@article{HeinzeSchirbelNannenetal.2021, author = {Heinze, Britta and Schirbel, Andreas and Nannen, Lukas and Michelmann, David and Hartrampf, Philipp E. and Bluemel, Christina and Schneider, Magdalena and Herrmann, Ken and Haenscheid, Heribert and Fassnacht, Martin and Buck, Andreas K. and Hahner, Stefanie}, title = {Novel CYP11B-ligand [\(^{123/131}\)I]IMAZA as promising theranostic tool for adrenocortical tumors: comprehensive preclinical characterization and first clinical experience}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {49}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {1}, issn = {1619-7089}, doi = {10.1007/s00259-021-05477-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265606}, pages = {301-310}, year = {2021}, abstract = {Purpose Adrenal tumors represent a diagnostic and therapeutic challenge. Promising results have been obtained through targeting the cytochrome P450 enzymes CYP11B1 and CYP11B2 for molecular imaging, and [\(^{123/131}\)I]iodometomidate ([\(^{123/131}\)I]IMTO) has even been successfully introduced as a theranostic agent. As this radiopharmaceutical shows rapid metabolic inactivation, we aimed at developing new improved tracers. Methods Several IMTO derivatives were newly designed by replacing the unstable methyl ester by different carboxylic esters or amides. The inhibition of aldosterone and cortisol synthesis was tested in different adrenocortical cell lines. The corresponding radiolabeled compounds were assessed regarding their stability, in vitro cell uptake, in vivo biodistribution in mice, and their binding specificity to cryosections of human adrenocortical and non-adrenocortical tissue. Furthermore, a first investigation was performed in patients with known metastatic adrenal cancer using both [\(^{123}\)I]IMTO and the most promising compound (R)-1-[1-(4-[\(^{123/}\)I]iodophenyl)ethyl]-1H-imidazole-5-carboxylic acid azetidinylamide ([\(^{123}\)I]IMAZA) for scintigraphy. Subsequently, a first endoradiotherapy with [\(^{131}\)I]IMAZA in one of these patients was performed. Results We identified three analogues to IMTO with high-affinity binding to the target enzymes and comparable or higher metabolic stability and very high and specific accumulation in adrenocortical cells in vitro and in vivo. Labeled IMAZA exhibited superior pharmacokinetic and imaging properties compared to IMTO in mice and 3 patients, too. An endoradiotherapy with [\(^{131}\)I]IMAZA induced a 21-month progression-free interval in a patient with rapidly progressing ACC prior this therapy. Conclusion We developed the new radiopharmaceutical [\(^{123/131}\)I]IMAZA with superior properties compared to the reference compound IMTO and promising first experiences in humans.}, language = {en} } @article{QiBruchKropetal.2021, author = {Qi, Yanyan and Bruch, Dorothee and Krop, Philipp and Herrmann, Martin J. and Latoschik, Marc E. and Deckert, J{\"u}rgen and Hein, Grit}, title = {Social buffering of human fear is shaped by gender, social concern, and the presence of real vs virtual agents}, series = {Translational Psychiatry}, volume = {11}, journal = {Translational Psychiatry}, doi = {10.1038/s41398-021-01761-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265782}, year = {2021}, abstract = {The presence of a partner can attenuate physiological fear responses, a phenomenon known as social buffering. However, not all individuals are equally sociable. Here we investigated whether social buffering of fear is shaped by sensitivity to social anxiety (social concern) and whether these effects are different in females and males. We collected skin conductance responses (SCRs) and affect ratings of female and male participants when they experienced aversive and neutral sounds alone (alone treatment) or in the presence of an unknown person of the same gender (social treatment). Individual differences in social concern were assessed based on a well-established questionnaire. Our results showed that social concern had a stronger effect on social buffering in females than in males. The lower females scored on social concern, the stronger the SCRs reduction in the social compared to the alone treatment. The effect of social concern on social buffering of fear in females disappeared if participants were paired with a virtual agent instead of a real person. Together, these results showed that social buffering of human fear is shaped by gender and social concern. In females, the presence of virtual agents can buffer fear, irrespective of individual differences in social concern. These findings specify factors that shape the social modulation of human fear, and thus might be relevant for the treatment of anxiety disorders.