@article{XiuGeigerKlaver2015, author = {Xiu, Daiming and Geiger, Maximilian J. and Klaver, Peter}, title = {Emotional face expression modulates occipital-frontal effective connectivity during memory formation in a bottom-up fashion}, series = {Frontiers in Behavioral Neuroscience}, volume = {9}, journal = {Frontiers in Behavioral Neuroscience}, number = {90}, doi = {10.3389/fnbeh.2015.00090}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143211}, year = {2015}, abstract = {This study investigated the role of bottom-up and top-down neural mechanisms in the processing of emotional face expression during memory formation. Functional brain imaging data was acquired during incidental learning of positive ("happy"), neutral and negative ("angry" or "fearful") faces. Dynamic Causal Modeling (DCM) was applied on the functional magnetic resonance imaging (fMRI) data to characterize effective connectivity within a brain network involving face perception (inferior occipital gyrus and fusiform gyrus) and successful memory formation related areas (hippocampus, superior parietal lobule, amygdala, and orbitofrontal cortex). The bottom-up models assumed processing of emotional face expression along feed forward pathways to the orbitofrontal cortex. The top-down models assumed that the orbitofrontal cortex processed emotional valence and mediated connections to the hippocampus. A subsequent recognition memory test showed an effect of negative emotion on the response bias, but not on memory performance. Our DCM findings showed that the bottom-up model family of effective connectivity best explained the data across all subjects and specified that emotion affected most bottom-up connections to the orbitofrontal cortex, especially from the occipital visual cortex and superior parietal lobule. Of those pathways to the orbitofrontal cortex the connection from the inferior occipital gyrus correlated with memory performance independently of valence. We suggest that bottom-up neural mechanisms support effects of emotional face expression and memory formation in a parallel and partially overlapping fashion.}, language = {en} } @article{GottschalkRichterZiegleretal.2019, author = {Gottschalk, Michael G. and Richter, Jan and Ziegler, Christiane and Schiele, Miriam A. and Mann, Julia and Geiger, Maximilian J. and Schartner, Christoph and Homola, Gy{\"o}rgy A. and Alpers, Georg W. and B{\"u}chel, Christian and Fehm, Lydia and Fydrich, Thomas and Gerlach, Alexander L. and Gloster, Andrew T. and Helbig-Lang, Sylvia and Kalisch, Raffael and Kircher, Tilo and Lang, Thomas and Lonsdorf, Tina B. and Pan{\´e}-Farr{\´e}, Christiane A. and Str{\"o}hle, Andreas and Weber, Heike and Zwanzger, Peter and Arolt, Volker and Romanos, Marcel and Wittchen, Hans-Ulrich and Hamm, Alfons and Pauli, Paul and Reif, Andreas and Deckert, J{\"u}rgen and Neufang, Susanne and H{\"o}fler, Michael and Domschke, Katharina}, title = {Orexin in the anxiety spectrum: association of a HCRTR1 polymorphism with panic disorder/agoraphobia, CBT treatment response and fear-related intermediate phenotypes}, series = {Translational Psychiatry}, volume = {9}, journal = {Translational Psychiatry}, doi = {10.1038/s41398-019-0415-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227479}, year = {2019}, abstract = {Preclinical studies point to a pivotal role of the orexin 1 (OX1) receptor in arousal and fear learning and therefore suggest the HCRTR1 gene as a prime candidate in panic disorder (PD) with/without agoraphobia (AG), PD/AG treatment response, and PD/AG-related intermediate phenotypes. Here, a multilevel approach was applied to test the non-synonymous HCRTR1 C/T Ile408Val gene variant (rs2271933) for association with PD/AG in two independent case-control samples (total n = 613 cases, 1839 healthy subjects), as an outcome predictor of a six-weeks exposure-based cognitive behavioral therapy (CBT) in PD/AG patients (n = 189), as well as with respect to agoraphobic cognitions (ACQ) (n = 483 patients, n = 2382 healthy subjects), fMRI alerting network activation in healthy subjects (n = 94), and a behavioral avoidance task in PD/AG pre- and post-CBT (n = 271). The HCRTR1 rs2271933 T allele was associated with PD/AG in both samples independently, and in their meta-analysis (p = 4.2 × 10-7), particularly in the female subsample (p = 9.8 × 10-9). T allele carriers displayed a significantly poorer CBT outcome (e.g., Hamilton anxiety rating scale: p = 7.5 × 10-4). The T allele count was linked to higher ACQ sores in PD/AG and healthy subjects, decreased inferior frontal gyrus and increased locus coeruleus activation in the alerting network. Finally, the T allele count was associated with increased pre-CBT exposure avoidance and autonomic arousal as well as decreased post-CBT improvement. In sum, the present results provide converging evidence for an involvement of HCRTR1 gene variation in the etiology of PD/AG and PD/AG-related traits as well as treatment response to CBT, supporting future therapeutic approaches targeting the orexin-related arousal system.}, language = {en} }