@phdthesis{Pachner2018, author = {Pachner, Kai}, title = {Photodissoziationsreaktionen der Xylyl-Radikale, C\(_8\)H\(_9\), und des Benzyl-Radikals, C\(_7\)H\(_7\): Eine Velocity-Map-Imaging-Studie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170626}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die vorliegende Dissertation widmete sich der Aufkl{\"a}rung der Photodissoziationsdynamik der drei Xylyl-Radikale ortho-, meta- und para-Xylyl sowie des Benzyl-Radikals mit Hilfe des Velocity-Map-Imagings. Diese reaktiven Intermediate sind insbesondere im Bereich der Verbrennungschemie von hoher Relevanz, da sie die prim{\"a}ren Zerfallsprodukte der Xylole und des Toluols darstellen, welche als Antiklopfmittel in Ottokraftstoffen Verwendung finden.Dementsprechend ist eine Betrachtung des weiteren Zerfalls dieser resonanz-stabilisierten Radikale, insbesondere unter dem Gesichtspunkt der Rußbildung, von entscheidender Bedeutung. F{\"u}r alle drei Xylyl-Radikale konnte eine selektive pyrolytische Generierung aus den entsprechenden 2-(Methylphenyl)ethylnitriten realisiert werden. Die isomerspezifische Identifikation erfolgte mit Hilfe von REMPI-Spektroskopie der jeweiligen D0 -> D3-{\"U}berg{\"a}nge. Nachfolgend wurde die Photodissoziation aller drei Xylyl-Isomere nach Anregung des D3-Zustandes bei ca. 310 nm und nach Anregung der D-Bande bei 250 nm untersucht. Das „einfachste" Experiment stellte in diesem Zusammenhang die Photodissoziation des para-Xylyl-Radikals dar. Es konnte die von Hemberger et al. in thermischen Zerfallsexperimenten beobachtete Reaktion p-Xylyl -> p-Xylylen + H verifiziert werden. Die VMI-Experimente lieferten die Kennwerte (309.6nm) = 33 \% und (250nm) = 19 \% unter Erhalt isotroper Images f{\"u}r beide Anregungswellenl{\"a}ngen. Die dazugeh{\"o}rigen Dissoziationsratenkonstanten wurden zu kH(309.6nm) ≈ 10^8 s-1 und kH(250nm) ≈ 5*10^7 s-1 bestimmt. Es ist verbl{\"u}ffend, dass die Photodissoziation scheinbar bei der h{\"o}heren Anregungswellenl{\"a}nge von 309.6 nm (und somit bei geringerer Anregungsenergie) schneller verl{\"a}uft als bei 250 nm. Dar{\"u}ber hinaus ist es nicht m{\"o}glich, die beobachteten Raten mittels des statistischen Modells der RRKM-Theorie zu beschreiben. Des Weiteren konnten auch die Translationsenergieverteilungen nicht mit dem „Quack-Fit" f{\"u}r statistische Dissoziationen angefittet werden. Bei der Photodissoziation des para-Xylyl-Radikals liegt eine Dissoziation nach R{\"u}ckkehr in den rovibronisch hochangeregten elektronischen Grundzustand infolge der Photoanregung vor. Hierbei thermalisiert die innere Energie im elektronischen Grundzustand vor der Dissoziation scheinbar nur teilweise, sodass keine vollst{\"a}ndige statistische Verteilung dieser innerhalb des para-Xylyls gegeben ist. Da dies eine Grundvoraussetzung der g{\"a}ngigen statistischen Modelle darstellt, ist es nicht verwunderlich, dass keine quantitative Reproduktion der experimentellen Ergebnisse durch Anwendung dieser Modelle erm{\"o}glicht wird. Bei entsprechenden Experimenten zum ortho-Isomer konnten diese statistischen Modelle ebenfalls nicht zur quantitativen Beschreibung der Dissoziation verwendet