@article{HsuKuegelKemmeretal.2016, author = {Hsu, Pin-Jui and K{\"u}gel, Jens and Kemmer, Jeannette and Toldin, Francesco Parisen and Mauerer, Tobias and Vogt, Matthias and Assaad, Fakher and Bode, Matthias}, title = {Coexistence of charge and ferromagnetic order in fcc Fe}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms10949}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173969}, year = {2016}, abstract = {Phase coexistence phenomena have been intensively studied in strongly correlated materials where several ordered states simultaneously occur or compete. Material properties critically depend on external parameters and boundary conditions, where tiny changes result in qualitatively different ground states. However, up to date, phase coexistence phenomena have exclusively been reported for complex compounds composed of multiple elements. Here we show that charge- and magnetically ordered states coexist in double-layer Fe/Rh(001). Scanning tunnelling microscopy and spectroscopy measurements reveal periodic charge-order stripes below a temperature of 130 K. Close to liquid helium temperature, they are superimposed by ferromagnetic domains as observed by spin-polarized scanning tunnelling microscopy. Temperature-dependent measurements reveal a pronounced cross-talk between charge and spin order at the ferromagnetic ordering temperature about 70 K, which is successfully modelled within an effective Ginzburg-Landau ansatz including sixth-order terms. Our results show that subtle balance between structural modifications can lead to competing ordering phenomena.}, language = {en} } @phdthesis{Mauerer2015, author = {Mauerer, Tobias}, title = {Ladungsdichtemodulationen an unterschiedlichen Probensystemen: Chrom auf Wolfram(110), Iridiumditellurid und Eisen auf Rhodium(001)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120322}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Im Rahmen der vorliegenden Arbeit werden mit einem Rastertunnelmikroskop (RTM) Ladungsdichtemodulationen (LDM) auf Oberfl{\"a}chen von drei verschiedenen Probensystemen untersucht. Bei den Proben handelt es sich um Chrom auf Wolfram(110), Iridiumditellurid (IrTe2) als Volumenmaterial und Eisen auf Rhodium(001). Es werden sowohl die Temperaturabh{\"a}ngigkeit der Phasen{\"u}berg{\"a}nge als auch die Wechselwirkung zwischen magnetischen und elektronischen Eigenschaften analysiert. Chrom (Cr) ist ein einfaches {\"U}bergangsmetall, in dem sowohl eine klassische Ladungsdichtewelle (LDW) als auch eine Spindichtewelle (SDW) auftreten. Die im Experiment betrachteten Cr-Inseln auf Wolfram(110) schlagen eine Br{\"u}cke zwischen dem Volumenmaterial und ultrad{\"u}nnen Schichten. Dabei zeigt sich der Zusammenhang zwischen elektronischen und magnetischen Eigenschaften in der Ausbildung einer LDW-L{\"u}cke und dem gleichzeitigen Verschwinden des magnetischen Kontrastes bei lokalen Schichtdicken von dCr =� 4nm. Dies kann durch eine Rotation des Spindichtewellenvektors Q erkl{\"a}rt werden. F{\"u}r dCr <� 3nm verschwindet die LDW erneut. Zus{\"a}tzlich zur LDW und SDW entsteht aufgrund der unterschiedlichen Gitterparameter von Chrom und Wolfram bei lokalen Schichtdicken von dCr � < 3nm eine Moir{\´e}-{\"U}berstruktur. IrTe2 ist Gegenstand zahlreicher aktueller Forschungsaktivit{\"a}ten und weist eine LDM mit gleichzeitiger Transformation des atomaren Gitters auf. Ein Phasen{\"u}bergang erster Ordnung erzeugt zun{\"a}chst bei der {\"U}bergangstemperatur TC =� 275K eine Modulation mit dem Wellenvektor q = 1/5(1, 1, 0). Mithilfe temperaturabh{\"a}ngiger RTM-Messungen kann das Phasendiagramm um einen weiteren {\"U}bergang erster Ordnung bei TS � = 180K erweitert werden. Dabei bilden sich zunehmend Te-Dimere an der sichtbaren (001)-Oberfl{\"a}che und IrTe2 wechselt in einen Grundzustand mit maximaler Dichte von Dimeren und dem Wellenvektor q = 1/6(1, 1, 0). Der Mechanismus beider Phasen{\"u}berg{\"a}nge wird durch die Probenqualit{\"a}t und die Oberfl{\"a}chenpr{\"a}paration beeinflusst, sodass die Phasen{\"u}berg{\"a}nge erster Ordnung teilweise verlangsamt ablaufen. Durch eine Analyse der Oberfl{\"a}chendynamik am Phasen{\"u}bergang kann der zugrundeliegende Mechanismus des Dom{\"a}nenwachstums im Realraum untersucht werden. Im letzten Teil der Arbeit werden ultrad{\"u}nne Eisenfilme auf Rhodium(001) betrachtet. Dabei treten auf der Doppellage Eisen (Fe) auf Rhodium (Rh) spannungsabh{\"a}ngige elektronische Modulationen mit senkrecht zueinander orientierten Wellenvektoren q1 = [(0, 30 ± 0, 03), 0, 0] und q2 = [0, (0, 30 ± 0, 03), 0] in Richtung [100] und [010] auf. Temperaturabh{\"a}ngige Messungen zeigen die stetige Verkleinerung der Modulation beim Erw{\"a}rmen der Probe und somit einen Phasen{\"u}bergang zweiter Ordnung. Die LDM tritt auch auf der dritten und vierten Lage Eisen mit gleichgerichteten aber kleineren Wellenvektoren q auf. Spinpolarisierte RTM-Daten zeigen einen c(2×2)-Antiferromagnetismus auf einer Monolage Eisen. F{\"u}r Fe-Bedeckungen von 1ML � - 5ML tritt Ferromagnetismus perpendikular zur Oberfl{\"a}che auf. Diese Messungen zeigen erstmals gleichzeitiges Auftreten einer elektronischen und magnetischen Phase in einem reinen 3d-{\"U}bergangsmetall im Realraum.}, subject = {Ladungsdichtewelle}, language = {de} }