@article{HudsonNewboldContuetal.2014, author = {Hudson, Lawrence N. and Newbold, Tim and Contu, Sara and Hill, Samantha L. L. and Lysenko, Igor and De Palma, Adriana and Phillips, Helen R. P. and Senior, Rebecca A. and Bennett, Dominic J. and Booth, Hollie and Choimes, Argyrios and Correia, David L. P. and Day, Julie and Echeverria-Londono, Susy and Garon, Morgan and Harrison, Michelle L. K. and Ingram, Daniel J. and Jung, Martin and Kemp, Victoria and Kirkpatrick, Lucinda and Martin, Callum D. and Pan, Yuan and White, Hannah J. and Aben, Job and Abrahamczyk, Stefan and Adum, Gilbert B. and Aguilar-Barquero, Virginia and Aizen, Marcelo and Ancrenaz, Marc and Arbelaez-Cortes, Enrique and Armbrecht, Inge and Azhar, Badrul and Azpiroz, Adrian B. and Baeten, Lander and B{\´a}ldi, Andr{\´a}s and Banks, John E. and Barlow, Jos and Bat{\´a}ry, P{\´e}ter and Bates, Adam J. and Bayne, Erin M. and Beja, Pedro and Berg, Ake and Berry, Nicholas J. and Bicknell, Jake E. and Bihn, Jochen H. and B{\"o}hning-Gaese, Katrin and Boekhout, Teun and Boutin, Celine and Bouyer, Jeremy and Brearley, Francis Q. and Brito, Isabel and Brunet, J{\"o}rg and Buczkowski, Grzegorz and Buscardo, Erika and Cabra-Garcia, Jimmy and Calvino-Cancela, Maria and Cameron, Sydney A. and Cancello, Eliana M. and Carrijo, Tiago F. and Carvalho, Anelena L. and Castro, Helena and Castro-Luna, Alejandro A. and Cerda, Rolando and Cerezo, Alexis and Chauvat, Matthieu and Clarke, Frank M. and Cleary, Daniel F. R. and Connop, Stuart P. and D'Aniello, Biagio and da Silva, Pedro Giovani and Darvill, Ben and Dauber, Jens and Dejean, Alain and Diek{\"o}tter, Tim and Dominguez-Haydar, Yamileth and Dormann, Carsten F. and Dumont, Bertrand and Dures, Simon G. and Dynesius, Mats and Edenius, Lars and Elek, Zolt{\´a}n and Entling, Martin H. and Farwig, Nina and Fayle, Tom M. and Felicioli, Antonio and Felton, Annika M. and Ficetola, Gentile F. and Filgueiras, Bruno K. C. and Fonte, Steve J. and Fraser, Lauchlan H. and Fukuda, Daisuke and Furlani, Dario and Ganzhorn, J{\"o}rg U. and Garden, Jenni G. and Gheler-Costa, Carla and Giordani, Paolo and Giordano, Simonetta and Gottschalk, Marco S. and Goulson, Dave and Gove, Aaron D. and Grogan, James and Hanley, Mick E. and Hanson, Thor and Hashim, Nor R. and Hawes, Joseph E. and H{\´e}bert, Christian and Helden, Alvin J. and Henden, John-Andr{\´e} and Hern{\´a}ndez, Lionel and Herzog, Felix and Higuera-Diaz, Diego and Hilje, Branko and Horgan, Finbarr G. and Horv{\´a}th, Roland and Hylander, Kristoffer and Horv{\´a}th, Roland and Isaacs-Cubides, Paola and Ishitani, Mashiro and Jacobs, Carmen T. and Jaramillo, Victor J. and Jauker, Birgit and Jonsell, Matts and Jung, Thomas S. and Kapoor, Vena and Kati, Vassiliki and Katovai, Eric and Kessler, Michael and Knop, Eva and Kolb, Annette and K{\"o}r{\"o}si, {\`A}d{\´a}m and Lachat, Thibault and Lantschner, Victoria and Le F{\´e}on, Violette and LeBuhn, Gretchen and L{\´e}gar{\´e}, Jean-Philippe and Letcher, Susan G. and Littlewood, Nick A. and L{\´o}pez-Quintero, Carlos A. and Louhaichi, Mounir and L{\"o}vei, Gabor L. and Lucas-Borja, Manuel Esteban and Luja, Victor H. and Maeto, Kaoru and Magura, Tibor and Mallari, Neil Aldrin and Marin-Spiotta, Erika and Marhall, E. J. P. and Mart{\´i}nez, Eliana and Mayfield, Margaret M. and Mikusinski, Gregorz and Milder, Jeffery C. and Miller, James R. and Morales, Carolina L. and Muchane, Mary N. and Muchane, Muchai and Naidoo, Robin and Nakamura, Akihiro