@article{RuizHerediaSanchezVegaOnechaetal.2018, author = {Ruiz-Heredia, Yanira and S{\´a}nchez-Vega, Beatriz and Onecha, Esther and Barrio, Santiago and Alonso, Rafael and Carlos Mart{\´i}nez-Avila, Jose and Cuenca, Isabel and Agirre, Xabier and Braggio, Esteban and Hern{\´a}ndez, Miguel-T. and Mart{\´i}nez, Rafael and Rosi{\~n}ol, Laura and Gutierrez, Norma and Martin-Ramos, Marisa and Ocio, Enrique M. and Echeveste, Mar{\´i}a-Asunci{\´o}n and P{\´e}rez de Oteyza, Jaime and Oriol, Albert and Bargay, Joan and Gironella, Mercedes and Ayala, Rosa and Blad{\´e}, Joan and Mateos, Mar{\´i}a-Victoria and Kortum, Klaus M. and Stewart, Keith and Garc{\´i}a-Sanz, Ram{\´o}n and San Miguel, Jes{\´u}s and Jos{\´e} Lahuerta, Juan and Martinez-Lopez, Joaqu{\´i}n}, title = {Mutational screening of newly diagnosed multiple myeloma patients by deep targeted sequencing}, series = {Haematologica}, volume = {103}, journal = {Haematologica}, number = {11}, doi = {10.3324/haematol.2018.188839}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227151}, pages = {e544-e548}, year = {2018}, abstract = {no abstract available}, language = {en} } @article{DimopoulosWeiselSongetal.2015, author = {Dimopoulos, Meletios A. and Weisel, Katja C. and Song, Kevin W. and Delforge, Michel and Karlin, Lionel and Goldschmidt, Hartmut and Moreau, Philippe and Banos, Anne and Oriol, Albert and Garderet, Laurent and Cavo, Michele and Ivanova, Valentina and Alegre, Adrian and Martinez-Lopez, Joaquin and Chen, Christine and Spencer, Andrew and Knop, Stefan and Bahlis, Nizar J. and Renner, Christoph and Yu, Xin and Hong, Kevin and Sternas, Lars and Jacques, Christian and Zaki, Mohamed H. and San Miguel, Jesus F.}, title = {Cytogenetics and long-term survival of patients with refractory or relapsed and refractory multiple myeloma treated with pomalidomide and low-dose dexamethasone}, series = {Haematologica}, volume = {100}, journal = {Haematologica}, number = {10}, doi = {10.3324/haematol.2014.117077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140349}, pages = {1327 -- 1333}, year = {2015}, abstract = {Patients with refractory or relapsed and refractory multiple myeloma who no longer receive benefit from novel agents have limited treatment options and short expected survival. del(17p) and t(4;14) are correlated with shortened survival. The phase 3 MM-003 trial demonstrated significant progression-free and overall survival benefits from treatment with pomalidomide plus low-dose dexamethasone compared to high-dose dexamethasone among patients in whom bortezomib and lenalidomide treatment had failed. At an updated median follow-up of 15.4 months, the progression-free survival was 4.0 versus 1.9 months (HR, 0.50; P<0.001), and median overall survival was 13.1 versus 8.1 months (HR, 0.72; P=0.009). Pomalidomide plus low-dose dexamethasone, compared with high-dose dexamethasone, improved progression-free survival in patients with del(17p) (4.6 versus 1.1 months; HR, 0.34; P < 0.001), t(4;14) (2.8 versus 1.9 months; HR, 0.49; P=0.028), and in standard-risk patients (4.2 versus 2.3 months; HR, 0.55; P<0.001). Although the majority of patients treated with high-dose dexamethasone took pomalidomide after discontinuation, the overall survival of patients treated with pomalidomide plus low-dose dexamethasone or highdose dexamethasone was 12.6 versus 7.7 months (HR, 0.45; P=0.008) in patients with del(17p), 7.5 versus 4.9 months (HR, 1.12; P=0.761) in those with t(4;14), and 14.0 versus 9.0 months (HR, 0.85; P=0.380) in standard-risk subjects. The overall response rate was higher in patients treated with pomalidomide plus low-dose dexamethasone than in those treated with high-dose dexamethasone both among standard-risk patients (35.2\% versus 9.7\%) and those with del(17p) (31.8\% versus 4.3\%), whereas it was similar in patients with t(4; 14) (15.9\% versus 13.3\%). The safety of pomalidomide plus low-dose dexamethasone was consistent with initial reports. In conclusion, pomalidomide plus low-dose dexamethasone is efficacious in patients with relapsed/refractory multiple myeloma and del(17p) and/or t(4;14).