}, language = {en} } @article{SchieleZieglerKollertetal.2018, author = {Schiele, Miriam A. and Ziegler, Christiane and Kollert, Leonie and Katzorke, Andrea and Schartner, Christoph and Busch, Yasmin and Gromer, Daniel and Reif, Andreas and Pauli, Paul and Deckert, J{\"u}rgen and Herrmann, Martin J. and Domschke, Katharina}, title = {Plasticity of Functional MAOA Gene Methylation in Acrophobia}, series = {International Journal of Neuropsychopharmacology}, volume = {21}, journal = {International Journal of Neuropsychopharmacology}, number = {9}, doi = {10.1093/ijnp/pyy050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228571}, pages = {822-827}, year = {2018}, abstract = {Epigenetic mechanisms have been proposed to mediate fear extinction in animal models. Here, MAOA methylation was analyzed via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells before and after a 2-week exposure therapy in a sample of n = 28 female patients with acrophobia as well as in n = 28 matched healthy female controls. Clinical response was measured using the Acrophobia Questionnaire and the Attitude Towards Heights Questionnaire. The functional relevance of altered MAOA methylation was investigated by luciferase-based reporter gene assays. MAOA methylation was found to be significantly decreased in patients with acrophobia compared with healthy controls. Furthermore, MAOA methylation levels were shown to significantly increase after treatment and correlate with treatment response as reflected by decreasing Acrophobia Questionnaire/Attitude Towards Heights Questionnaire scores. Functional analyses revealed decreased reporter gene activity in presence of methylated compared with unmethylated pCpGfree_MAOA reporter gene vector constructs. The present proof-of-concept psychotherapy-epigenetic study for the first time suggests functional MAOA methylation changes as a potential epigenetic correlate of treatment response in acrophobia and fosters further investigation into the notion of epigenetic mechanisms underlying fear extinction.}, language = {en} } @article{BuffBrinkmannBruchmannetal.2017, author = {Buff, Christine and Brinkmann, Leonie and Bruchmann, Maximilian and Becker, Michael P.I. and Tupak, Sara and Herrmann, Martin J. and Straube, Thomas}, title = {Activity alterations in the bed nucleus of the stria terminalis and amygdala during threat anticipation in generalized anxiety disorder}, series = {Social Cognitive and Affective Neuroscience}, volume = {12}, journal = {Social Cognitive and Affective Neuroscience}, number = {11}, doi = {10.1093/scan/nsx103}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173298}, pages = {1766-1774}, year = {2017}, abstract = {Sustained anticipatory anxiety is central to Generalized Anxiety Disorder (GAD). During anticipatory anxiety, phasic threat responding appears to be mediated by the amygdala, while sustained threat responding seems related to the bed nucleus of the stria terminalis (BNST). Although sustained anticipatory anxiety in GAD patients was proposed to be associated with BNST activity alterations, firm evidence is lacking. We aimed to explore temporal characteristics of BNST and amygdala activity during threat anticipation in GAD patients. Nineteen GAD patients and nineteen healthy controls (HC) underwent functional magnetic resonance imaging (fMRI) during a temporally unpredictable threat anticipation paradigm. We defined phasic and a systematic variation of sustained response models for blood oxygen level-dependent responses during threat anticipation, to disentangle temporally dissociable involvement of the BNST and the amygdala. GAD patients relative to HC responded with increased phasic amygdala activity to onset of threat anticipation and with elevated sustained BNST activity that was delayed relative to the onset of threat anticipation. Both the amygdala and the BNST displayed altered responses during threat anticipation in GAD patients, albeit with different time courses. The results for the BNST activation hint towards its role in sustained threat responding, and contribute to a deeper understanding of pathological sustained anticipatory anxiety in GAD.