and Naoe, Shoji and Nates-Parra, Guiomar and Navarerete Gutierrez, Dario A. and Neuschulz, Eike L. and Noreika, Norbertas and Norfolk, Olivia and Noriega, Jorge Ari and N{\"o}ske, Nicole M. and O'Dea, Niall and Oduro, William and Ofori-Boateng, Caleb and Oke, Chris O. and Osgathorpe, Lynne M. and Paritsis, Juan and Parrah, Alejandro and Pelegrin, Nicol{\´a}s and Peres, Carlos A. and Persson, Anna S. and Petanidou, Theodora and Phalan, Ben and Philips, T. Keith and Poveda, Katja and Power, Eileen F. and Presley, Steven J. and Proen{\c{c}}a, V{\^a}nia and Quaranta, Marino and Quintero, Carolina and Redpath-Downing, Nicola A. and Reid, J. Leighton and Reis, Yana T. and Ribeiro, Danilo B. and Richardson, Barbara A. and Richardson, Michael J. and Robles, Carolina A. and R{\"o}mbke, J{\"o}rg and Romero-Duque, Luz Piedad and Rosselli, Loreta and Rossiter, Stephen J. and Roulston, T'ai H. and Rousseau, Laurent and Sadler, Jonathan P. and S{\´a}fi{\´a}n, Szbolcs and Salda{\~n}a-V{\´a}squez, Romeo A. and Samneg{\aa}rd, Ulrika and Sch{\"u}epp, Christof and Schweiger, Oliver and Sedlock, Jodi L. and Shahabuddin, Ghazala and Sheil, Douglas and Silva, Fernando A. B. and Slade, Eleanor and Smith-Pardo, Allan H. and Sodhi, Navjot S. and Somarriba, Eduardo J. and Sosa, Ram{\´o}n A. and Stout, Jane C. and Struebig, Matthew J. and Sung, Yik-Hei and Threlfall, Caragh G. and Tonietto, Rebecca and T{\´o}thm{\´e}r{\´e}sz, B{\´e}la and Tscharntke, Teja and Turner, Edgar C. and Tylianakis, Jason M. and Vanbergen, Adam J. and Vassilev, Kiril and Verboven, Hans A. F. and Vergara, Carlos H. and Vergara, Pablo M. and Verhulst, Jort and Walker, Tony R. and Wang, Yanping and Watling, James I. and Wells, Konstans and Williams, Christopher D. and Willig, Michael R. and Woinarski, John C. Z. and Wolf, Jan H. D. and Woodcock, Ben A. and Yu, Douglas W. and Zailsev, Andreys and Collen, Ben and Ewers, Rob M. and Mace, Georgina M. and Purves, Drew W. and Scharlemann, J{\"o}rn P. W. and Pervis, Andy}, title = {The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts}, series = {Ecology and Evolution}, volume = {4}, journal = {Ecology and Evolution}, number = {24}, doi = {10.1002/ece3.1303}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114425}, pages = {4701 - 4735}, year = {2014}, abstract = {Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1\% of the total number of all species described, and more than 1\% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - ). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.}, language = {en} } @article{IyengarSedorFreedmanetal.2015, author = {Iyengar, Sudha K. and Sedor, John R. and Freedman, Barry I. and Kao, W. H. Linda and Kretzler, Matthias and Keller, Benjamin J. and Abboud, Hanna E. and Adler, Sharon G. and Best, Lyle G. and Bowden, Donald W. and Burlock, Allison and Chen, Yii-Der Ida and Cole, Shelley A. and Comeau, Mary E. and Curtis, Jeffrey M. and Divers, Jasmin and Drechsler, Christiane and Duggirala, Ravi and Elston, Robert C. and Guo, Xiuqing and Huang, Huateng and Hoffmann, Michael Marcus and Howard, Barbara V. and Ipp, Eli and Kimmel, Paul L. and Klag, Michael J. and Knowler, William C. and Kohn, Orly F. and Leak, Tennille S. and Leehey, David J. and Li, Man and Malhotra, Alka and M{\"a}rz, Winfried and Nair, Viji and Nelson, Robert G. and Nicholas, Susanne B. and O'Brien, Stephen J. and Pahl, Madeleine V. and Parekh, Rulan S. and Pezzolesi, Marcus G. and Rasooly, Rebekah S. and Rotimi, Charles N. and Rotter, Jerome I. and Schelling, Jeffrey R. and Seldin, Michael F. and Shah, Vallabh O. and Smiles, Adam M. and Smith, Michael W. and Taylor, Kent D. and Thameem, Farook and Thornley-Brown, Denyse P. and Truitt, Barbara J. and Wanner, Christoph and Weil, E. Jennifer and Winkler, Cheryl A. and Zager, Philip G. and Igo, Jr, Robert P. and Hanson, Robert L. and Langefeld, Carl D.