@article{GalluzziBravoSanPedroVitaleetal.2015, author = {Galluzzi, L. and Bravo-San Pedro, J. M. and Vitale, I. and Aaronson, S. A. and Abrams, J. M. and Adam, D. and Alnemri, E. S. and Altucci, L. and Andrews, D. and Annicchiarico-Petruzelli, M. and Baehrecke, E. H. and Bazan, N. G. and Bertrand, M. J. and Bianchi, K. and Blagosklonny, M. V. and Blomgren, K. and Borner, C. and Bredesen, D. E. and Brenner, C. and Campanella, M. and Candi, E. and Cecconi, F. and Chan, F. K. and Chandel, N. S. and Cheng, E. H. and Chipuk, J. E. and Cidlowski, J. A. and Ciechanover, A. and Dawson, T. M. and Dawson, V. L. and De Laurenzi, V. and De Maria, R. and Debatin, K. M. and Di Daniele, N. and Dixit, V. M. and Dynlacht, B. D. and El-Deiry, W. S. and Fimia, G. M. and Flavell, R. A. and Fulda, S. and Garrido, C. and Gougeon, M. L. and Green, D. R. and Gronemeyer, H. and Hajnoczky, G. and Hardwick, J. M. and Hengartner, M. O. and Ichijo, H. and Joseph, B. and Jost, P. J. and Kaufmann, T. and Kepp, O. and Klionsky, D. J. and Knight, R. A. and Kumar, S. and Lemasters, J. J. and Levine, B. and Linkermann, A. and Lipton, S. A. and Lockshin, R. A. and L{\´o}pez-Ot{\´i}n, C. and Lugli, E. and Madeo, F. and Malorni, W. and Marine, J. C. and Martin, S. J. and Martinou, J. C. and Medema, J. P. and Meier, P. and Melino, S. and Mizushima, N. and Moll, U. and Mu{\~n}oz-Pinedo, C. and Nu{\~n}ez, G. and Oberst, A. and Panaretakis, T. and Penninger, J. M. and Peter, M. E. and Piacentini, M. and Pinton, P. and Prehn, J. H. and Puthalakath, H. and Rabinovich, G. A. and Ravichandran, K. S. and Rizzuto, R. and Rodrigues, C. M. and Rubinsztein, D. C. and Rudel, T. and Shi, Y. and Simon, H. U. and Stockwell, B. R. and Szabadkai, G. and Tait, S. W. and Tang, H. L. and Tavernarakis, N. and Tsujimoto, Y. and Vanden Berghe, T. and Vandenabeele, P. and Villunger, A. and Wagner, E. F. and Walczak, H. and White, E. and Wood, W. G. and Yuan, J. and Zakeri, Z. and Zhivotovsky, B. and Melino, G. and Kroemer, G.}, title = {Essential versus accessory aspects of cell death: recommendations of the NCCD 2015}, series = {Cell Death and Differentiation}, volume = {22}, journal = {Cell Death and Differentiation}, doi = {10.1038/cdd.2014.137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121207}, pages = {58-73}, year = {2015}, abstract = {Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as 'accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. 'Regulated cell death' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.}, language = {en} } @article{LivingstoneZarembaHornetal.2020, author = {Livingstone, E. and Zaremba, A. and Horn, S. and Ugurel, S. and Casalini, B. and Schlaak, M. and Hassel, J.C. and Herbst, R. and Utikal, J.S. and Weide, B. and Gutzmer, R. and Meier, F. and Koelsche, C. and Hadaschik, E. and Sucker, A. and Reis, H. and Merkelbach-Bruse, S. and Siewert, M. and Sahm, F. and von Deimling, A. and Cosgarea, I. and Zimmer, L. and Schadendorf, D. and Schilling, B. and Griewank, K.G.}, title = {GNAQ and GNA11 mutant nonuveal melanoma: a subtype distinct from both cutaneous and uveal melanoma}, series = {British Journal of Dermatology}, volume = {183}, journal = {British Journal of Dermatology}, number = {5}, doi = {10.1111/bjd.18947}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215434}, pages = {928 -- 939}, year = {2020}, abstract = {Background GNAQ and GNA11 mutant nonuveal melanoma represent a poorly characterized rare subgroup of melanoma with a gene mutation profile similar to uveal melanoma. Objectives To characterize these tumours in terms of clinical behaviour and genetic characteristics. Methods Patients with nonuveal GNAQ/11 mutated melanoma were identified from the prospective multicentre tumour tissue registry ADOREG, Tissue Registry in Melanoma (TRIM) and additional cooperating skin cancer centres. Extensive data on patient, tumour and treatment characteristics were collected retrospectively. Targeted sequencing was used to determine tumour mutational burden. Immunohistochemistry