@article{DechHolzwarthAsametal.2021, author = {Dech, Stefan and Holzwarth, Stefanie and Asam, Sarah and Andresen, Thorsten and Bachmann, Martin and Boettcher, Martin and Dietz, Andreas and Eisfelder, Christina and Frey, Corinne and Gesell, Gerhard and Gessner, Ursula and Hirner, Andreas and Hofmann, Matthias and Kirches, Grit and Klein, Doris and Klein, Igor and Kraus, Tanja and Krause, Detmar and Plank, Simon and Popp, Thomas and Reinermann, Sophie and Reiners, Philipp and Roessler, Sebastian and Ruppert, Thomas and Scherbachenko, Alexander and Vignesh, Ranjitha and Wolfmueller, Meinhard and Zwenzner, Hendrik and Kuenzer, Claudia}, title = {Potential and challenges of harmonizing 40 years of AVHRR data: the TIMELINE experience}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {18}, issn = {2072-4292}, doi = {10.3390/rs13183618}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246134}, year = {2021}, abstract = {Earth Observation satellite data allows for the monitoring of the surface of our planet at predefined intervals covering large areas. However, there is only one medium resolution sensor family in orbit that enables an observation time span of 40 and more years at a daily repeat interval. This is the AVHRR sensor family. If we want to investigate the long-term impacts of climate change on our environment, we can only do so based on data that remains available for several decades. If we then want to investigate processes with respect to climate change, we need very high temporal resolution enabling the generation of long-term time series and the derivation of related statistical parameters such as mean, variability, anomalies, and trends. The challenges to generating a well calibrated and harmonized 40-year-long time series based on AVHRR sensor data flown on 14 different platforms are enormous. However, only extremely thorough pre-processing and harmonization ensures that trends found in the data are real trends and not sensor-related (or other) artefacts. The generation of European-wide time series as a basis for the derivation of a multitude of parameters is therefore an extremely challenging task, the details of which are presented in this paper.}, language = {en} } @article{DandekarFieselmannFischeretal.2014, author = {Dandekar, Thomas and Fieselmann, Astrid and Fischer, Eva and Popp, Jasmin and Hensel, Michael and Noster, Janina}, title = {Salmonella—how a metabolic generalist adopts an intracellular lifestyle during infection}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {4}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {191}, issn = {2235-2988}, doi = {10.3389/fcimb.2014.00191}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120686}, year = {2014}, abstract = {The human-pathogenic bacterium Salmonella enterica adjusts and adapts to different environments while attempting colonization. In the course of infection nutrient availabilities change drastically. New techniques, "-omics" data and subsequent integration by systems biology improve our understanding of these changes. We review changes in metabolism focusing on amino acid and carbohydrate metabolism. Furthermore, the adaptation process is associated with the activation of genes of the Salmonella pathogenicity islands (SPIs). Anti-infective strategies have to take these insights into account and include metabolic and other strategies. Salmonella infections will remain a challenge for infection biology.}, language = {en} } @article{DandekarFieselmannPoppetal.2012, author = {Dandekar, Thomas and Fieselmann, Astrid and Popp, Jasmin and Hensel, Michael}, title = {Salmonella enterica: a surprisingly well-adapted intracellular lifestyle}, series = {Frontiers in Microbiology}, journal = {Frontiers in Microbiology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123135}, year = {2012}, abstract = {The infectious intracellular lifestyle of Salmonella enterica relies on the adaptation to nutritional conditions within the Salmonella-containing vacuole (SCV) in host cells. We summarize latest results on metabolic requirements for Salmonella during infection. This includes intracellular phenotypes of mutant strains based on metabolic modeling and experimental tests, isotopolog profiling using (13)C-compounds in intracellular Salmonella, and complementation of metabolic defects for attenuated mutant strains towards a comprehensive understanding of the metabolic requirements of the intracellular lifestyle of Salmonella. Helpful for this are also genomic comparisons. We outline further recent studies and which analyses of intracellular phenotypes and improved metabolic simulations were done and comment on technical required steps as well as progress involved in the iterative refinement of metabolic flux models, analyses of mutant phenotypes, and isotopolog analyses. Salmonella lifestyle is well-adapted to the SCV and its specific metabolic requirements. Salmonella metabolism adapts rapidly to SCV conditions, the metabolic generalist Salmonella is quite successful in host infection.}, language = {en} } @article{DandekarFieselmannFischeretal.2015, author = {Dandekar, Thomas and Fieselmann, Astrid and Fischer, Eva and Popp, Jasmin and Hensel, Michael and Noster, Janina}, title = {Salmonella - how a metabolic generalist adopts an intracellular lifestyle during infection}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {4}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {191}, doi = {10.3389/fcimb.2014.00191}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149029}, year = {2015}, abstract = {The human-pathogenic bacterium Salmonella enterica adjusts and adapts to different environments while attempting colonization. In the course of infection nutrient availabilities change drastically. New techniques, "-omics" data and subsequent integration by systems biology improve our understanding of these changes. We review changes in metabolism focusing on amino acid and carbohydrate metabolism. Furthermore, the adaptation process is associated with the activation of genes of the Salmonella pathogenicity islands (SPIs). Anti-infective strategies have to take these insights into account and include metabolic and other strategies. Salmonella infections will remain a challenge for infection biology.}, language = {en} }