@article{WentSudSpeedyetal.2018, author = {Went, Molly and Sud, Amit and Speedy, Helen and Sunter, Nicola J. and F{\"o}rsti, Asta and Law, Philip J. and Johnson, David C. and Mirabella, Fabio and Holroyd, Amy and Li, Ni and Orlando, Giulia and Weinhold, Niels and van Duin, Mark and Chen, Bowang and Mitchell, Jonathan S. and Mansouri, Larry and Juliusson, Gunnar and Smedby, Karin E and Jayne, Sandrine and Majid, Aneela and Dearden, Claire and Allsup, David J. and Bailey, James R. and Pratt, Guy and Pepper, Chris and Fegan, Chris and Rosenquist, Richard and Kuiper, Rowan and Stephens, Owen W. and Bertsch, Uta and Broderick, Peter and Einsele, Hermann and Gregory, Walter M. and Hillengass, Jens and Hoffmann, Per and Jackson, Graham H. and J{\"o}ckel, Karl-Heinz and Nickel, Jolanta and N{\"o}then, Markus M. and da Silva Filho, Miguel Inacio and Thomsen, Hauke and Walker, Brian A. and Broyl, Annemiek and Davies, Faith E. and Hansson, Markus and Goldschmidt, Hartmut and Dyer, Martin J. S. and Kaiser, Martin and Sonneveld, Pieter and Morgan, Gareth J. and Hemminki, Kari and Nilsson, Bj{\"o}rn and Catovsky, Daniel and Allan, James M. and Houlston, Richard S.}, title = {Genetic correlation between multiple myeloma and chronic lymphocytic leukaemia provides evidence for shared aetiology}, series = {Blood Cancer Journal}, volume = {9}, journal = {Blood Cancer Journal}, doi = {10.1038/s41408-018-0162-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233627}, year = {2018}, abstract = {The clustering of different types of B-cell malignancies in families raises the possibility of shared aetiology. To examine this, we performed cross-trait linkage disequilibrium (LD)-score regression of multiple myeloma (MM) and chronic lymphocytic leukaemia (CLL) genome-wide association study (GWAS) data sets, totalling 11,734 cases and 29,468 controls. A significant genetic correlation between these two B-cell malignancies was shown (Rg = 0.4, P = 0.0046). Furthermore, four of the 45 known CLL risk loci were shown to associate with MM risk and five of the 23 known MM risk loci associate with CLL risk. By integrating eQTL, Hi-C and ChIP-seq data, we show that these pleiotropic risk loci are enriched for B-cell regulatory elements and implicate B-cell developmental genes. These data identify shared biological pathways influencing the development of CLL and, MM and further our understanding of the aetiological basis of these B-cell malignancies.}, language = {en} } @article{MitchellLiWeinholdetal.2016, author = {Mitchell, Jonathan S. and Li, Ni and Weinhold, Niels and F{\"o}rsti, Asta and Ali, Mina and van Duin, Mark and Thorleifsson, Gudmar and Johnson, David C. and Chen, Bowang and Halvarsson, Britt-Marie and Gudbjartsson, Daniel F. and Kuiper, Rowan and Stephens, Owen W. and Bertsch, Uta and Broderick, Peter and Campo, Chiara and Einsele, Hermann and Gregory, Walter A. and Gullberg, Urban and Henrion, Marc and Hillengass, Jens and Hoffmann, Per and Jackson, Graham H. and Johnsson, Ellinor and J{\"o}ud, Magnus and Kristinsson, Sigurdur Y. and Lenhoff, Stig and Lenive, Oleg and Mellqvist, Ulf-Henrik and Migliorini, Gabriele and Nahi, Hareth and Nelander, Sven and Nickel, Jolanta and N{\"o}then, Markus M. and Rafnar, Thorunn and Ross, Fiona M. and da Silva Filho, Miguel Inacio and Swaminathan, Bhairavi and Thomsen, Hauke and Turesson, Ingemar and Vangsted, Annette and Vogel, Ulla and Waage, Anders and Walker, Brian A. and Wihlborg, Anna-Karin and Broyl, Annemiek and Davies, Faith E. and Thorsteinsdottir, Unnur and Langer, Christian and Hansson, Markus and Kaiser, Martin and Sonneveld, Pieter and Stefansson, Kari and Morgan, Gareth J. and Goldschmidt, Hartmut and Hemminki, Kari and Nilsson, Bj{\"o}rn and Houlston, Richard S.}, title = {Genome-wide association study identifies multiple susceptibility loci for multiple myeloma}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165983}, pages = {12050}, year = {2016}, abstract = {Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a new GWAS and perform replication analyses resulting in 9,866 cases and 239,188 controls. We confirm all nine known risk loci and discover eight new loci at 6p22.3 (rs34229995, P=1.31 × 10-8), 6q21 (rs9372120, P=9.09 × 10-15), 7q36.1 (rs7781265, P=9.71 × 10-9), 8q24.21 (rs1948915, P=4.20 × 10-11), 9p21.3 (rs2811710, P=1.72 × 10-13), 10p12.1 (rs2790457, P=1.77 × 10-8), 16q23.1 (rs7193541, P=5.00 × 10-12) and 20q13.13 (rs6066835, P=1.36 × 10-13), which localize in or near to JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC, RFWD3 and PREX1. These findings provide additional support for a polygenic model of MM and insight into the biological basis of tumour development.