staining was performed for programmed death-ligand 1 and BRCA1-associated protein (BAP)1. Existing whole-exome cutaneous and uveal melanoma data were analysed for mutation type and burden. Results We identified 18 patients with metastatic GNAQ/11 mutant nonuveal melanoma. Tumours had a lower tumour mutational burden and fewer ultraviolet signature mutations than cutaneous melanomas. In addition to GNAQ and GNA11 mutations (nine each), six splicing factor 3b subunit 1 (SF3B1), three eukaryotic translation initiation factor 1A X-linked (EIF1AX) and four BAP1 mutations were detected. In contrast to uveal melanoma, GNAQ/11 mutant nonuveal melanomas frequently metastasized lymphatically and concurrent EIF1AX, SF3B1 and BAP1 mutations showed no apparent association with patient prognosis. Objective response to immunotherapy was poor with only one partial response observed in 10 treated patients (10\%). Conclusions Our findings suggest that GNAQ/11 mutant nonuveal melanomas are a subtype of melanoma that is both clinically and genetically distinct from cutaneous and uveal melanoma. As they respond poorly to available treatment regimens, novel effective therapeutic approaches for affected patients are urgently needed. What is already known about this topic? The rare occurrence of GNAQ/11 mutations in nonuveal melanoma has been documented. GNAQ/11 mutant nonuveal melanomas also harbour genetic alterations in EIF1AX, SF3B1 and BAP1 that are of prognostic relevance in uveal melanoma. What does this study add? GNAQ/11 mutant nonuveal melanomas show metastatic spread reminiscent of cutaneous melanoma, but not uveal melanoma. GNAQ/11 mutant nonuveal melanomas have a low tumour mutational burden that is higher than uveal melanoma, but lower than cutaneous melanoma. What is the translational message? Primary GNAQ/11 mutant nonuveal melanomas are a subtype of melanoma that is clinically and genetically distinct from both cutaneous and uveal melanoma. As metastatic GNAQ/11 mutant nonuveal melanomas respond poorly to available systemic therapies, including immune checkpoint inhibition, novel therapeutic approaches for these tumours are urgently needed.}, language = {en} } @article{MeierKaehlerBergenetal.2020, author = {Meier, Sandra M. and K{\"a}hler, Anna K. and Bergen, Sarah E. and Sullivan, Patrick F. and Hultman, Christina M. and Mattheisen, Manuel}, title = {Chronicity and Sex Affect Genetic Risk Prediction in Schizophrenia}, series = {Frontiers in Psychiatry}, volume = {11}, journal = {Frontiers in Psychiatry}, issn = {1664-0640}, doi = {10.3389/fpsyt.2020.00313}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205677}, year = {2020}, abstract = {Schizophrenia (SCZ) is a severe mental disorder with immense personal and societal costs; identifying individuals at risk is therefore of utmost importance. Genomic risk profile scores (GRPS) have been shown to significantly predict cases-control status. Making use of a large-population based sample from Sweden, we replicate a previous finding demonstrating that the GRPS is strongly associated with admission frequency and chronicity of SCZ. Furthermore, we were able to show a substantial gap in prediction accuracy between males and females. In sum, our results indicate that prediction accuracy by GRPS depends on clinical and demographic characteristics.}, language = {en} } @article{SchattonYangKleffeletal.2015, author = {Schatton, Tobias and Yang, Jun and Kleffel, Sonja and Uehara, Mayuko and Barthel, Steven R. and Schlapbach, Christoph and Zhan, Qian and Dudeney, Stephen and Mueller, Hansgeorg and Lee, Nayoung and de Vries, Juliane C. and Meier, Barbara and Beken, Seppe Vander and Kluth, Mark A. and Ganss, Christoph and Sharpe, Arlene H. and Waaga-Gasser, Ana Maria and Sayegh, Mohamed H. and Abdi, Reza and Scharffetter-Kochanek, Karin and Murphy, George F. and Kupper, Thomas S. and Frank, Natasha Y. and Frank, Markus H.