}, title = {Genome-wide association and trans-ethnic meta-analysis for advanced diabetic kidney disease: Family Investigation of Nephropathy and Diabetes (FIND)}, series = {PLoS Genetics}, volume = {11}, journal = {PLoS Genetics}, number = {8}, doi = {10.1371/journal.pgen.1005352}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180545}, pages = {e1005352}, year = {2015}, abstract = {Diabetic kidney disease (DKD) is the most common etiology of chronic kidney disease (CKD) in the industrialized world and accounts for much of the excess mortality in patients with diabetes mellitus. Approximately 45\% of U.S. patients with incident end-stage kidney disease (ESKD) have DKD. Independent of glycemic control, DKD aggregates in families and has higher incidence rates in African, Mexican, and American Indian ancestral groups relative to European populations. The Family Investigation of Nephropathy and Diabetes (FIND) performed a genome-wide association study (GWAS) contrasting 6,197 unrelated individuals with advanced DKD with healthy and diabetic individuals lacking nephropathy of European American, African American, Mexican American, or American Indian ancestry. A large-scale replication and trans-ethnic meta-analysis included 7,539 additional European American, African American and American Indian DKD cases and non-nephropathy controls. Within ethnic group meta-analysis of discovery GWAS and replication set results identified genome-wide significant evidence for association between DKD and rs12523822 on chromosome 6q25.2 in American Indians (P = 5.74x10\(^{-9}\)). The strongest signal of association in the trans-ethnic meta-analysis was with a SNP in strong linkage disequilibrium with rs12523822 (rs955333; P = 1.31x10\(^{-8}\)), with directionally consistent results across ethnic groups. These 6q25.2 SNPs are located between the SCAF8 and CNKSR3 genes, a region with DKD relevant changes in gene expression and an eQTL with IPCEF1, a gene co-translated with CNKSR3. Several other SNPs demonstrated suggestive evidence of association with DKD, within and across populations. These data identify a novel DKD susceptibility locus with consistent directions of effect across diverse ancestral groups and provide insight into the genetic architecture of DKD.}, language = {en} } @article{DeebGiordanoRossietal.2016, author = {Deeb, Wissam and Giordano, James J. and Rossi, Peter J. and Mogilner, Alon Y. and Gunduz, Aysegul and Judy, Jack W. and Klassen, Bryan T. and Butson, Christopher R. and Van Horne, Craig and Deny, Damiaan and Dougherty, Darin D. and Rowell, David and Gerhardt, Greg A. and Smith, Gwenn S. and Ponce, Francisco A. and Walker, Harrison C. and Bronte-Stewart, Helen M. and Mayberg, Helen S. and Chizeck, Howard J. and Langevin, Jean-Philippe and Volkmann, Jens and Ostrem, Jill L. and Shute, Jonathan B. and Jimenez-Shahed, Joohi and Foote, Kelly D. and Wagle Shukla, Aparna and Rossi, Marvin A. and Oh, Michael and Pourfar, Michael and Rosenberg, Paul B. and Silburn, Peter A. and de Hemptine, Coralie and Starr, Philip A. and Denison, Timothy and Akbar, Umer and Grill, Warren M. and Okun, Michael S.