@article{ElHelouBiegnerBodeetal.2019, author = {El-Helou, Sabine M. and Biegner, Anika-Kerstin and Bode, Sebastian and Ehl, Stephan R. and Heeg, Maximilian and Maccari, Maria E. and Ritterbusch, Henrike and Speckmann, Carsten and Rusch, Stephan and Scheible, Raphael and Warnatz, Klaus and Atschekzei, Faranaz and Beider, Renata and Ernst, Diana and Gerschmann, Stev and Jablonka, Alexandra and Mielke, Gudrun and Schmidt, Reinhold E. and Sch{\"u}rmann, Gesine and Sogkas, Georgios and Baumann, Ulrich H. and Klemann, Christian and Viemann, Dorothee and Bernuth, Horst von and Kr{\"u}ger, Renate and Hanitsch, Leif G. and Scheibenbogen, Carmen M. and Wittke, Kirsten and Albert, Michael H. and Eichinger, Anna and Hauck, Fabian and Klein, Christoph and Rack-Hoch, Anita and Sollinger, Franz M. and Avila, Anne and Borte, Michael and Borte, Stephan and Fasshauer, Maria and Hauenherm, Anja and Kellner, Nils and M{\"u}ller, Anna H. and {\"U}lzen, Anett and Bader, Peter and Bakhtiar, Shahrzad and Lee, Jae-Yun and Heß, Ursula and Schubert, Ralf and W{\"o}lke, Sandra and Zielen, Stefan and Ghosh, Sujal and Laws, Hans-Juergen and Neubert, Jennifer and Oommen, Prasad T. and H{\"o}nig, Manfred and Schulz, Ansgar and Steinmann, Sandra and Klaus, Schwarz and D{\"u}ckers, Gregor and Lamers, Beate and Langemeyer, Vanessa and Niehues, Tim and Shai, Sonu and Graf, Dagmar and M{\"u}glich, Carmen and Schmalzing, Marc T. and Schwaneck, Eva C. and Tony, Hans-Peter and Dirks, Johannes and Haase, Gabriele and Liese, Johannes G. and Morbach, Henner and Foell, Dirk and Hellige, Antje and Wittkowski, Helmut and Masjosthusmann, Katja and Mohr, Michael and Geberzahn, Linda and Hedrich, Christian M. and M{\"u}ller, Christiane and R{\"o}sen-Wolff, Angela and Roesler, Joachim and Zimmermann, Antje and Behrends, Uta and Rieber, Nikolaus and Schauer, Uwe and Handgretinger, Rupert and Holzer, Ursula and Henes, J{\"o}rg and Kanz, Lothar and Boesecke, Christoph and Rockstroh, J{\"u}rgen K. and Schwarze-Zander, Carolynne and Wasmuth, Jan-Christian and Dilloo, Dagmar and H{\"u}lsmann, Brigitte and Sch{\"o}nberger, Stefan and Schreiber, Stefan and Zeuner, Rainald and Ankermann, Tobias and Bismarck, Philipp von and Huppertz, Hans-Iko and Kaiser-Labusch, Petra and Greil, Johann and Jakoby, Donate and Kulozik, Andreas E. and Metzler, Markus and Naumann-Bartsch, Nora and Sobik, Bettina and Graf, Norbert and Heine, Sabine and Kobbe, Robin and Lehmberg, Kai and M{\"u}ller, Ingo and Herrmann, Friedrich and Horneff, Gerd and Klein, Ariane and Peitz, Joachim and Schmidt, Nadine and Bielack, Stefan and Groß-Wieltsch, Ute and Classen, Carl F. and Klasen, Jessica and Deutz, Peter and Kamitz, Dirk and Lassy, Lisa and Tenbrock, Klaus and Wagner, Norbert and Bernbeck, Benedikt and Brummel, Bastian and Lara-Villacanas, Eusebia and M{\"u}nstermann, Esther and Schneider, Dominik T. and Tietsch, Nadine and Westkemper, Marco and Weiß, Michael and Kramm, Christof and K{\"u}hnle, Ingrid and Kullmann, Silke and Girschick, Hermann and Specker, Christof and Vinnemeier-Laubenthal, Elisabeth and Haenicke, Henriette and Schulz, Claudia and Schweigerer, Lothar and M{\"u}ller, Thomas G. and Stiefel, Martina and Belohradsky, Bernd H. and Soetedjo, Veronika and Kindle, Gerhard and Grimbacher, Bodo}, title = {The German national registry of primary immunodeficiencies (2012-2017)}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2019.01272}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226629}, year = {2019}, abstract = {Introduction: The German PID-NET registry was founded in 2009, serving as the first national