@article{ZahoGhirlandoAlfonsoetal.2015, author = {Zaho, Huaying and Ghirlando, Rodolfo and Alfonso, Carlos and Arisaka, Fumio and Attali, Ilan and Bain, David L. and Bakhtina, Marina M. and Becker, Donald F. and Bedwell, Gregory J. and Bekdemir, Ahmet and Besong, Tabot M. D. and Birck, Catherine and Brautigam, Chad A. and Brennerman, William and Byron, Olwyn and Bzowska, Agnieszka and Chaires, Jonathan B. and Chaton, Catherine T. and Coelfen, Helmbut and Connaghan, Keith D. and Crowley, Kimberly A. and Curth, Ute and Daviter, Tina and Dean, William L. and Diez, Ana I. and Ebel, Christine and Eckert, Debra M. and Eisele, Leslie E. and Eisenstein, Edward and England, Patrick and Escalante, Carlos and Fagan, Jeffrey A. and Fairman, Robert and Finn, Ron M. and Fischle, Wolfgang and Garcia de la Torre, Jose and Gor, Jayesh and Gustafsson, Henning and Hall, Damien and Harding, Stephen E. and Hernandez Cifre, Jose G. and Herr, Andrew B. and Howell, Elizabeth E. and Isaac, Richard S. and Jao, Shu-Chuan and Jose, Davis and Kim, Soon-Jong and Kokona, Bashkim and Kornblatt, Jack A. and Kosek, Dalibor and Krayukhina, Elena and Krzizike, Daniel and Kusznir, Eric A. and Kwon, Hyewon and Larson, Adam and Laue, Thomas M. and Le Roy, Aline and Leech, Andrew P. and Lilie, Hauke and Luger, Karolin and Luque-Ortega, Juan R. and Ma, Jia and May, Carrie A. and Maynard, Ernest L. and Modrak-Wojcik, Anna and Mok, Yee-Foong and M{\"u}cke, Norbert and Nagel-Steger, Luitgard and Narlikar, Geeta J. and Noda, Masanori and Nourse, Amanda and Obsil, Thomas and Park, Chad K and Park, Jin-Ku and Pawelek, Peter D. and Perdue, Erby E. and Perkins, Stephen J. and Perugini, Matthew A. and Peterson, Craig L. and Peverelli, Martin G. and Piszczek, Grzegorz and Prag, Gali and Prevelige, Peter E. and Raynal, Bertrand D. E. and Rezabkova, Lenka and Richter, Klaus and Ringel, Alison E. and Rosenberg, Rose and Rowe, Arthur J. and Rufer, Arne C. and Scott, David J. and Seravalli, Javier G. and Solovyova, Alexandra S. and Song, Renjie and Staunton, David and Stoddard, Caitlin and Stott, Katherine and Strauss, Holder M. and Streicher, Werner W. and Sumida, John P. and Swygert, Sarah G. and Szczepanowski, Roman H. and Tessmer, Ingrid and Toth, Ronald T. and Tripathy, Ashutosh and Uchiyama, Susumu and Uebel, Stephan F. W. and Unzai, Satoru and Gruber, Anna Vitlin and von Hippel, Peter H. and Wandrey, Christine and Wang, Szu-Huan and Weitzel, Steven E and Wielgus-Kutrowska, Beata and Wolberger, Cynthia and Wolff, Martin and Wright, Edward and Wu, Yu-Sung and Wubben, Jacinta M. and Schuck, Peter}, title = {A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0126420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151903}, pages = {e0126420}, year = {2015}, abstract = {Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304\(\pm\)0.188) S (4.4\%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of \(\pm\)0.030 S (0.7\%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.}, language = {en} } @article{DietzWichelmannWunderetal.2012, author = {Dietz, U. A. and Wichelmann, C. and Wunder, C. and Kauczok, J. and Spor, L. and Strauß, A. and Wildenauer, R. and Jurowich, C. and Germer, C. T.}, title = {Early repair of open abdomen with a tailored two-component mesh and conditioning vacuum packing: a safe alternative to the planned giant ventral hernia}, series = {Hernia}, volume = {16}, journal = {Hernia}, number = {4}, doi = {10.1007/s10029-012-0919-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126732}, pages = {451-460}, year = {2012}, abstract = {Purpose Once open abdomen therapy has succeeded, the problem of closing the abdominal wall must be addressed. We present a new four-stage procedure involving the application of a two-component mesh and vacuum conditioning for abdominal wall closure of even large defects. The aim is to prevent the development of a giant ventral hernia and the eventual need for the repair of the abdominal wall. Methods Nineteen of 62 patients treated by open abdomen over a two-year period could not receive primary abdominal wall closure. To achieve closure in these patients, we applied the following four-stage procedure: stage 1: abdominal damage control and conditioning of the abdominal wall; stage 2: attachment of a tailored two-component mesh of polyglycolic acid (PGA) and large pore polypropylene (PP) in intraperitoneal position (IPOM) plus placement of a vacuum bandage; stage 3: vacuum therapy for 3-4 weeks to allow granulation of the mesh and optimization of dermatotraction; stage 4: final skin suture. During stage 3, eligible patients were weaned from respirator and mobilized. Results The abdominal wall gap in the 19 patients ranged in size from 240 cm2 to more than 900 cm2. An average of 3.44 vacuum dressing changes over 19 days were required to achieve 60-100 \% granulation of the surface area, so final skin suture could be made. Already in stage 3, 14 patients (73.68 \%) could be weaned from respirator an average of 6.78 days after placement of the two-component mesh; 6 patients (31.57 \%) could be mobilized on the edge of the bed and/or to a bedside chair after an average of 13 days. No mesh-related hematomas, seromas, or intestinal fistulas were observed. Conclusion The four-stage procedure presented here is a viable option for achieving abdominal wall closure in patients treated with open abdomen, enabling us to avoid the development of planned giant ventral hernias. It has few complications and has the special advantage of allowing mobilization of the patients before final skin closure. Long-term course in a large number of patients must still confirm this result.