werden. Abermals wurde mit kH(311.1nm) ≈ 10^8 s-1 und kH(250nm) ≈ 5*10^7 s-1 eine schnellere Dissoziation bei geringerer Anregungsenergie festgestellt. Dies erscheint demnach charakteristisch f{\"u}r die Xylyl-Radikale. Innerhalb der VMI-Experimente wurden isotrope Verteilungen erhalten, deren Fragmenttranslationsenergieverteilung nach Anregung des D3-Niveaus bei 311.1 nm jedoch nicht durch die von Hemberger et al. beschriebene Hauptreaktion o-Xylyl -> o-Xylylen + H erkl{\"a}rt werden konnte. Eine Fragmentation nach o-Xylyl -> Benzocyclobuten + H konnte auf diesem Weg als Hauptdissoziationspfad identifiziert werden. Innerhalb der Studien von Hemberger et al. ist eine Reaktion zu Benzocyclobuten bei Anregung mit 311.1 nm energetisch nicht zug{\"a}nglich. Mittels quantenchemischer Rechnung konnte jedoch ein bislang unbekannter, energetisch zug{\"a}nglicher Reaktionspfad zur Bildung von Benzocyclobuten unter simultaner Ringschlussreaktion und Wasserstofffragmentation identifiziert und charakterisiert werden. Die Kennwerte der Photodissoziationsreaktion des ortho-Xylyls konnten hierdurch zu (311.1nm) = 30 \% und (250nm) = 16 \% bestimmt werden. Wie bereits im Fall des para-Isomers liegt die Vermutung nahe, dass es sich um eine Dissoziation aus dem rovibronisch hoch-angeregten elektronischen Grundzustand handelt, welcher nicht vollst{\"a}ndig vor der Fragmentation thermalisiert. Im Rahmen der Experimente zum letzten der drei Xylyl-Isomere, dem meta-Xylyl-Radikal, konnte mit VMI eine Fragmentation nach m-Xylyl -> m-Xylylen + H als Hauptdissoziationpfad ausgeschlossen werden. Innerhalb der Experimente nach Anregung des D3-Niveaus um 310 nm konnten mit para-Xylylen und Benzocyclobuten zwei Reaktionsprodukte festgestellt werden, welche die erhaltene Translationsenergieverteilung erkl{\"a}ren k{\"o}nnten, wobei die entsprechende maximale {\"U}berschussenergie einer Fragmentation zu para-Xylylen den Nullabfall der Verteilung geringf{\"u}gig besser widerspiegelt. Die mittlere Fragmenttranslationsenergie liegt mit (p-Xylylen) = 29 \% respektive (Bcb) = 25 \% leicht unterhalb der entsprechenden Kennwerte der para- beziehungsweise ortho-Xylyl Experimente. Durch die n{\"o}tige, der Dissoziation vorausgehende Isomerisierung scheint ein h{\"o}herer Thermalisierungsgrad der Schwingungs- und Rotationsenergie innerhalb des elektronischen Grundzustands erreicht zu werden, aus welchem die geringen -Werte resultieren k{\"o}nnten. Der Effekt verminderter -Werte wurde in den Experimenten bei 250 nm nicht gefunden ((p-Xylylen) = 19 \% respektive (Bcb) = 17 \%). Vergleicht man an dieser Stelle die - anstelle der -Werte ((para) = 0.41 eV, (ortho) = 0.38 eV, (meta) = 0.41 eV), stellt man fest, dass (meta) = (para) gilt und somit ein weiteres Indiz daf{\"u}r gefunden wurde, dass eine Umlagerung zu para-Xylyl mit anschließender Fragmentation zu para-Xylylen m{\"o}glicherweise gegen{\"u}ber jener zum ortho-Isomer mit nachfolgender Bcb-Bildung bevorzugt ist. Dies w{\"u}rde dar{\"u}ber hinaus im Einklang mit den Studien von Hemberger et al. stehen, in welchen beim thermischen Zerfall des meta-Xylyls para-Xylylen als alleiniges Fragmentationsprodukt gefunden wurde. Eine