}, title = {Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies}, series = {Frontiers in Integrative Neuroscience}, volume = {10}, journal = {Frontiers in Integrative Neuroscience}, number = {38}, doi = {10.3389/fnint.2016.00038}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168493}, year = {2016}, abstract = {This paper provides an overview of current progress in the technological advances and the use of deep brain stimulation (DBS) to treat neurological and neuropsychiatric disorders, as presented by participants of the Fourth Annual DBS Think Tank, which was convened in March 2016 in conjunction with the Center for Movement Disorders and Neurorestoration at the University of Florida, Gainesveille FL, USA. The Think Tank discussions first focused on policy and advocacy in DBS research and clinical practice, formation of registries, and issues involving the use of DBS in the treatment of Tourette Syndrome. Next, advances in the use of neuroimaging and electrochemical markers to enhance DBS specificity were addressed. Updates on ongoing use and developments of DBS for the treatment of Parkinson's disease, essential tremor, Alzheimer's disease, depression, post-traumatic stress disorder, obesity, addiction were presented, and progress toward innovation(s) in closed-loop applications were discussed. Each section of these proceedings provides updates and highlights of new information as presented at this year's international Think Tank, with a view toward current and near future advancement of the field.}, language = {en} } @article{DePalmaAbrahamczykAizenetal.2016, author = {De Palma, Adriana and Abrahamczyk, Stefan and Aizen, Marcelo A. and Albrecht, Matthias and Basset, Yves and Bates, Adam and Blake, Robin J. and Boutin, C{\´e}line and Bugter, Rob and Connop, Stuart and Cruz-L{\´o}pez, Leopoldo and Cunningham, Saul A. and Darvill, Ben and Diek{\"o}tter, Tim and Dorn, Silvia and Downing, Nicola and Entling, Martin H. and Farwig, Nina and Felicioli, Antonio and Fonte, Steven J. and Fowler, Robert and Franzen, Markus Franz{\´e}n and Goulson, Dave and Grass, Ingo and Hanley, Mick E. and Hendrix, Stephen D. and Herrmann, Farina and Herzog, Felix and Holzschuh, Andrea and Jauker, Birgit and Kessler, Michael and Knight, M. E. and Kruess, Andreas and Lavelle, Patrick and Le F{\´e}on, Violette and Lentini, Pia and Malone, Louise A. and Marshall, Jon and Mart{\´i}nez Pach{\´o}n, Eliana and McFrederick, Quinn S. and Morales, Carolina L. and Mudri-Stojnic, Sonja and Nates-Parra, Guiomar and Nilsson, Sven G. and {\"O}ckinger, Erik and Osgathorpe, Lynne and Parra-H, Alejandro and Peres, Carlos A. and Persson, Anna S. and Petanidou, Theodora and Poveda, Katja and Power, Eileen F. and Quaranta, Marino and Quintero, Carolina and Rader, Romina and Richards, Miriam H. and Roulston, T'ai and Rousseau, Laurent and Sadler, Jonathan P. and Samneg{\aa}rd, Ulrika and Schellhorn, Nancy A. and Sch{\"u}epp, Christof and Schweiger, Oliver and Smith-Pardo, Allan H. and Steffan-Dewenter, Ingolf and Stout, Jane C. and Tonietto, Rebecca K. and Tscharntke, Teja and Tylianakis, Jason M. and Verboven, Hans A. F. and Vergara, Carlos H. and Verhulst, Jort and Westphal, Catrin and Yoon, Hyung Joo and Purvis, Andy}, title = {Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep31153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167642}, pages = {31153}, year = {2016}, abstract = {Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.