, Gregory and Boeckxstaens, Guy and Wouters, Mira M. and Simr{\´e}n, Magnus and Lindberg, Greger and Ohlsson, Bodil and Schmidt, Peter Thelin and Dlugosz, Aldona and Agreus, Lars and Andreasson, Anna and D'Amato, Mauro and Burwinkel, Barbara and Bermejo, Justo Lorenzo and R{\"o}th, Ralph and Lasitschka, Felix and Vicario, Maria and Metzger, Marco and Santos, Javier and Rappold, Gudrun A. and Martinez, Cristina and Niesler, Beate}, title = {miR-16 and miR-103 impact 5-HT4 receptor signalling and correlate with symptom profile in irritable bowel syndrome}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-13982-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173478}, year = {2017}, abstract = {Irritable bowel syndrome (IBS) is a gut-brain disorder involving alterations in intestinal sensitivity and motility. Serotonin 5-HT4 receptors are promising candidates in IBS pathophysiology since they regulate gut motor function and stool consistency, and targeted 5-HT4R selective drug intervention has been proven beneficial in subgroups of patients. We identified a single nucleotide polymorphism (SNP) (rs201253747) c.*61 T > C within the 5-HT4 receptor gene \(HTR4\) to be predominantly present in diarrhoea-IBS patients (IBS-D). It affects a binding site for the miR-16 family and miR-103/miR-107 within the isoforms \({HTR4b/i}\) and putatively impairs \(HTR4\) expression. Subsequent miRNA profiling revealed downregulation of miR-16 and miR-103 in the jejunum of IBS-D patients correlating with symptoms. \(In\) \(vitro\) assays confirmed expression regulation via three 3′UTR binding sites. The novel isoform \(HTR4b\_2\) lacking two of the three miRNA binding sites escapes miR-16/103/107 regulationin SNP carriers. We provide the first evidence that \(HTR4\) expression is fine-tuned by miRNAs, and that this regulation is impaired either by the SNP c.*61 T > C or bydiminished levels of miR-16 and miR-103 suggesting that \(HTR4\) might be involved in the development of IBS-D.}, language = {en} }