registry of patients with primary immunodeficiencies (PID) in Germany. It is part of the European Society for Immunodeficiencies (ESID) registry. The primary purpose of the registry is to gather data on the epidemiology, diagnostic delay, diagnosis, and treatment of PIDs. Methods: Clinical and laboratory data was collected from 2,453 patients from 36 German PID centres in an online registry. Data was analysed with the software Stata® and Excel. Results: The minimum prevalence of PID in Germany is 2.72 per 100,000 inhabitants. Among patients aged 1-25, there was a clear predominance of males. The median age of living patients ranged between 7 and 40 years, depending on the respective PID. Predominantly antibody disorders were the most prevalent group with 57\% of all 2,453 PID patients (including 728 CVID patients). A gene defect was identified in 36\% of patients. Familial cases were observed in 21\% of patients. The age of onset for presenting symptoms ranged from birth to late adulthood (range 0-88 years). Presenting symptoms comprised infections (74\%) and immune dysregulation (22\%). Ninety-three patients were diagnosed without prior clinical symptoms. Regarding the general and clinical diagnostic delay, no PID had undergone a slight decrease within the last decade. However, both, SCID and hyper IgE-syndrome showed a substantial improvement in shortening the time between onset of symptoms and genetic diagnosis. Regarding treatment, 49\% of all patients received immunoglobulin G (IgG) substitution (70\%-subcutaneous; 29\%-intravenous; 1\%-unknown). Three-hundred patients underwent at least one hematopoietic stem cell transplantation (HSCT). Five patients had gene therapy. Conclusion: The German PID-NET registry is a precious tool for physicians, researchers, the pharmaceutical industry, politicians, and ultimately the patients, for whom the outcomes will eventually lead to a more timely diagnosis and better treatment.}, language = {en} } @article{BenoitAdelmanReinhardtetal.2016, author = {Benoit, Joshua B. and Adelman, Zach N. and Reinhardt, Klaus and Dolan, Amanda and Poelchau, Monica and Jennings, Emily C. and Szuter, Elise M. and Hagan, Richard W. and Gujar, Hemant and Shukla, Jayendra Nath and Zhu, Fang and Mohan, M. and Nelson, David R. and Rosendale, Andrew J. and Derst, Christian and Resnik, Valentina and Wernig, Sebastian and Menegazzi, Pamela and Wegener, Christian and Peschel, Nicolai and Hendershot, Jacob M. and Blenau, Wolfgang and Predel, Reinhard and Johnston, Paul R. and Ioannidis, Panagiotis and Waterhouse, Robert M. and Nauen, Ralf and Schorn, Corinna and Ott, Mark-Christoph and Maiwald, Frank and Johnston, J. Spencer and Gondhalekar, Ameya D. and Scharf, Michael E. and Raje, Kapil R. and Hottel, Benjamin A. and Armis{\´e}n, David and Crumi{\`e}re, Antonin Jean Johan and Refki, Peter Nagui and Santos, Maria Emilia and Sghaier, Essia and Viala, S{\`e}verine and Khila, Abderrahman and Ahn, Seung-Joon and Childers, Christopher and Lee, Chien-Yueh and Lin, Han and Hughes, Daniel S.T. and Duncan, Elizabeth J. and Murali, Shwetha C. and Qu, Jiaxin and Dugan, Shannon and Lee, Sandra L. and Chao, Hsu and Dinh, Huyen and Han, Yi and Doddapaneni, Harshavardhan and Worley, Kim C. and Muzny, Donna M. and Wheeler, David and Panfilio, Kristen A. and Jentzsch, Iris M. Vargas and Jentzsch, IMV and Vargo, Edward L. and Booth, Warren and Friedrich, Markus and Weirauch, Matthew T. and Anderson, Michelle A.E. and Jones, Jeffery W. and Mittapalli, Omprakash and Zhao, Chaoyang and Zhou, Jing-Jiang and Evans, Jay D. and Attardo, Geoffrey M. and