}, language = {en} } @article{GoebelPankratzAsaridouetal.2016, author = {G{\"o}bel, Kerstin and Pankratz, Susann and Asaridou, Chloi-Magdalini and Herrmann, Alexander M. and Bittner, Stefan and Merker, Monika and Ruck, Tobias and Glumm, Sarah and Langhauser, Friederike and Kraft, Peter and Krug, Thorsten F. and Breuer, Johanna and Herold, Martin and Gross, Catharina C. and Beckmann, Denise and Korb-Pap, Adelheid and Schuhmann, Michael K. and Kuerten, Stefanie and Mitroulis, Ioannis and Ruppert, Clemens and Nolte, Marc W. and Panousis, Con and Klotz, Luisa and Kehrel, Beate and Korn, Thomas and Langer, Harald F. and Pap, Thomas and Nieswandt, Bernhard and Wiendl, Heinz and Chavakis, Triantafyllos and Kleinschnitz, Christoph and Meuth, Sven G.}, title = {Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, number = {11626}, doi = {10.1038/ncomms11626}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165503}, year = {2016}, abstract = {Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein-kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders.}, language = {en} } @article{DePalmaAbrahamczykAizenetal.2016, author = {De Palma, Adriana and Abrahamczyk, Stefan and Aizen, Marcelo A. and Albrecht, Matthias and Basset, Yves and Bates, Adam and Blake, Robin J. and Boutin, C{\´e}line and Bugter, Rob and Connop, Stuart and Cruz-L{\´o}pez, Leopoldo and Cunningham, Saul A. and Darvill, Ben and Diek{\"o}tter, Tim and Dorn, Silvia and Downing, Nicola and Entling, Martin H. and Farwig, Nina and Felicioli, Antonio and Fonte, Steven J. and Fowler, Robert and Franzen, Markus Franz{\´e}n and Goulson, Dave and Grass, Ingo and Hanley, Mick E. and Hendrix, Stephen D. and Herrmann, Farina and Herzog, Felix and Holzschuh, Andrea and Jauker, Birgit and Kessler, Michael and Knight, M. E. and Kruess, Andreas and Lavelle, Patrick and Le F{\´e}on, Violette and Lentini, Pia and Malone, Louise A. and Marshall, Jon and Mart{\´i}nez Pach{\´o}n, Eliana and McFrederick, Quinn S. and Morales, Carolina L. and Mudri-Stojnic, Sonja and Nates-Parra, Guiomar and Nilsson, Sven G. and {\"O}ckinger, Erik and Osgathorpe, Lynne and Parra-H, Alejandro and Peres, Carlos A. and Persson, Anna S. and Petanidou, Theodora and Poveda, Katja and Power, Eileen F. and Quaranta, Marino and Quintero, Carolina and Rader, Romina and Richards, Miriam H. and Roulston, T'ai and Rousseau, Laurent and Sadler, Jonathan P. and Samneg{\aa}rd, Ulrika and Schellhorn, Nancy A. and Sch{\"u}epp, Christof and Schweiger, Oliver and Smith-Pardo, Allan H. and Steffan-Dewenter, Ingolf and Stout, Jane C. and Tonietto, Rebecca K. and Tscharntke, Teja and Tylianakis, Jason M. and Verboven, Hans A. F. and Vergara, Carlos H. and Verhulst, Jort and Westphal, Catrin and Yoon, Hyung Joo and Purvis, Andy}, title = {Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep31153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167642}, pages = {31153}, year = {2016}, abstract = {Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.}, language = {en} } @article{HerrmannMuellerOrthetal.2020, author = {Herrmann, Andreas B. and M{\"u}ller, Martha-Lena and Orth, Martin F. and M{\"u}ller, J{\"o}rg P. and Zernecke, Alma and Hochhaus, Andreas and Ernst, Thomas and Butt, Elke and Frietsch, Jochen J.}, title = {Knockout of LASP1 in CXCR4 expressing CML cells promotes cell persistence, proliferation and TKI resistance}, series = {Journal of Cellular and Molecular Medicine}, volume = {24}, journal = {Journal of Cellular and Molecular Medicine}, number = {5}, doi = {10.1111/jcmm.14910}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214122}, pages = {2942 -- 2955}, year = {2020}, abstract = {Chronic myeloid leukaemia (CML) is a clonal myeloproliferative stem cell disorder characterized by the constitutively active BCR-ABL tyrosine kinase. The LIM and SH3 domain protein 1 (LASP1) has recently been identified as a novel BCR-ABL