@article{DoerkPeterlongoMannermaaetal.2019, author = {D{\"o}rk, Thilo and Peterlongo, Peter and Mannermaa, Arto and Bolla, Manjeet K. and Wang, Qin and Dennis, Joe and Ahearn, Thomas and Andrulis, Irene L. and Anton-Culver, Hoda and Arndt, Volker and Aronson, Kristan J. and Augustinsson, Annelie and Beane Freeman, Laura E. and Beckmann, Matthias W. and Beeghly-Fadiel, Alicia and Behrens, Sabine and Bermisheva, Marina and Blomqvist, Carl and Bogdanova, Natalia V. and Bojesen, Stig E. and Brauch, Hiltrud and Brenner, Hermann and Burwinkel, Barbara and Canzian, Federico and Chan, Tsun L. and Chang-Claude, Jenny and Chanock, Stephen J. and Choi, Ji-Yeob and Christiansen, Hans and Clarke, Christine L. and Couch, Fergus J. and Czene, Kamila and Daly, Mary B. and dos-Santos-Silva, Isabel and Dwek, Miriam and Eccles, Diana M. and Ekici, Arif B. and Eriksson, Mikael and Evans, D. Gareth and Fasching, Peter A. and Figueroa, Jonine and Flyger, Henrik and Fritschi, Lin and Gabrielson, Marike and Gago-Dominguez, Manuela and Gao, Chi and Gapstur, Susan M. and Garc{\´i}a-Closas, Montserrat and Garc{\´i}a-S{\´a}enz, Jos{\´e} A. and Gaudet, Mia M. and Giles, Graham G. and Goldberg, Mark S. and Goldgar, David E. and Guen{\´e}l, Pascal and Haeberle, Lothar and Haimann, Christopher A. and H{\aa}kansson, Niclas and Hall, Per and Hamann, Ute and Hartman, Mikael and Hauke, Jan and Hein, Alexander and Hillemanns, Peter and Hogervorst, Frans B. L. and Hooning, Maartje J. and Hopper, John L. and Howell, Tony and Huo, Dezheng and Ito, Hidemi and Iwasaki, Motoki and Jakubowska, Anna and Janni, Wolfgang and John, Esther M. and Jung, Audrey and Kaaks, Rudolf and Kang, Daehee and Kapoor, Pooja Middha and Khusnutdinova, Elza and Kim, Sung-Won and Kitahara, Cari M. and Koutros, Stella and Kraft, Peter and Kristensen, Vessela N. and Kwong, Ava and Lambrechts, Diether and Le Marchand, Loic and Li, Jingmei and Lindstr{\"o}m, Sara and Linet, Martha and Lo, Wing-Yee and Long, Jirong and Lophatananon, Artitaya and Lubiński, Jan and Manoochehri, Mehdi and Manoukian, Siranoush and Margolin, Sara and Martinez, Elena and Matsuo, Keitaro and Mavroudis, Dimitris and Meindl, Alfons and Menon, Usha and Milne, Roger L. and Mohd Taib, Nur Aishah and Muir, Kenneth and Mulligan, Anna Marie and Neuhausen, Susan L. and Nevanlinna, Heli and Neven, Patrick and Newman, William G. and Offit, Kenneth and Olopade, Olufunmilayo I. and Olshan, Andrew F. and Olson, Janet E. and Olsson, H{\aa}kan and Park, Sue K. and Park-Simon, Tjoung-Won and Peto, Julian and Plaseska-Karanfilska, Dijana and Pohl-Rescigno, Esther and Presneau, Nadege and Rack, Brigitte and Radice, Paolo and Rashid, Muhammad U. and Rennert, Gad and Rennert, Hedy S. and Romero, Atocha and Ruebner, Matthias and Saloustros, Emmanouil and Schmidt, Marjanka K. and Schmutzler, Rita K. and Schneider, Michael O. and Schoemaker, Minouk J. and Scott, Christopher and Shen, Chen-Yang and Shu, Xiao-Ou and Simard, Jaques and Slager, Susan and Smichkoska, Snezhana and Southey, Melissa C. and Spinelli, John J. and Stone, Jennifer and Surowy, Harald and Swerdlow, Anthony J. and Tamimi, Rulla M. and Tapper, William J. and Teo, Soo H. and Terry, Mary Beth and Toland, Amanda E. and Tollenaar, Rob A. E. M. and Torres, Diana and Torres-Mej{\´i}a, Gabriela and Troester, Melissa A. and Truong, Th{\´e}r{\`e}se and Tsugane, Shoichiro and Untch, Michael and Vachon, Celine M. and van den Ouweland, Ans M. W. and van Veen, Elke M. and Vijai, Joseph and Wendt, Camilla and Wolk, Alicja and Yu, Jyh-Cherng and Zheng, Wei and Ziogas, Argyrios and Ziv, Elad and Dunnig, Alison and Pharaoh, Paul D. P. and Schindler, Detlev and Devilee, Peter and Easton, Douglas F.}, title = {Two truncating variants in FANCC and breast cancer risk}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, organization = {ABCTB Investigators, NBCS Collaborators}, doi = {10.1038/s41598-019-48804-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222838}, year = {2019}, abstract = {Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95\%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.