@article{DavisYuKeenanetal.2013, author = {Davis, Lea K. and Yu, Dongmei and Keenan, Clare L. and Gamazon, Eric R. and Konkashbaev, Anuar I. and Derks, Eske M. and Neale, Benjamin M. and Yang, Jian and Lee, S. Hong and Evans, Patrick and Barr, Cathy L. and Bellodi, Laura and Benarroch, Fortu and Berrio, Gabriel Bedoya and Bienvenu, Oscar J. and Bloch, Michael H. and Blom, Rianne M. and Bruun, Ruth D. and Budman, Cathy L. and Camarena, Beatriz and Campbell, Desmond and Cappi, Carolina and Cardona Silgado, Julio C. and Cath, Danielle C. and Cavallini, Maria C. and Chavira, Denise A. and Chouinard, Sylvian and Conti, David V. and Cook, Edwin H. and Coric, Vladimir and Cullen, Bernadette A. and Deforce, Dieter and Delorme, Richard and Dion, Yves and Edlund, Christopher K. and Egberts, Karin and Falkai, Peter and Fernandez, Thomas V. and Gallagher, Patience J. and Garrido, Helena and Geller, Daniel and Girard, Simon L. and Grabe, Hans J. and Grados, Marco A. and Greenberg, Benjamin D. and Gross-Tsur, Varda and Haddad, Stephen and Heiman, Gary A. and Hemmings, Sian M. J. and Hounie, Ana G. and Illmann, Cornelia and Jankovic, Joseph and Jenike, Micheal A. and Kennedy, James L. and King, Robert A. and Kremeyer, Barbara and Kurlan, Roger and Lanzagorta, Nuria and Leboyer, Marion and Leckman, James F. and Lennertz, Leonhard and Liu, Chunyu and Lochner, Christine and Lowe, Thomas L. and Macciardi, Fabio and McCracken, James T. and McGrath, Lauren M. and Restrepo, Sandra C. Mesa and Moessner, Rainald and Morgan, Jubel and Muller, Heike and Murphy, Dennis L. and Naarden, Allan L. and Ochoa, William Cornejo and Ophoff, Roel A. and Osiecki, Lisa and Pakstis, Andrew J. and Pato, Michele T. and Pato, Carlos N. and Piacentini, John and Pittenger, Christopher and Pollak, Yehunda and Rauch, Scott L. and Renner, Tobias J. and Reus, Victor I. and Richter, Margaret A. and Riddle, Mark A. and Robertson, Mary M. and Romero, Roxana and Ros{\`a}rio, Maria C. and Rosenberg, David and Rouleau, Guy A. and Ruhrmann, Stephan and Ruiz-Linares, Andreas and Sampaio, Aline S. and Samuels, Jack and Sandor, Paul and Sheppard, Broke and Singer, Harvey S. and Smit, Jan H. and Stein, Dan J. and Strengman, E. and Tischfield, Jay A. and Valencia Duarte, Ana V. and Vallada, Homero and Van Nieuwerburgh, Flip and Veenstra-VanderWeele, Jeremy and Walitza, Susanne and Wang, Ying and Wendland, Jens R. and Westenberg, Herman G. M. and Shugart, Yin Yao and Miguel, Euripedes C. and McMahon, William and Wagner, Michael and Nicolini, Humberto and Posthuma, Danielle and Hanna, Gregory L. and Heutink, Peter and Denys, Damiaan and Arnold, Paul D. and Oostra, Ben A. and Nestadt, Gerald and Freimer, Nelson B. and Pauls, David L. and Wray, Naomi R. and Stewart, S. Evelyn and Mathews, Carol A. and Knowles, James A. and Cox, Nancy J. and Scharf, Jeremiah M.}, title = {Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture}, series = {PLoS Genetics}, volume = {9}, journal = {PLoS Genetics}, number = {10}, issn = {1553-7390}, doi = {10.1371/journal.pgen.1003864}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127377}, pages = {e1003864}, year = {2013}, abstract = {The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12) for TS, and 0.37 (se = 0.07, p = 1.5e-07) for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5\% accounted for 21\% of the TS heritability and 0\% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum) for which we had available expression quantitative trait loci (eQTLs). Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002). These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed) from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures.}, language = {en} } @article{BenoitAdelmanReinhardtetal.2016, author = {Benoit, Joshua B. and Adelman, Zach N. and Reinhardt, Klaus and Dolan, Amanda and Poelchau, Monica and Jennings, Emily C. and Szuter, Elise M. and Hagan, Richard W. and Gujar, Hemant and Shukla, Jayendra Nath and Zhu, Fang and Mohan, M. and Nelson, David R. and Rosendale, Andrew J. and Derst, Christian and Resnik, Valentina and Wernig, Sebastian and Menegazzi, Pamela and Wegener, Christian and Peschel, Nicolai and Hendershot, Jacob M. and Blenau, Wolfgang and Predel, Reinhard and Johnston, Paul R. and Ioannidis, Panagiotis and Waterhouse, Robert M. and Nauen, Ralf and Schorn, Corinna and Ott, Mark-Christoph and Maiwald, Frank and Johnston, J. Spencer and Gondhalekar, Ameya D. and Scharf, Michael E. and Raje, Kapil R. and Hottel, Benjamin A. and Armis{\´e}n, David and Crumi{\`e}re, Antonin Jean Johan and Refki, Peter Nagui and Santos, Maria Emilia and Sghaier, Essia and Viala, S{\`e}verine and Khila, Abderrahman and Ahn, Seung-Joon and Childers, Christopher and Lee, Chien-Yueh and Lin, Han and Hughes, Daniel S.T. and Duncan, Elizabeth J. and Murali, Shwetha C. and Qu, Jiaxin and Dugan, Shannon and Lee, Sandra L. and Chao, Hsu and Dinh, Huyen and Han, Yi and Doddapaneni, Harshavardhan and Worley, Kim C. and Muzny, Donna M. and Wheeler, David and Panfilio, Kristen A. and Jentzsch, Iris M. Vargas and Jentzsch, IMV and Vargo, Edward L. and Booth, Warren and Friedrich, Markus and Weirauch, Matthew T. and Anderson, Michelle A.E. and Jones, Jeffery W. and Mittapalli, Omprakash and Zhao, Chaoyang and Zhou, Jing-Jiang and Evans, Jay D. and Attardo, Geoffrey M. and Robertson, Hugh M. and Zdobnov, Evgeny M. and Ribeiro, Jose M.C. and Gibbs, Richard A. and Werren, John H. and Palli, Subba R. and Schal, Coby and Richards, Stephen}, title = {Unique features of a global human ectoparasite identified through sequencing of the bed bug genome}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, number = {10165}, doi = {10.1038/ncomms10165}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166221}, year = {2016}, abstract = {The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host-symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human-bed bug and symbiont-bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite.}, language = {en} } @article{StuehlerKowalewskiReisetal.2022, author = {St{\"u}hler, R. and Kowalewski, A. and Reis, F. and Jungblut, D. and Dominguez, F. and Scharf, B. and Li, G. and Sch{\"a}fer, J. and Hankiewicz, E. M. and Claessen, R.}, title = {Effective lifting of the topological protection of quantum spin Hall edge states by edge coupling}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, doi = {10.1038/s41467-022-30996-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300886}, year = {2022}, abstract = {The scientific interest in two-dimensional topological insulators (2D TIs) is currently shifting from a more fundamental perspective to the exploration and design of novel functionalities. Key concepts for the use of 2D TIs in spintronics are based on the topological protection and spin-momentum locking of their helical edge states. In this study we present experimental evidence that topological protection can be (partially) lifted by pairwise coupling of 2D TI edges in close proximity. Using direct wave function mapping via scanning tunneling microscopy/spectroscopy (STM/STS) we compare isolated and coupled topological edges in the 2D TI bismuthene. The latter situation is realized by natural lattice line defects and reveals distinct quasi-particle interference (QPI) patterns, identified as electronic Fabry-P{\´e}rot resonator modes. In contrast, free edges show no sign of any single-particle backscattering. These results pave the way for novel device concepts based on active control of topological protection through inter-edge hybridization for, e.g., electronic Fabry-P{\´e}rot interferometry.}, language = {en} }