}, title = {ABCB5 Identifies Immunoregulatory Dermal Cells}, series = {Cell Reports}, volume = {12}, journal = {Cell Reports}, doi = {10.1016/j.celrep.2015.08.010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149989}, pages = {1564 -- 1574}, year = {2015}, abstract = {Cell-based strategies represent a new frontier in the treatment of immune-mediated disorders. However, the paucity of markers for isolation of molecularly defined immunomodulatory cell populations poses a barrier to this field. Here, we show that ATP-binding cassette member B5 (ABCB5) identifies dermal immunoregulatory cells (DIRCs) capable of exerting therapeutic immunoregulatory functions through engagement of programmed cell death 1 (PD-1). Purified Abcb5\(^+\) DIRCs suppressed T cell proliferation, evaded immune rejection, homed to recipient immune tissues, and induced Tregs in vivo. In fully major-histocompatibility-complex-mismatched cardiac allotransplantation models, allogeneic DIRCs significantly prolonged allograft survival. Blockade of DIRC-expressed PD-1 reversed the inhibitory effects of DIRCs on T cell activation, inhibited DIRC-dependent Treg induction, and attenuated DIRC-induced prolongation of cardiac allograft survival, indicating that DIRC immunoregulatory function is mediated, at least in part, through PD-1. Our results identify ABCB5\(^+\) DIRCs as a distinct immunoregulatory cell population and suggest promising roles of this expandable cell subset in cellular immunotherapy.}, language = {en} } @article{MaronHaggenmuellervonKalleetal.2021, author = {Maron, Roman C. and Haggenm{\"u}ller, Sarah and von Kalle, Christof and Utikal, Jochen S. and Meier, Friedegund and Gellrich, Frank F. and Hauschild, Axel and French, Lars E. and Schlaak, Max and Ghoreschi, Kamran and Kutzner, Heinz and Heppt, Markus V. and Haferkamp, Sebastian and Sondermann, Wiebke and Schadendorf, Dirk and Schilling, Bastian and Hekler, Achim and Krieghoff-Henning, Eva and Kather, Jakob N. and Fr{\"o}hling, Stefan and Lipka, Daniel B. and Brinker, Titus J.}, title = {Robustness of convolutional neural networks in recognition of pigmented skin lesions}, series = {European Journal of Cancer}, volume = {145}, journal = {European Journal of Cancer}, doi = {10.1016/j.ejca.2020.11.020}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-370245}, pages = {81-91}, year = {2021}, abstract = {Background A basic requirement for artificial intelligence (AI)-based image analysis systems, which are to be integrated into clinical practice, is a high robustness. Minor changes in how those images are acquired, for example, during routine skin cancer screening, should not change the diagnosis of such assistance systems. Objective To quantify to what extent minor image perturbations affect the convolutional neural network (CNN)-mediated skin lesion classification and to evaluate three possible solutions for this problem (additional data augmentation, test-time augmentation, anti-aliasing). Methods We trained three commonly used CNN architectures to differentiate between dermoscopic melanoma and nevus images. Subsequently, their performance and susceptibility to minor changes ('brittleness') was tested on two distinct test sets with multiple images per lesion. For the first set, image changes, such as rotations or zooms, were generated artificially. The second set contained natural changes that stemmed from multiple photographs taken of the same lesions. Results All architectures exhibited brittleness on the artificial and natural test set. The three reviewed methods were able to decrease brittleness to varying degrees while still maintaining performance. The observed improvement was greater for the artificial than for the natural test set, where enhancements were minor. Conclusions Minor image changes, relatively inconspicuous for humans, can have an effect on the robustness of CNNs differentiating skin lesions. By the methods tested here, this effect can be reduced, but not fully eliminated. Thus, further research to sustain the performance of AI classifiers is needed to facilitate the translation of such systems into the clinic.}, language = {en} }