}, language = {en} } @article{KruseShenArnoldetal.1993, author = {Kruse, N. and Shen, B. J. and Arnold, S. and Tony, H. P. and M{\"u}ller, T. and Sebald, Walter}, title = {Two distinct functional sites of human interleukin 4 are identified by variants impaired in either receptor binding or receptor activation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62451}, year = {1993}, abstract = {Interleukin 4 (IL-4) exerts a decisive role in the coord.ination of proteelive immune responses against parasites, particularly helminths. A disregulation of ll.r4 function is possibly involved in the genesis of allergic disease states. The search for important amino acid residues in human ll.r4 by mutational analysis of charged invariant amino acid positions identified two distinct functional sites in the 4-helix-bundle protein. Site 1 was marked by amino acid substitutions of the glutamic acid at position 9 in helix A and arginine at position 88 in helix C. Exchanges at both positions led to IL-4 variants deficient in binding to the extracellular domain of the ll.r4 receptor (IL-4ReJ. In parallel, up to 1000-fold increased concentrations of this type of variant were required to induce T -cell proliferation and B-eeil CD23 expression. Site 2 was marked by amino acid exchanges in helix D at positions 121, 124 and 125 (arginine, tyrosine and serine respectively in the wild-type).ß.A variants affected at site 2 exhibited partial agonist activity during T -cell proliferation; however, they still bound with high affinity to IL-4Rex. [The generation of an IL-4 antagonist by replacing tyrosine 124 with aspartic acid has been described before by Kruse et al. (1992) (EMBO }., 11, 3237-3244)]. These findings indicate that IL-4 functions by bind.ing IL-4Rex via site 1 which is constituted by residues on helices A and C. They further suggest that the association of a second, still undetined receptor protein with site 2 in helix D activates the receptor system and generates a transmembrane signal.}, subject = {Biochemie}, language = {en} } @article{TonyShenReuschetal.1994, author = {Tony, H. P. and Shen, B. J. and Reusch, P. and Sebald, Walter}, title = {Design of human interleukin-4 antagonists inhibiting interleukin-4-dependent and interleukin-13-dependent responses in T-cells and B-cells with high efficiency}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62394}, year = {1994}, abstract = {Human interleukin-4 possesses two distinct sites for receptor activation. A signaHing site, comprising residues near the C-terminus on helix D, determines the efficacy of interleukin-4 signal transduction without affecting the binding to the interleukin-4 receptor a subunit. A complete antagonist and a series of low-efficacy agonist variants of human interleukin-4 could be generated by introducing combinations of two or three negatively charged aspartic acid residues in this site at positions 121, 124, and 125. One of the double variants, designated [R121D,Y124D]interleukin-4, with replacements of b{\"o}th Arg121 and Tyr124 by aspartic acid residues was completely inactive in all analysed cellular responses. The loss of efficacy in [R121D,Y124D]interleukin-4 is estimated to be larger than 2000-fold. Variant [R121D,Y124D]interleukin-4 was also a perfect antagonist for inhibition of interleukin-13-dependent responses in B-cells and the TF-1 cellline with a K\(_i\) value of approximately 100 pM. In addition, inhibition of both interleukin-4-induced and interleuk.in-13- induced responses could be obtained by monoclonal antibody X2/45 raised against interleukin-4Rm the extracellular domain of the interleuk.in-4 receptor a subunit. These results indicate that efficient interleukin-4 antagonists can be designed on the basis of a sequential two-step activation model. In addition, the experiments indicate the functional participation of the interleukin-4 receptor a subunit in the interleukin-13 receptor system.}, subject = {Biochemie}, language = {en} }