}, language = {en} } @article{KleijnWinfreeBartomeusetal.2015, author = {Kleijn, David and Winfree, Rachael and Bartomeus, Ignasi and Carvalheiro, Lu{\´i}sa G. and Henry, Mickael and Isaacs, Rufus and Klein, Alexandra-Maria and Kremen, Claire and M'Gonigle, Leithen K. and Rader, Romina and Ricketts, Taylor H. and Williams, Neal M. and Adamson, Nancy Lee and Ascher, John S. and B{\´a}ldi, Andr{\´a}s and Bat{\´a}ry, P{\´e}ter and Benjamin, Faye and Biesmeijer, Jacobus C. and Blitzer, Eleanor J. and Bommarco, Riccardo and Brand, Mariette R. and Bretagnolle, Vincent and Button, Lindsey and Cariveau, Daniel P. and Chifflet, R{\´e}my and Colville, Jonathan F. and Danforth, Bryan N. and Elle, Elizabeth and Garratt, Michael P. D. and Herzog, Felix and Holzschuh, Andrea and Howlett, Brad G. and Jauker, Frank and Jha, Shalene and Knop, Eva and Krewenka, Kristin M. and Le F{\´e}on, Violette and Mandelik, Yael and May, Emily A. and Park, Mia G. and Pisanty, Gideon and Reemer, Menno and Riedinger, Verena and Rollin, Orianne and Rundl{\"o}f, Maj and Sardi{\~n}as, Hillary S. and Scheper, Jeroen and Sciligo, Amber R. and Smith, Henrik G. and Steffan-Dewenter, Ingolf and Thorp, Robbin and Tscharntke, Teja and Verhulst, Jort and Viana, Blandina F. and Vaissi{\`e}re, Bernard E. and Veldtman, Ruan and Ward, Kimiora L. and Westphal, Catrin and Potts, Simon G.}, title = {Delivery of crop pollination services is an insufficient argument for wild pollinator conservation}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {7414}, doi = {10.1038/ncomms8414}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151879}, year = {2015}, abstract = {There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost- effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost- effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.}, language = {en} } @article{VortkampGesslerPaslieretal.1994, author = {Vortkamp, Andrea and Gessler, Manfred and Paslier, D. Le and Elaswarapu, R. and Smith, S. and Grzeschik, Karl-Heinz}, title = {Isolation of a yeast artificial chromosome contig spanning the Greig cephalopolysyndactyly syndrome (GCPS) gene region}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30182}, year = {1994}, abstract = {Disruption of the zinc finger gene GLI3 has been shown to be the cause of Greig cephalopolysyndactyly syndrome (GCPS), at least in some GCPS translocation patients. To characterize this genomic region on human chromosome 7p13, we have isolated a VAC contig of more than 1000 kb including the GLI3 gene. In this contig the gene itself spans at least 200-250 kb. A CpG island is located in the vicinity of the 5' region of the known GLI3 cDNA, implying a potential promoter region.}, language = {en} } @article{ZannasArlothCarrilloRoaetal.2015, author = {Zannas, Anthony S. and Arloth, Janine and Carrillo-Roa, Tania and Iurato, Stella and R{\"o}h, Simone and Ressler, Kerry J. and Nemeroff, Charles B. and Smith, Alicia K. and Bradley, Bekh and Heim, Christine and Menke, Andreas and Lange, Jennifer F. and Br{\"u}ckl, Tanja and Ising, Marcus and Wray, Naomi R. and Erhardt, Angelika and Binder, Elisabeth B. and Mehta, Divya}, title = {Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling}, series = {Genome Biology}, volume = {16}, journal = {Genome Biology}, number = {266}, doi = {10.1186/s13059-015-0828-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149865}, year = {2015}, abstract = {Background Chronic psychological stress is associated with accelerated aging and increased risk for aging-related diseases, but the underlying molecular mechanisms are unclear. Results We examined the effect of lifetime stressors on a DNA methylation-based age predictor, epigenetic clock. After controlling for blood cell-type composition and lifestyle parameters, cumulative lifetime stress, but not childhood maltreatment or current stress alone, predicted accelerated epigenetic aging in an urban, African American cohort (n = 392). This effect was primarily driven by personal life stressors, was more pronounced with advancing age, and was blunted in individuals with higher childhood abuse exposure. Hypothesizing that these epigenetic effects could be mediated by glucocorticoid signaling, we found that a high number (n = 85) of epigenetic clock CpG sites were located within glucocorticoid response elements. We further examined the functional effects of glucocorticoids on epigenetic clock CpGs in an independent sample with genome-wide DNA methylation (n = 124) and gene expression data (n = 297) before and after exposure to the glucocorticoid receptor agonist dexamethasone. Dexamethasone induced dynamic changes in methylation in 31.2 \% (110/353) of these CpGs and transcription in 81.7 \% (139/170) of genes neighboring epigenetic clock CpGs. Disease enrichment analysis of these dexamethasone-regulated genes showed enriched association for aging-related diseases, including coronary artery disease, arteriosclerosis, and leukemias. Conclusions Cumulative lifetime stress may accelerate epigenetic aging, an effect that could be driven by glucocorticoid-induced epigenetic changes. These findings contribute to our understanding of mechanisms linking chronic stress with accelerated aging and heightened disease risk.}, language = {en} } @article{ScognamiglioCabezasWallscheidThieretal.2016, author = {Scognamiglio, Roberta and Cabezas-Wallscheid, Nina and Thier, Marc Christian and Altamura, Sandro and Reyes, Alejandro and Prendergast, {\´A}ine M. and Baumg{\"a}rtner, Daniel and Carnevalli, Larissa S. and Atzberger, Ann and Haas, Simon and von Paleske, Lisa and Boroviak, Thorsten and W{\"o}rsd{\"o}rfer, Philipp and Essers, Marieke A. G. and Kloz, Ulrich and Eisenman, Robert N. and Edenhofer, Frank and Bertone, Paul and Huber, Wolfgang and van der Hoeven, Franciscus and Smith, Austin and Trumpp, Andreas}, title = {Myc depletion induces a pluripotent dormant state mimicking diapause}, series = {Cell}, volume = {164}, journal = {Cell}, number = {4}, doi = {10.1016/j.cell.2015.12.033}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190868}, pages = {668-680}, year = {2016}, abstract = {Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest. This process is reversible and occurs without affecting pluripotency, suggesting that Myc-depleted stem cells enter a state of dormancy similar to embryonic diapause. Indeed, c-Myc is depleted in diapaused blastocysts, and the differential expression signatures of dKO ESCs and diapaused epiblasts are remarkably similar. Following Myc inhibition, pre-implantation blastocysts enter biosynthetic dormancy but can progress through their normal developmental program after transfer into pseudo-pregnant recipients. Our study shows that Myc controls the biosynthetic machinery of stem cells without affecting their potency, thus regulating their entry and exit from the dormant state.}, language = {en} }