Betrachtung der Umlagerung mittels RRKM wies jedoch keinen bevorzugten Isomerisierungspfad aus. Schlussendlich l{\"a}sst sich aufgrund der ermittelten Ratenkonstanten (kH(310nm) ≈ 10^8 s-1, kH(250nm) ≈ 4*10^7 s-1) sowie den -Werten vermuten, dass die Isomerisierung langsamer als die Dissoziation bei 310 nm verl{\"a}uft, jedoch zumindest auf einer {\"a}hnlichen Zeitskala wie die entsprechende Dissoziation nach Anregung bei 250 nm. Eine zweifelsfreie Interpretation der meta-Xylyl Experimente gestaltet sich jedoch als schwierig. Innerhalb der Studien zur Photodissoziation des Benzyl-Radikals konnten literaturbekannte Daten zur Fragmentation nach Anregung um 250 nm in guter {\"U}bereinstimmung reproduziert werden. Die experimentellen Daten zur Untersuchung der Photodissoziation nach Anregung des D3-Niveaus konnten jedoch nicht eindeutig interpretiert werden. Die literaturbekannte Lage des D3-Niveaus bei 305.3 nm konnte mittels REMPI-Spektroskopie reproduziert werden und anschließende 1H-Photofragmentspektren zeigten, dass eine Anregung des D3-Niveaus zur Bildung von Wasserstofffragmenten f{\"u}hrt. Die beobachteten 1H-Fragmente zeigten jedoch eine deutlich zu hohe {\"U}berschussenergie f{\"u}r eine Einphotonenabsorption, sodass diese Mehrphotonenabsorptionen zugeordnet werden m{\"u}ssen. Es l{\"a}sst sich vermuten, dass die Wasserstofffragmente aus einer Anregung eines „superexcited states" oberhalb des Ionisationspotentials, wahrscheinlich durch Zweiphotonenabsorption, stammen. Dieser „superexcited state" zeigt scheinbar keine (vollst{\"a}ndige) Autoionisation und f{\"u}hrt nachfolgend zumindest teilweise zur Fragmentation des Benzyl-Radikals. In der Folge liegt die Vermutung nahe, dass die Energien eines einzelnen 305 nm-Photons nicht zur Initiierung einer Photodissoziation des Benzyl-Radikals ausreichend ist oder aber, dass diese Photodissoziation zu langsam ist, um sie in einem VMI-Experiment zu beobachten. Potential f{\"u}r weitere Experimente zur Photodissoziation des Benzyl-Radikals nach Anregung des D3-Niveaus wird an dieser Stelle nicht gesehen.}, subject = {Dynamik}, language = {de} } @article{HirschPachnerFischeretal.2020, author = {Hirsch, Florian and Pachner, Kai and Fischer, Ingo and Issler, Kevin and Petersen, Jens and Mitric, Roland and Bakels, Sjors and Rijs, Anouk M.}, title = {Do Xylylenes Isomerize in Pyrolysis?}, series = {ChemPhysChem}, volume = {21}, journal = {ChemPhysChem}, number = {14}, doi = {10.1002/cphc.202000317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218316}, pages = {1515 -- 1518}, year = {2020}, abstract = {We report infrared spectra of xylylene isomers in the gas phase, using free electron laser (FEL) radiation. All xylylenes were generated by flash pyrolysis. The IR spectra were obtained by monitoring the ion dip signal, using a IR/UV double resonance scheme. A gas phase IR spectrum of para-xylylene  was recorded, whereas ortho- and meta-xylylene were found to partially rearrange to benzocyclobutene and styrene. Computations of the UV oscillator strength  for all molecules were carried out and provde an explanation for the observation of the isomerization products.}, language = {en} }