substrate and is associated with proliferation, migration, tumorigenesis and chemoresistance in several cancers. Furthermore, LASP1 was shown to bind to the chemokine receptor 4 (CXCR4), thought to be involved in mechanisms of relapse. In order to identify potential LASP1-mediated pathways and related factors that may help to further eradicate minimal residual disease (MRD), the effect of LASP1 on processes involved in progression and maintenance of CML was investigated. The present data indicate that not only overexpression of CXCR4, but also knockout of LASP1 contributes to proliferation, reduced apoptosis and migration as well as increased adhesive potential of K562 CML cells. Furthermore, LASP1 depletion in K562 CML cells leads to decreased cytokine release and reduced NK cell-mediated cytotoxicity towards CML cells. Taken together, these results indicate that in CML, reduced levels of LASP1 alone and in combination with high CXCR4 expression may contribute to TKI resistance.}, language = {en} } @article{AsthanaBrunhuberMuehlbergeretal.2016, author = {Asthana, Manish Kumar and Brunhuber, Bettina and M{\"u}hlberger, Andreas and Reif, Andreas and Schneider, Simone and Herrmann, Martin J.}, title = {Preventing the Return of Fear Using Reconsolidation Update Mechanisms Depends on the Met-Allele of the Brain Derived Neurotrophic Factor Val66Met Polymorphism}, series = {International Journal of Neuropsychopharmacology}, volume = {19}, journal = {International Journal of Neuropsychopharmacology}, number = {6}, doi = {10.1093/ijnp/pyv137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166217}, year = {2016}, abstract = {Background: Memory reconsolidation is the direct effect of memory reactivation followed by stabilization of newly synthesized proteins. It has been well proven that neural encoding of both newly and reactivated memories requires synaptic plasticity. Brain derived neurotrophic factor (BDNF) has been extensively investigated regarding its role in the formation of synaptic plasticity and in the alteration of fear memories. However, its role in fear reconsolidation is still unclear; hence, the current study has been designed to investigate the role of the BDNF val66met polymorphism (rs6265) in fear memory reconsolidation in humans. Methods: An auditory fear-conditioning paradigm was conducted, which comprised of three stages (acquisition, reactivation, and spontaneous recovery). One day after fear acquisition, the experimental group underwent reactivation of fear memory followed by the extinction training (reminder group), whereas the control group (non-reminder group) underwent only extinction training. On day 3, both groups were subjected to spontaneous recovery of earlier learned fearful memories. The treat-elicited defensive response due to conditioned threat was measured by assessing the skin conductance response to the conditioned stimulus. All participants were genotyped for rs6265. Results: The results indicate a diminishing effect of reminder on the persistence of fear memory only in the Met-allele carriers, suggesting a moderating effect of the BDNF polymorphism in fear memory reconsolidation. Conclusions: Our findings suggest a new role for BDNF gene variation in fear memory reconsolidation in humans.}, language = {en} } @article{DittertHuettnerPolaketal.2018, author = {Dittert, Natalie and H{\"u}ttner, Sandrina and Polak, Thomas and Herrmann, Martin J.}, title = {Augmentation of fear extinction by transcranial direct current stimulation (tDCS)}, series = {Frontiers in Behavioral Neuroscience}, volume = {12}, journal = {Frontiers in Behavioral Neuroscience}, number = {76}, doi = {10.3389/fnbeh.2018.00076}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176056}, year = {2018}, abstract = {Although posttraumatic stress disorder (PTSD; DSM-V 309.82) and anxiety disorders (DSM-V 300.xx) are widely spread mental disorders, the effectiveness of their therapy is still unsatisfying. Non-invasive brain-stimulation techniques like transcranial direct current stimulation (tDCS) might be an option to improve extinction learning, which is a main functional factor of exposure-based therapy for anxiety disorders. To examine this hypothesis, we used a fear conditioning paradigm with