@article{WaechtlerKuebelBarthelmesetal.2016, author = {W{\"a}chtler, Maria and K{\"u}bel, Joachim and Barthelmes, Kevin and Winter, Andreas and Schmiedel, Alexander and Pascher, Torbj{\"o}rn and Lambert, Christoph and Schubert, Ulrich S. and Dietzek, Benjamin}, title = {Energy transfer and formation of long-lived \(^3\)MLCT states in multimetallic complexes with extended highly conjugated bis-terpyridyl ligands}, series = {Physical Chemistry Chemical Physics}, volume = {18}, journal = {Physical Chemistry Chemical Physics}, number = {4}, doi = {10.1039/c5cp04447b}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191041}, pages = {2350-2360}, year = {2016}, abstract = {Multimetallic complexes with extended and highly conjugated bis-2,2':6',2''-terpyridyl bridging ligands, which present building blocks for coordination polymers, are investigated with respect to their ability to act as light-harvesting antennae. The investigated species combine Ru(II)- with Os(II)- and Fe(II)-terpyridyl chromophores, the latter acting as energy sinks. Due to the extended conjugated system the ligands are able to prolong the lifetime of the \(^3\)MLCT states compared to unsubstituted terpyridyl species by delocalization and energetic stabilization of the \(^3\)MLCT states. This concept is applied for the first time to Fe(II) terpyridyl species and results in an exceptionally long lifetime of 23 ps for the Fe(II) \(^3\)MLCT state. While partial energy (>80\%) transfer is observed between the Ru(II) and Fe(II) centers with a time-constant of 15 ps, excitation energy is transferred completely from the Ru(II) to the Os(II) center within the first 200 fs after excitation.}, language = {en} } @phdthesis{Schubert2012, author = {Schubert, Alexander}, title = {Koh{\"a}rente und dissipative Wellenpaketdynamik und zeitaufgel{\"o}ste Spektroskopie: Von zweiatomigen Molek{\"u}len zu molekularen Aggregaten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74258}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Unter dem Gesichtspunkt koh{\"a}renter Wellenpaketdynamik werden in dieser Arbeit zwei Themenfelder untersucht: Zum einen die Auswirkungen von Kernfreiheitsgraden auf die zweidimensionale vibronische Spektroskopie (2D-Spektroskopie) und zum anderen photoinduzierte Energieverlustmechanismen in organischen Halbleitern. Im ersten Abschnitt wird am numerischen Beispiel zweiatomiger Molek{\"u}le gezeigt, dass sich die Anharmonizit{\"a}t der Wellenpaketbewegung durch Variation der Verz{\"o}gerungszeit der Femtosekundenpulse in der komplexwertigen Spektralfunktion, die aus der st{\"o}rungstheoretischen Berechnung der Polarisationsfunktion hervorgeht, widerspiegelt. Die zeitliche Entwicklung besetzter Vibrationszust{\"a}nde zeigt sich in der Struktur des Signals anhand sogenannter Quantenphasen. Durch Variation der Pulsparameter und -reihenfolge kann dabei die Quantendynamik in unterschiedlichen elektronischen Zust{\"a}nden charakterisiert werden. Im zweiten Teil der Arbeit wird f{\"u}r molekulare Aggregate (3,4,9,10-Perylentetracarbons{\"a}urediimid und 3,4,9,10-Perylentetracarbons{\"a}uredianhydrid) ein zeitaufgel{\"o}stes, atomistisches Bild intra- und intermolekularer Strukturverzerrungen vorgestellt. Letztere induzieren eine ultraschnelle Depopulation der durch Photoabsorption angeregten elektronischen Zust{\"a}nde, was mit einer deutlichen Abnahme der Anregungsenergie einhergeht.}, subject = {Kurzzeitphysik}, language = {de} } @article{SchubertUnkmeirSchneiderSchauliesGulbinsetal.2014, author = {Schubert-Unkmeir, Alexandra and Schneider-Schaulies, Sibylle and Gulbins, Erich and Hebling, Sabrina and Simonis, Alexander}, title = {Differential Activation of Acid Sphingomyelinase and Ceramide Release Determines Invasiveness of Neisseria meningitidis into Brain Endothelial Cells}, doi = {10.1371/journal.ppat.1004160}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113031}, year = {2014}, abstract = {The interaction with brain endothelial cells is central to the pathogenicity of Neisseria meningitidis infections. Here, we show that N. meningitidis causes transient activation of acid sphingomyelinase (ASM) followed by