}, language = {en} } @article{AndersenBogstedDybkaretal.2015, author = {Andersen, Jens Peter and B{\o}gsted, Martin and Dybk{\ae}r, Karen and Mellqvist, Ulf-Henrik and Morgan, Gareth J. and Goldschmidt, Hartmut and Dimopoulos, Meletios A. and Einsele, Hermann and San Miguel, Jes{\´u}s and Palumbo, Antonio and Sonneveld, Pieter and Johnsen, Hans Erik}, title = {Global myeloma research clusters, output, and citations: a bibliometric mapping and clustering analysis}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0116966}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144214}, pages = {e0116966}, year = {2015}, abstract = {Background International collaborative research is a mechanism for improving the development of disease-specific therapies and for improving health at the population level. However, limited data are available to assess the trends in research output related to orphan diseases. Methods and Findings We used bibliometric mapping and clustering methods to illustrate the level of fragmentation in myeloma research and the development of collaborative efforts. Publication data from Thomson Reuters Web of Science were retrieved for 2005-2009 and followed until 2013. We created a database of multiple myeloma publications, and we analysed impact and co-authorship density to identify scientific collaborations, developments, and international key players over time. The global annual publication volume for studies on multiple myeloma increased from 1,144 in 2005 to 1,628 in 2009, which represents a 43\% increase. This increase is high compared to the 24\% and 14\% increases observed for lymphoma and leukaemia. The major proportion (> 90\% of publications) was from the US and EU over the study period. The output and impact in terms of citations, identified several successful groups with a large number of intra-cluster collaborations in the US and EU. The US-based myeloma clusters clearly stand out as the most productive and highly cited, and the European Myeloma Network members exhibited a doubling of collaborative publications from 2005 to 2009, still increasing up to 2013. Conclusion and Perspective Multiple myeloma research output has increased substantially in the past decade. The fragmented European myeloma research activities based on national or regional groups are progressing, but they require a broad range of targeted research investments to improve multiple myeloma health care.}, language = {en} } @article{SanMiguelEinseleMoreau2016, author = {San-Miguel, Jesus F. and Einsele, Hermann and Moreau, Philippe}, title = {The Role of Panobinostat Plus Bortezomib and Dexamethasone in Treating Relapsed or Relapsed and Refractory Multiple Myeloma: A European Perspective}, series = {Advances in Therapy}, volume = {33}, journal = {Advances in Therapy}, number = {11}, doi = {10.1007/s12325-016-0413-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186840}, pages = {1896-1920}, year = {2016}, abstract = {Panobinostat is an oral pan-histone deacetylase inhibitor developed by Novartis. Panobinostat acts via epigenetic modification and inhibition of the aggresome pathway. In August 2015, the European Commission authorized panobinostat for use in combination with bortezomib and dexamethasone for the treatment of relapsed or relapsed and refractory multiple myeloma (MM) in patients who have received aeyen2 prior regimens including bortezomib and an immunomodulatory drug. In January 2016, the National Institute for Health and Care Excellence recommended panobinostat for use in the same combination and patient population. The authorization and recommendation were based on results from the pivotal phase 3 PANORAMA 1 (NCT01023308) clinical trial, which demonstrated an improvement in median progression-free survival of 7.8 months for the three-drug combination compared with placebo plus bortezomib and dexamethasone in this patient population. This review will discuss the current treatment landscape for relapsed/refractory MM, the mechanism of action of panobinostat, clinical data supporting the European authorization, concerns about safety and strategies for mitigating toxicity, and how panobinostat fits into the current MM landscape in Europe.