@article{BraunschweigEwingGhoshetal.2016, author = {Braunschweig, Holger and Ewing, William C. and Ghosh, Sundargopal and Kramer, Thomas and Mattock, James D. and {\"O}streicher, Sebastian and Vargas, Alfredo and Werner, Christine}, title = {Trimetallaborides as starting points for the syntheses of large metal-rich molecular borides and clusters}, series = {Chemical Science}, volume = {7}, journal = {Chemical Science}, number = {1}, doi = {10.1039/c5sc03206g}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191511}, pages = {109-116}, year = {2016}, abstract = {Treatment of an anionic dimanganaborylene complex ([{Cp(CO)\(_2\)Mn}\(_2\)B]\(^-\)) with coinage metal cations stabilized by a very weakly coordinating Lewis base (SMe\(_2\)) led to the coordination of the incoming metal and subsequent displacement of dimethylsulfide in the formation of hexametalladiborides featuring planar four-membered M\(_2\)B\(_2\) cores (M = Cu, Au) comparable to transition metal clusters constructed around four-membered rings composed solely of coinage metals. The analogies between compounds consisting of B\(_2\)M\(_2\) units and M\(_4\) (M = Cu, Au) units speak to the often overlooked metalloid nature of boron. Treatment of one of these compounds (M = Cu) with a Lewis-basic metal fragment (Pt(PCy\(_3\))\(_2\)) led to the formation of a tetrametallaboride featuring two manganese, one copper and one platinum atom, all bound to boron in a geometry not yet seen for this kind of compound. Computational examination suggests that this geometry is the result of d\(^{10}\)-d\(^{10}\) dispersion interactions between the copper and platinum fragments.}, language = {en} } @phdthesis{Oestreicher2012, author = {{\"O}streicher, Sebastian}, title = {Synthese und Eigenschaften neuartiger Di-, Tri- und Tetrametalloboridokomplexe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73943}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Unter Ausnutzung der Reaktivit{\"a}t von Borylanionen wurden neuartige {\"U}bergangsmetallboridokomplexe synthetisiert, bei denen ein "nacktes" Boratom als Ligand f{\"u}r bis zu vier {\"U}bergangsmetalle vorliegt. Strukturelle und bindungstheoretische Eigenschaften der Boridokomplexe wurden mit g{\"a}ngigen metallorganischen Analysemethoden sowie mit DFT-Methoden untersucht. Dabei zeigte sich, dass die erhaltenen Tetrametalloboridokomplexe eine planare Koordinationsgeometrie um das Borzentrum aufweisen und damit ein {\"A}quivalent zu anti van't Hoff/Le Bel-Verbindungen des Kohlenstoffs darstellen.}, subject = {{\"U}bergangsmetall}, language = {de} } @article{ScheidelOestreicherMarketal.2022, author = {Scheidel, Sebastian and {\"O}streicher, Laurina and Mark, Isabelle and P{\"o}ppler, Ann-Christin}, title = {You cannot fight the pressure: Structural rearrangements of active pharmaceutical ingredients under magic angle spinning}, series = {Magnetic Resonance in Chemistry}, volume = {60}, journal = {Magnetic Resonance in Chemistry}, number = {6}, doi = {10.1002/mrc.5267}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318838}, pages = {572 -- 582}, year = {2022}, abstract = {Although solid-state nuclear magnetic resonance (NMR) is a versatile analytical tool to study polymorphs and phase transitions of pharmaceutical molecules and products, this work summarizes examples of spontaneous and unexpected (and unwanted) structural rearrangements and phase transitions (amorphous-to-crystalline and crystalline-to-crystalline) under magic angle spinning (MAS) conditions, some of them clearly being due to the pressure experienced by the samples. It is widely known that such changes can often be detected by X-ray powder diffraction (XRPD); here, the capability of solid-state NMR experiments with a special focus on \(^{1}\)H-\(^{13}\)C frequency-switched Lee-Goldburg heteronuclear correlation (FSLG HETCOR)/MAS NMR experiments to detect even subtle changes on a molecular level not observable by conventional 1D NMR experiments or XRPD is presented. Furthermore, it is shown that a polymorphic impurity combined with MAS can induce a crystalline-to-crystalline phase transition. This showcases that solid-state NMR is not always noninvasive and such changes upon MAS should be considered in particular when compounds are studied over longer time spans.}, language = {en} }