ceramide release in brain endothelial cells. In response to N. meningitidis infection, ASM and ceramide are displayed at the outer leaflet of the cell membrane and condense into large membrane platforms which also concentrate the ErbB2 receptor. The outer membrane protein Opc and phosphatidylcholine-specific phospholipase C that is activated upon binding of the pathogen to heparan sulfate proteoglycans, are required for N. meningitidis-mediated ASM activation. Pharmacologic or genetic ablation of ASM abrogated meningococcal internalization without affecting bacterial adherence. In accordance, the restricted invasiveness of a defined set of pathogenic isolates of the ST-11/ST-8 clonal complex into brain endothelial cells directly correlated with their restricted ability to induce ASM and ceramide release. In conclusion, ASM activation and ceramide release are essential for internalization of Opc-expressing meningococci into brain endothelial cells, and this segregates with invasiveness of N. meningitidis strains. Author Summary Neisseria meningitidis, an obligate human pathogen, is a causative agent of septicemia and meningitis worldwide. Meningococcal infection manifests in a variety of forms, including meningitis, meningococcemia with meningitis or meningococcemia without obvious meningitis. The interaction of N. meningitidis with human cells lining the blood vessels of the blood-cerebrospinal fluid barrier is a prerequisite for the development of meningitis. As a major pathogenicity factor, the meningococcal outer membrane protein Opc enhances bacterial entry into brain endothelial cells, however, mechanisms underlying trapping of receptors and signaling molecules following this interaction remained elusive. We now show that Opc-expressing meningococci activate acid sphingomyelinase (ASM) in brain endothelial cells, which hydrolyses sphingomyelin to cause ceramide release and formation of extended ceramide-enriched membrane platforms wherein ErbB2, an important receptor involved in bacterial uptake, clusters. Mechanistically, ASM activation relied on binding of N. meningitidis to its attachment receptor, HSPG, followed by activation of PC-PLC. Meningococcal isolates of the ST-11 clonal complex, which are reported to be more likely to cause severe sepsis, but rarely meningitis, barely invaded brain endothelial cells and revealed a highly restricted ability to induce ASM and ceramide release. Thus, our results unravel a differential activation of the ASM/ceramide system by the species N. meningitidis determining its invasiveness into brain endothelial cells.}, language = {en} } @article{EngelAlbertSchubert2013, author = {Engel, Volker and Albert, Julian and Schubert, Alexander}, title = {Two-dimensional vibronic spectroscopy of molecular predissociation}, series = {New Journal of Physics}, journal = {New Journal of Physics}, doi = {10.1088/1367-2630/15/2/025008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96199}, year = {2013}, abstract = {We calculate two-dimensional (2D) spectra reflecting the time-dependent electronic predissociation of a diatomic molecule. The laser-excited electronic state is coupled non-adiabatically to a fragment channel, leading to the decay of the prepared quasi-bound states. This decay can be monitored by the three-pulse configuration employed in optical 2D spectroscopy. It is shown that in this way it is possible to state-selectively characterize the time-dependent population of resonance states with different lifetimes. A model of the NaI molecule serves as a numerical example.