female faces as conditioned stimuli (CS) and a 95-dB female scream as unconditioned stimulus (UCS). We aimed to perform a tDCS of the ventromedial prefrontal cortex (vmPFC), which is mainly involved in the control of extinction-processes. Therefore, we applied two 4 × 4 cm electrodes approximately at the EEG-positions F7 and F8 and used a direct current of 1.5 mA. The 20-min stimulation was started during a 10-min break between acquisition and extinction and went on overall extinction-trials. The healthy participants were randomly assigned in two double-blinded process into two sham stimulation and two verum stimulation groups with opposite current flow directions. To measure the fear reactions, we used skin conductance responses (SCR) and subjective ratings. We performed a generalized estimating equations model for the SCR to assess the impact of tDCS and current flow direction on extinction processes for all subjects that showed a successful conditioning (N = 84). The results indicate that tDCS accelerates early extinction processes with a significantly faster loss of CS+/CS- discrimination. The discrimination loss was driven by a significant decrease in reaction toward the CS+ as well as an increase in reaction toward the CS- in the tDCS verum groups, whereas the sham groups showed no significant reaction changes during this period. Therefore, we assume that tDCS of the vmPFC can be used to enhance early extinction processes successfully. But before it should be tested in a clinical context further investigation is needed to assess the reason for the reaction increase on CS-. If this negative side effect can be avoided, tDCS may be a tool to improve exposure-based anxiety therapies.}, language = {en} } @article{HerrmannHildebrandMenzeletal.2019, author = {Herrmann, Marietta and Hildebrand, Maria and Menzel, Ursula and Fahy, Niamh and Alini, Mauro and Lang, Siegmund and Benneker, Lorin and Verrier, Sophie and Stoddart, Martin J. and Bara, Jennifer J.}, title = {Phenotypic characterization of bone marrow mononuclear cells and derived stromal cell populations from human iliac crest, vertebral body and femoral head}, series = {International Journal of Molecular Sciences}, volume = {20}, journal = {International Journal of Molecular Sciences}, number = {14}, issn = {1422-0067}, doi = {10.3390/ijms20143454}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285054}, year = {2019}, abstract = {(1) In vitro, bone marrow-derived stromal cells (BMSCs) demonstrate inter-donor phenotypic variability, which presents challenges for the development of regenerative therapies. Here, we investigated whether the frequency of putative BMSC sub-populations within the freshly isolated mononuclear cell fraction of bone marrow is phenotypically predictive for the in vitro derived stromal cell culture. (2) Vertebral body, iliac crest, and femoral head bone marrow were acquired from 33 patients (10 female and 23 male, age range 14-91). BMSC sub-populations were identified within freshly isolated mononuclear cell fractions based on cell-surface marker profiles. Stromal cells were expanded in monolayer on tissue culture plastic. Phenotypic assessment of in vitro derived cell cultures was performed by examining growth kinetics, chondrogenic, osteogenic, and adipogenic differentiation. (3) Gender, donor age, and anatomical site were neither predictive for the total yield nor the population doubling time of in vitro derived BMSC cultures. The abundance of freshly isolated progenitor sub-populations (CD45-CD34-CD73+, CD45-CD34-CD146+, NG2+CD146+) was not phenotypically predictive of derived stromal cell cultures in terms of growth kinetics nor plasticity. BMSCs derived from iliac crest and vertebral body bone marrow were more responsive to chondrogenic induction, forming superior cartilaginous tissue in vitro, compared to those isolated from femoral head. (4) The identification of discrete progenitor populations in bone marrow by current cell-surface marker profiling is not predictive for subsequently derived in vitro BMSC cultures. Overall, the iliac crest and the vertebral body offer a more reliable tissue source of stromal progenitor cells for cartilage repair strategies compared to femoral head.}, language = {en} }