}, language = {en} } @article{HarrisonClausJiangetal.2013, author = {Harrison, Odile B. and Claus, Heike and Jiang, Ying and Bennett, Julia S. and Bratcher, Holly B. and Jolley, Keith A. and Corton, Craig and Care, Rory and Poolman, Jan T. and Zollinger, Wendell D. and Frasch, Carl E. and Stephens, David S. and Feavers, Ian and Frosch, Matthias and Parkhill, Julian and Vogel, Ulrich and Quail, Michael A. and Bentley, Stephen D. and Maiden, Martin C. J.}, title = {Description and Nomenclature of Neisseria meningitidis Capsule Locus}, series = {Emerging Infectious Diseases}, volume = {19}, journal = {Emerging Infectious Diseases}, number = {4}, doi = {10.3201/eid1904.111799}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131703}, pages = {566-573}, year = {2013}, abstract = {Pathogenic Neisseria meningitidis isolates contain a polysaccharide capsule that is the main virulence determinant for this bacterium. Thirteen capsular polysaccharides have been described, and nuclear magnetic resonance spectroscopy has enabled determination of the structure of capsular polysaccharides responsible for serogroup specificity. Molecular mechanisms involved in N. meningitidis capsule biosynthesis have also been identified, and genes involved in this process and in cell surface translocation are clustered at a single chromosomal locus termed cps. The use of multiple names for some of the genes involved in capsule synthesis, combined with the need for rapid diagnosis of serogroups commonly associated with invasive meningococcal disease, prompted a requirement for a consistent approach to the nomenclature of capsule genes. In this report, a comprehensive description of all N. meningitidis serogroups is provided, along with a proposed nomenclature, which was presented at the 2012 XVIIIth International Pathogenic Neisseria Conference.}, language = {en} } @article{SommerfeldSenfBumaetal.2018, author = {Sommerfeld, Andreas and Senf, Cornelius and Buma, Brian and D'Amato, Anthony W. and Despr{\´e}s, Tiphaine and D{\´i}az-Hormaz{\´a}bal, Ignacio and Fraver, Shawn and Frelich, Lee E. and Guti{\´e}rrez, {\´A}lvaro G. and Hart, Sarah J. and Harvey, Brian J. and He, Hong S. and Hl{\´a}sny, Tom{\´a}š and Holz, Andr{\´e}s and Kitzberger, Thomas and Kulakowski, Dominik and Lindenmayer, David and Mori, Akira S. and M{\"u}ller, J{\"o}rg and Paritsis, Juan and Perry, George L. W. and Stephens, Scott L. and Svoboda, Miroslav and Turner, Monica G. and Veblen, Thomas T. and Seidl, Rupert}, title = {Patterns and drivers of recent disturbances across the temperate forest biome}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-06788-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239157}, year = {2018}, abstract = {Increasing evidence indicates that forest disturbances are changing in response to global change, yet local variability in disturbance remains high. We quantified this considerable variability and analyzed whether recent disturbance episodes around the globe were consistently driven by climate, and if human influence modulates patterns of forest disturbance. We combined remote sensing data on recent (2001-2014) disturbances with in-depth local information for 50 protected landscapes and their surroundings across the temperate biome. Disturbance patterns are highly variable, and shaped by variation in disturbance agents and traits of prevailing tree species. However, high disturbance activity is consistently linked to warmer and drier than average conditions across the globe. Disturbances in protected areas are smaller and more complex in shape compared to their surroundings affected by human land use. This signal disappears in areas with high recent natural disturbance activity, underlining the potential of climate-mediated disturbance to transform forest landscapes.}, language = {en} }