@article{HeDiSanteLietal.2018, author = {He, Jiangang and Di Sante, Domenico and Li, Ronghan and Chen, Xing-Qiu and Rondinelli, James M. and Franchini, Cesare}, title = {Tunable metal-insulator transition, Rashba effect and Weyl Fermions in a relativistic charge-ordered ferroelectric oxide}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-017-02814-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227946}, year = {2018}, abstract = {Controllable metal-insulator transitions (MIT), Rashba-Dresselhaus (RD) spin splitting, and Weyl semimetals are promising schemes for realizing processing devices. Complex oxides are a desirable materials platform for such devices, as they host delicate and tunable charge, spin, orbital, and lattice degrees of freedoms. Here, using first-principles calculations and symmetry analysis, we identify an electric-field tunable MIT, RD effect, and Weyl semimetal in a known, charge-ordered, and polar relativistic oxide Ag2BiO3 at room temperature. Remarkably, a centrosymmetric BiO6 octahedral-breathing distortion induces a sizable spontaneous ferroelectric polarization through Bi3+/Bi5+ charge disproportionation, which stabilizes simultaneously the insulating phase. The continuous attenuation of the Bi3+/Bi5+ disproportionation obtained by applying an external electric field reduces the band gap and RD spin splitting and drives the phase transition from a ferroelectric RD insulator to a paraelectric Dirac semimetal, through a topological Weyl semimetal intermediate state. These findings suggest that Ag2BiO3 is a promising material for spin-orbitonic applications.}, language = {en} }