@article{UeceylerSchliesserEvdokimovetal.2022, author = {{\"U}{\c{c}}eyler, Nurcan and Schließer, Mira and Evdokimov, Dimitar and Radziwon, Jakub and Feulner, Betty and Unterecker, Stefan and Rimmele, Florian and Walter, Uwe}, title = {Reduced midbrain raphe echogenicity in patients with fibromyalgia syndrome}, series = {PloS One}, volume = {17}, journal = {PloS One}, number = {11}, doi = {10.1371/journal.pone.0277316}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300639}, year = {2022}, abstract = {Objectives The pathogenesis of fibromyalgia syndrome (FMS) is unclear. Transcranial ultrasonography revealed anechoic alteration of midbrain raphe in depression and anxiety disorders, suggesting affection of the central serotonergic system. Here, we assessed midbrain raphe echogenicity in FMS. Methods Sixty-six patients underwent transcranial sonography, of whom 53 were patients with FMS (27 women, 26 men), 13 patients with major depression and physical pain (all women), and 14 healthy controls (11 women, 3 men). Raphe echogenicity was graded visually as normal or hypoechogenic, and quantified by digitized image analysis, each by investigators blinded to the clinical diagnosis. Results Quantitative midbrain raphe echogenicity was lower in patients with FMS compared to healthy controls (p<0.05), but not different from that of patients with depression and accompanying physical pain. Pain and FMS symptom burden did not correlate with midbrain raphe echogenicity as well as the presence and severity of depressive symptoms. Conclusion We found reduced echogenicity of the midbrain raphe area in patients with FMS and in patients with depression and physical pain, independent of the presence or severity of pain, FMS, and depressive symptoms. Further exploration of this sonographic finding is necessary before this objective technique may enter diagnostic algorithms in FMS and depression.}, language = {en} } @article{ElhfnawyVolkmannSchliesseretal.2019, author = {Elhfnawy, Ahmed Mohamed and Volkmann, Jens and Schliesser, Mira and Fluri, Felix}, title = {Symptomatic vs. asymptomatic 20-40\% internal carotid artery stenosis: Does the plaque size matter?}, series = {Frontiers in Neurology}, volume = {10}, journal = {Frontiers in Neurology}, number = {960}, doi = {10.3389/fneur.2019.00960}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201262}, year = {2019}, abstract = {Background: Around 9-15\% of ischemic strokes are related to internal carotid artery (ICA)-stenosis ≥50\%. However, the extent to which ICA-stenosis <50\% causes ischemic cerebrovascular events is uncertain. We examined the relation between plaque cross-sectional area and length and the risk of ischemic stroke or TIA among patients with ICA-stenosis of 20-40\%. Methods: We retrospectively identified patients admitted to the Department of Neurology, University Hospital of W{\"u}rzburg, from January 2011 until September 2016 with ischemic stroke or TIA and concomitant ICA-stenosis of 20-40\%, either symptomatic or asymptomatic. Plaque length and cross-sectional area were assessed on ultrasound scans. Results: We identified 41 patients with ischemic stroke or TIA and ICA-stenosis of 20-40\%; 14 symptomatic and 27 asymptomatic. The plaque cross-sectional area was significantly larger among symptomatic than asymptomatic ICA-stenosis; median values (IQR) were 0.45 (0.21-0.69) cm2 and 0.27 (0.21-0.38) cm2, p = 0.03, respectively. A plaque cross-sectional area ≥0.36 cm2 had a sensitivity of 71\% and a specificity of 76\% for symptomatic compared with asymptomatic ICA-stenosis. In a sex-adjusted multivariate logistic regression, a plaque cross-sectional area ≥0.36 cm2 and a plaque length ≥1.65 cm were associated with an OR (95\% CI) of 5.54 (1.2-25.6), p = 0.028 and 1.78 (0.36-8.73), p = 0.48, respectively, for symptomatic ICA-stenosis. Conclusion: Large plaques might increase the risk of ischemic stroke or TIA among patients with low-grade ICA-stenosis of 20-40\%. Sufficiently powered prospective longitudinal cohort studies are needed to definitively test the stroke risk stratification value of carotid plaque length and cross-sectional area in the setting of current optimal medical treatment.}, language = {en} } @article{ElhfnawyVolkmannSchliesseretal.2019, author = {Elhfnawy, Ahmed Mohamed and Volkmann, Jens and Schliesser, Mira and Fluri, Felix}, title = {Are cerebral white matter lesions related to the presence of bilateral internal carotid artery stenosis or to the length of stenosis among patients with ischemic cerebrovascular events?}, series = {Frontiers in Neurology}, volume = {10}, journal = {Frontiers in Neurology}, number = {919}, doi = {10.3389/fneur.2019.00919}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201241}, year = {2019}, abstract = {Background and purpose: Previous studies delivered contradicting results regarding the relation between the presence of an internal carotid artery stenosis (ICAS) and the occurence of white matter lesions (WMLs). We hypothesize that special characteristics related to the ICAS might be related to the WMLs. We examined the relation between the presence of bilateral ICAS, the degree and length of stenosis and ipsi-, contralateral as well as mean white matter lesion load (MWMLL). Methods: In a retrospective cohort, patients with ischemic stroke or transient ischemic attack (TIA) as well as ipsi- and/or contralateral ICAS were identified. The length and degree of ICAS, as well as plaque morphology (hypoechoic, mixed or echogenic), were assessed on ultrasound scans and, if available, the length was also measured on magnetic resonance angiography (MRA) scans, and/or digital subtraction angiography (DSA). The WMLs were assessed in 4 areas separately, (periventricular and deep WMLs on each hemispherer), using the Fazekas scale. The MWMLL was calculated as the mean of these four values. Results: 136 patients with 177 ICAS were identified. A significant correlation between age and MWMLL was observed (Spearman correlation coefficient, ρ = 0.41, p < 0.001). Before adjusting for other risk factors, a significantly positive relation was found between the presence of bilateral ICAS and MWMLL (p = 0.039). The length but not the degree of ICAS showed a very slight trend toward association with ipsilateral WMLs and with MWMLL. In an age-adjusted multivariate logistic regression with MWMLL ≥2 as the outcome measure, atrial fibrillation (OR 3.54, 95\% CI 1.12-11.18, p = 0.03), female sex (OR 3.11, 95\% CI 1.19-8.11, p = 0.02) and diabetes mellitus (OR 2.76, 95\% CI 1.16-6.53, p = 0.02) were significantly related to WMLs, whereas the presence of bilateral stenosis showed a trend toward significance (OR 2.25, 95\% CI 0.93-5.45, p = 0.074). No relation was found between plaque morphology and MWMLL, periventricular, or deep WMLs. Conclusion: We have shown a slight correlation between the length of stenosis and the presence of WMLs which might be due to microembolisation originating from the carotid plaque. However, the presence of bilateral ICAS seems also to be related to WMLs which may point to common underlying vascular risk factors contributing to the occurrence of WML.}, language = {en} }