}, language = {en} } @article{ReuschWagenhaeuserGabeletal.2022, author = {Reusch, Julia and Wagenh{\"a}user, Isabell and Gabel, Alexander and Eggestein, Annika and H{\"o}hn, Anna and L{\^a}m, Thi{\^e}n-Tr{\´i} and Frey, Anna and Schubert-Unkmeir, Alexandra and D{\"o}lken, Lars and Frantz, Stefan and Kurzai, Oliver and Vogel, Ulrich and Krone, Manuel and Petri, Nils}, title = {Influencing factors of anti-SARS-CoV-2-spike-IgG antibody titers in healthcare workers: A cross-section study}, series = {Journal of Medical Virology}, volume = {95}, journal = {Journal of Medical Virology}, number = {1}, doi = {10.1002/jmv.28300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318659}, year = {2022}, abstract = {Against the background of the current COVID-19 infection dynamics with its rapid spread of SARS-CoV-2 variants of concern (VOC), the immunity and the vaccine prevention of healthcare workers (HCWs) against SARS-CoV-2 continues to be of high importance. This observational cross-section study assesses factors influencing the level of anti-SARS-CoV-2-spike IgG after SARS-CoV-2 infection or vaccination. One thousand seven hundred and fifty HCWs were recruited meeting the following inclusion criteria: age ≥18 years, PCR-confirmed SARS-CoV-2 infection convalescence and/or at least one dose of COVID-19 vaccination. anti-SARS-CoV-2-spike IgG titers were determined by SERION ELISA agile SARS-CoV-2 IgG. Mean anti-SARS-CoV-2-spike IgG levels increased significantly by number of COVID-19 vaccinations (92.2 BAU/ml for single, 140.9 BAU/ml for twice and 1144.3 BAU/ml for threefold vaccination). Hybrid COVID-19 immunized respondents (after infection and vaccination) had significantly higher antibody titers compared with convalescent only HCWs. Anti-SARS-CoV-2-spike IgG titers declined significantly with time after the second vaccination. Smoking and high age were associated with lower titers. Both recovered and vaccinated HCWs presented a predominantly good humoral immune response. Smoking and higher age limited the humoral SARS-CoV-2 immunity, adding to the risk of severe infections within this already health impaired collective.}, language = {en} } @article{GomesWestermannSauerweinetal.2019, author = {Gomes, Sara F. Martins and Westermann, Alexander J. and Sauerwein, Till and Hertlein, Tobias and F{\"o}rstner, Konrad U. and Ohlsen, Knut and Metzger, Marco and Shusta, Eric V. and Kim, Brandon J. and Appelt-Menzel, Antje and Schubert-Unkmeir, Alexandra}, title = {Induced pluripotent stem cell-derived brain endothelial cells as a cellular model to study Neisseria meningitidis infection}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, number = {1181}, doi = {10.3389/fmicb.2019.01181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201562}, year = {2019}, abstract = {Meningococcal meningitis is a severe central nervous system infection that occurs when Neisseria meningitidis (Nm) penetrates brain endothelial cells (BECs) of the meningeal blood-cerebrospinal fluid barrier. As a human-specific pathogen, in vivo models are greatly limited and pose a significant challenge. In vitro cell models have been developed, however, most lack critical BEC phenotypes limiting their usefulness. Human BECs generated from induced pluripotent stem cells (iPSCs) retain BEC properties and offer the prospect of modeling the human-specific Nm interaction with BECs. Here, we exploit iPSC-BECs as a novel cellular model to study Nm host-pathogen interactions, and provide an overview of host responses to Nm infection. Using iPSC-BECs, we first confirmed that multiple Nm strains and mutants follow similar phenotypes to previously described models. The recruitment of the recently published pilus adhesin receptor CD147 underneath meningococcal microcolonies could be verified in iPSC-BECs. Nm was also observed to significantly increase the expression of pro-inflammatory and neutrophil-specific chemokines IL6, CXCL1, CXCL2, CXCL8, and CCL20, and the secretion of IFN-γ and RANTES. For the first time, we directly observe that Nm disrupts the three tight junction proteins ZO-1, Occludin, and Claudin-5, which become frayed and/or discontinuous in BECs upon Nm challenge. In accordance with tight junction loss, a sharp loss in trans-endothelial electrical resistance, and an increase in sodium fluorescein permeability and in bacterial transmigration, was observed. Finally, we established RNA-Seq of sorted, infected iPSC-BECs, providing expression data of Nm-responsive host genes. Altogether, this model provides novel insights into Nm pathogenesis, including an impact of Nm on barrier properties and tight junction complexes, and suggests that the paracellular route may contribute to Nm traversal of BECs.}, language = {en} }