Robertson, Hugh M. and Zdobnov, Evgeny M. and Ribeiro, Jose M.C. and Gibbs, Richard A. and Werren, John H. and Palli, Subba R. and Schal, Coby and Richards, Stephen}, title = {Unique features of a global human ectoparasite identified through sequencing of the bed bug genome}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, number = {10165}, doi = {10.1038/ncomms10165}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166221}, year = {2016}, abstract = {The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host-symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human-bed bug and symbiont-bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite.}, language = {en} } @article{ReiterGenslerRitteretal.2012, author = {Reiter, Theresa and Gensler, Daniel and Ritter, Oliver and Weiss, Ingo and Geistert, Wolfgang and Kaufmann, Ralf and Hoffmeister, Sabine and Friedrich, Michael T. and Wintzheimer, Stefan and D{\"u}ring, Markus and Nordbeck, Peter and Jakob, Peter M. and Ladd, Mark E. and Quick, Harald H. and Bauer, Wolfgang R.}, title = {Direct cooling of the catheter tip increases safety for CMR-guided electrophysiological procedures}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {14}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {12}, doi = {10.1186/1532-429X-14-12}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134927}, year = {2012}, abstract = {Background: One of the safety concerns when performing electrophysiological (EP) procedures under magnetic resonance (MR) guidance is the risk of passive tissue heating due to the EP catheter being exposed to the radiofrequency (RF) field of the RF transmitting body coil. Ablation procedures that use catheters with irrigated tips are well established therapeutic options for the treatment of cardiac arrhythmias and when used in a modified mode might offer an additional system for suppressing passive catheter heating. Methods: A two-step approach was chosen. Firstly, tests on passive catheter heating were performed in a 1.5 T Avanto system (Siemens Healthcare Sector, Erlangen, Germany) using a ASTM Phantom in order to determine a possible maximum temperature rise. Secondly, a phantom was designed for simulation of the interface between blood and the vascular wall. The MR-RF induced temperature rise was simulated by catheter tip heating via a standard ablation generator. Power levels from 1 to 6 W were selected. Ablation duration was 120 s with no tip irrigation during the first 60 s and irrigation at rates from 2 ml/min to 35 ml/min for the remaining 60 s (Biotronik Qiona Pump, Berlin, Germany). The temperature was measured with fluoroscopic sensors (Luxtron, Santa Barbara, CA, USA) at a distance of 0 mm, 2 mm, 4 mm, and 6 mm from the catheter tip. Results: A maximum temperature rise of 22.4 degrees C at the catheter tip was documented in the MR scanner. This temperature rise is equivalent to the heating effect of an ablator's power output of 6 W at a contact force of the weight of 90 g (0.883 N). The catheter tip irrigation was able to limit the temperature rise to less than 2 degrees C for the majority of examined power levels, and for all examined power levels the residual temperature rise was less than 8 degrees C. Conclusion: Up to a maximum of 22.4 degrees C, the temperature rise at the tissue surface can be entirely suppressed by using the catheter's own irrigation system. The irrigated tip system can be used to increase MR safety of EP catheters by suppressing the effects of unwanted passive catheter heating due to RF exposure from the MR scanner.}, language = {en} }