}, language = {en} } @article{DietzWichelmannWunderetal.2012, author = {Dietz, U. A. and Wichelmann, C. and Wunder, C. and Kauczok, J. and Spor, L. and Strauß, A. and Wildenauer, R. and Jurowich, C. and Germer, C. T.}, title = {Early repair of open abdomen with a tailored two-component mesh and conditioning vacuum packing: a safe alternative to the planned giant ventral hernia}, series = {Hernia}, volume = {16}, journal = {Hernia}, number = {4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124686}, pages = {451-460}, year = {2012}, abstract = {Purpose Once open abdomen therapy has succeeded, the problem of closing the abdominal wall must be addressed. We present a new four-stage procedure involving the application of a two-component mesh and vacuum conditioning for abdominal wall closure of even large defects. The aim is to prevent the development of a giant ventral hernia and the eventual need for the repair of the abdominal wall. Methods Nineteen of 62 patients treated by open abdomen over a two-year period could not receive primary abdominal wall closure. To achieve closure in these patients, we applied the following four-stage procedure: stage 1: abdominal damage control and conditioning of the abdominal wall; stage 2: attachment of a tailored two-component mesh of polyglycolic acid (PGA) and large pore polypropylene (PP) in intraperitoneal position (IPOM) plus placement of a vacuum bandage; stage 3: vacuum therapy for 3-4 weeks to allow granulation of the mesh and optimization of dermatotraction; stage 4: final skin suture. During stage 3, eligible patients were weaned from respirator and mobilized. Results The abdominal wall gap in the 19 patients ranged in size from 240 cm2 to more than 900 cm2. An average of 3.44 vacuum dressing changes over 19 days were required to achieve 60-100 \% granulation of the surface area, so final skin suture could be made. Already in stage 3, 14 patients (73.68 \%) could be weaned from respirator an average of 6.78 days after placement of the two-component mesh; 6 patients (31.57 \%) could be mobilized on the edge of the bed and/or to a bedside chair after an average of 13 days. No mesh-related hematomas, seromas, or intestinal fistulas were observed. Conclusion The four-stage procedure presented here is a viable option for achieving abdominal wall closure in patients treated with open abdomen, enabling us to avoid the development of planned giant ventral hernias. It has few complications and has the special advantage of allowing mobilization of the patients before final skin closure. Long-term course in a large number of patients must still confirm this result.}, language = {en} } @article{StraussMoskalenkoTiurbeetal.2012, author = {Strauss, Armin and Moskalenko, Vasily and Tiurbe, Christian and Chodnevskaja, Irina and Timm, Stephan and Wiegering, Verena A. and Germer, Chrioph Thomas and Ulrichs, Karin}, title = {Goettingen Minipigs (GMP): Comparison of Two Different Models for Inducing Diabetes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75119}, year = {2012}, abstract = {Purpose: Preclinical experiments on large animals are indispensable for evaluating the effectiveness of diabetes therapies. Miniature swine are well suited for such studies due to their physiological and pathophysiological responses. Methods: We compare two methods for inducing diabetes in Goettingen minipigs (GMP), in five with the beta cell toxin streptozotocin (STZ) and in five other GMP by total pancreatectomy (PE). Glucose homeostasis was assessed with the intravenous glucose-tolerance test (IVGTT) and continual monitoring of interstitial glucose levels. At conclusion of the observation period, the pancreata were examined histologically. Three non-diabetic GMP served as control group. Results: The IVGTT revealed markedly diabetic profiles in both GMP groups. STZ-GMP were found to harbor residual C-peptides and scattered insulin-positive cells in the pancreas. PE-GMP survived the total pancreatectomy only with intensive postoperative care. Conclusions: Although both methods reliably induced diabetes in GMP, the PE-GMP clearly had more health problems and required a greater expenditure of time and resources. The PE-GMP model, however, was better at eliminating endogenous insulin and C-peptide than the STZ-GMP model.}, subject = {G{\"o}ttingen}, language = {en} }