}, language = {en} } @article{MoralesLozanoVieringSamnicketal.2020, author = {Morales-Lozano, Maria I. and Viering, Oliver and Samnick, Samuel and Rodriguez-Otero, Paula and Buck, Andreas K. and Marcos-Jubilar, Maria and Rasche, Leo and Prieto, Elena and Kort{\"u}m, K. Martin and San-Miguel, Jesus and Garcia-Velloso, Maria J. and Lapa, Constantin}, title = {\(^{18}\)F-FDG and \(^{11}\)C-methionine PET/CT in newly diagnosed multiple myeloma patients: comparison of volume-based PET biomarkers}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {4}, issn = {2072-6694}, doi = {10.3390/cancers12041042}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203686}, year = {2020}, abstract = {\(^{11}\)C-methionine (\(^{11}\)C-MET) is a new positron emission tomography (PET) tracer for the assessment of disease activity in multiple myeloma (MM) patients, with preliminary data suggesting higher sensitivity and specificity than \(^{18}\)F-fluorodeoxyglucose (\(^{18}\)F-FDG). However, the value of tumor burden biomarkers has yet to be investigated. Our goals were to corroborate the superiority of \(^{11}\)C-MET for MM staging and to compare its suitability for the assessment of metabolic tumor burden biomarkers in comparison to \(^{18}\)F-FDG. Twenty-two patients with newly diagnosed, treatment-na{\"i}ve symptomatic MM who had undergone \(^{11}\)C-MET and \(^{18}\)F-FDG PET/CT were evaluated. Standardized uptake values (SUV) were determined and compared with total metabolic tumor volume (TMTV) for both tracers: total lesion glycolysis (TLG) and total lesion \(^{11}\)C-MET uptake (TLMU). PET-derived values were compared to Revised International Staging System (R-ISS), cytogenetic, and serologic MM markers such as M component, beta 2 microglobulin (B2M), serum free light chains (FLC), albumin, and lactate dehydrogenase (LDH). In 11 patients (50\%), \(^{11}\)C-MET detected more focal lesions (FL) than FDG (p < 0.01). SUVmax, SUVmean, SUVpeak, TMTV, and TLMU were also significantly higher in \(^{11}\)C-MET than in \(^{18}\)F-FDG (p < 0.05, respectively). \(^{11}\)C-MET PET biomarkers had a better correlation with tumor burden (bone marrow plasma cell infiltration, M component; p < 0.05 versus p = n.s. respectively). This pilot study suggests that \(^{11}\)C-MET PET/CT is a more sensitive marker for the assessment of myeloma tumor burden than \(^{18}\)F-FDG. Its implications for prognosis evaluation need further investigation.}, language = {en} } @article{LapaGarciaVellosoLueckerathetal.2017, author = {Lapa, Constantin and Garcia-Velloso, Maria J. and L{\"u}ckerath, Katharina and Samnick, Samuel and Schreder, Martin and Otero, Paula Rodriguez and Schmid, Jan-Stefan and Herrmann, Ken and Knop, Stefan and Buck, Andreas K. and Einsele, Hermann and San-Miguel, Jesus and Kort{\"u}m, Klaus Martin}, title = {\(^{11}\)C-methionine-PET in multiple myeloma: a combined study from two different institutions}, series = {Theranostics}, volume = {7}, journal = {Theranostics}, number = {11}, doi = {10.7150/thno.20491}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172038}, pages = {2956-2964}, year = {2017}, abstract = {\(^{11}\)C-methionine (MET) has recently emerged as an accurate marker of tumor burden and disease activity in patients with multiple myeloma (MM). This dual-center study aimed at further corroboration of the superiority of MET as positron emission tomography (PET) tracer for staging and re-staging MM, as compared to \(^{18}\)F-2`-deoxy-2`-fluoro-D-glucose (FDG). 78 patients with a history of solitary plasmacytoma (n=4), smoldering MM (SMM, n=5), and symptomatic MM (n=69) underwent both MET- and FDG-PET/computed tomography (CT) at the University Centers of W{\"u}rzburg, Germany and Navarra, Spain. Scans were compared on a patient and on a lesion basis. Inter-reader agreement was also evaluated. In 2 patients, tumor biopsies for verification of discordant imaging results were available. MET-PET detected focal lesions (FL) in 59/78 subjects (75.6\%), whereas FDG-PET/CT showed lesions in only 47 patients (60.3\%; p<0.01), accordingly disease activity would have been missed in 12 patients. Directed biopsies of discordant results confirmed MET-PET/CT results in both cases. MET depicted more FL in 44 patients (56.4\%; p<0.01), whereas in two patients (2/78), FDG proved superior. In the remainder (41.0\%, 32/78), both tracers yielded comparable results. Inter-reader agreement for MET was higher than for FDG (κ = 0.82 vs κ = 0.72). This study demonstrates higher sensitivity of MET in comparison to standard FDG to detect intra- and extramedullary MM including histologic evidence of FDG-negative, viable disease exclusively detectable by MET-PET/CT. MET holds the potential to replace FDG as functional imaging standard for staging and re-staging of MM.}, language = {en} }