@article{PawellekKrmarLeistneretal.2021, author = {Pawellek, Ruben and Krmar, Jovana and Leistner, Adrian and Djajić, Nevena and Otašević, Biljana and Protić, Ana and Holzgrabe, Ulrike}, title = {Charged aerosol detector response modeling for fatty acids based on experimental settings and molecular features: a machine learning approach}, series = {Journal of Cheminformatics}, volume = {13}, journal = {Journal of Cheminformatics}, number = {1}, doi = {10.1186/s13321-021-00532-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261618}, year = {2021}, abstract = {The charged aerosol detector (CAD) is the latest representative of aerosol-based detectors that generate a response independent of the analytes' chemical structure. This study was aimed at accurately predicting the CAD response of homologous fatty acids under varying experimental conditions. Fatty acids from C12 to C18 were used as model substances due to semivolatile characterics that caused non-uniform CAD behaviour. Considering both experimental conditions and molecular descriptors, a mixed quantitative structure-property relationship (QSPR) modeling was performed using Gradient Boosted Trees (GBT). The ensemble of 10 decisions trees (learning rate set at 0.55, the maximal depth set at 5, and the sample rate set at 1.0) was able to explain approximately 99\% (Q\(^2\): 0.987, RMSE: 0.051) of the observed variance in CAD responses. Validation using an external test compound confirmed the high predictive ability of the model established (R-2: 0.990, RMSEP: 0.050). With respect to the intrinsic attribute selection strategy, GBT used almost all independent variables during model building. Finally, it attributed the highest importance to the power function value, the flow rate of the mobile phase, evaporation temperature, the content of the organic solvent in the mobile phase and the molecular descriptors such as molecular weight (MW), Radial Distribution Function-080/weighted by mass (RDF080m) and average coefficient of the last eigenvector from distance/detour matrix (Ve2_D/Dt). The identification of the factors most relevant to the CAD responsiveness has contributed to a better understanding of the underlying mechanisms of signal generation. An increased CAD response that was obtained for acetone as organic modifier demonstrated its potential to replace the more expensive and environmentally harmful acetonitrile.}, language = {en} } @article{GutierrezGiraldoDavilaCombarizaetal.2020, author = {Guti{\´e}rrez, Gustavo and Giraldo-D{\´a}vila, Deisy and Combariza, Marianny Y. and Holzgrabe, Ulrike and Tabares-Guevara, Jorge Humberto and Ram{\´i}rez-Pineda, Jos{\´e} Robinson and Ac{\´i}n, Sergio and Mu{\~n}oz, Diana Lorena and Montoya, Guillermo and Balcazar, Norman}, title = {Serjanic acid improves immunometabolic markers in a diet-induced obesity mouse model}, series = {Molecules}, volume = {25}, journal = {Molecules}, number = {7}, issn = {1420-3049}, doi = {10.3390/molecules25071486}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203253}, year = {2020}, abstract = {Plant extracts from Cecropia genus have been used by Latin-American traditional medicine to treat metabolic disorders and diabetes. Previous reports have shown that roots of Cecropia telenitida that contains serjanic acid as one of the most prominent and representative pentacyclic triterpenes. The study aimed to isolate serjanic acid and evaluate its effect in a prediabetic murine model by oral administration. A semi-pilot scale extraction was established and serjanic acid purification was followed using direct MALDI-TOF analysis. A diet induced obesity mouse model was used to determine the impact of serjanic acid over selected immunometabolic markers. Mice treated with serjanic acid showed decreased levels of cholesterol and triacylglycerols, increased blood insulin levels, decreased fasting blood glucose and improved glucose tolerance, and insulin sensitivity. At transcriptional level, the reduction of inflammation markers related to adipocyte differentiation is reported.}, language = {en} } @article{MasotaVoggOhlsenetal.2021, author = {Masota, Nelson E. and Vogg, Gerd and Ohlsen, Knut and Holzgrabe, Ulrike}, title = {Reproducibility challenges in the search for antibacterial compounds from nature}, series = {PLoS One}, volume = {16}, journal = {PLoS One}, number = {7}, doi = {10.1371/journal.pone.0255437}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260239}, year = {2021}, abstract = {Background Reproducibility of reported antibacterial activities of plant extracts has long remained questionable. Although plant-related factors should be well considered in serious pharmacognostic research, they are often not addressed in many research papers. Here we highlight the challenges in reproducing antibacterial activities of plant extracts. Methods Plants with reported antibacterial activities of interest were obtained from a literature review. Antibacterial activities against Escherichia coli and Klebsiella pneumoniae were tested using extracts' solutions in 10\% DMSO and acetone. Compositions of working solutions from both solvents were established using LC-MS analysis. Moreover, the availability of details likely to affect reproducibility was evaluated in articles which reported antibacterial activities of studied plants. Results Inhibition of bacterial growth at MIC of 256-1024 μg/mL was observed in only 15.4\% of identical plant species. These values were 4-16-fold higher than those reported earlier. Further, 18.2\% of related plant species had MICs of 128-256 μg/mL. Besides, 29.2\% and 95.8\% of the extracts were soluble to sparingly soluble in 10\% DMSO and acetone, respectively. Extracts' solutions in both solvents showed similar qualitative compositions, with differing quantities of corresponding phytochemicals. Details regarding seasons and growth state at collection were missing in 65\% and 95\% of evaluated articles, respectively. Likewise, solvents used to dissolve the extracts were lacking in 30\% of the articles, whereas 40\% of them used unidentified bacterial isolates. Conclusion Reproducibility of previously reported activities from plants' extracts is a multi-factorial aspect. Thus, collective approaches are necessary in addressing the highlighted challenges.}, language = {en} } @article{VolpatoKaukMessereretal.2020, author = {Volpato, Daniela and Kauk, Michael and Messerer, Regina and Bermudez, Marcel and Wolber, Gerhard and Bock, Andreas and Hoffmann, Carsten and Holzgrabe, Ulrike}, title = {The Role of Orthosteric Building Blocks of Bitopic Ligands for Muscarinic M1 Receptors}, series = {ACS Omega}, volume = {5}, journal = {ACS Omega}, number = {49}, doi = {10.1021/acsomega.0c04220}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230548}, pages = {31706-31715}, year = {2020}, abstract = {The muscarinic M\(_1\) acetylcholine receptor is an important drug target for the treatment of various neurological disorders. Designing M\(_1\) receptor-selective drugs has proven challenging, mainly due to the high conservation of the acetylcholine binding site among muscarinic receptor subtypes. Therefore, less conserved and topographically distinct allosteric binding sites have been explored to increase M\(_1\) receptor selectivity. In this line, bitopic ligands, which target orthosteric and allosteric binding sites simultaneously, may provide a promising strategy. Here, we explore the allosteric, M1-selective BQCAd scaffold derived from BQCA as a starting point for the design, synthesis, and pharmacological evaluation of a series of novel bitopic ligands in which the orthosteric moieties and linker lengths are systematically varied. Since β-arrestin recruitment seems to be favorable to therapeutic implication, all the compounds were investigated by G protein and β-arrestin assays. Some bitopic ligands are partial to full agonists for G protein activation, some activate β-arrestin recruitment, and the degree of β-arrestin recruitment varies according to the respective modification. The allosteric BQCAd scaffold controls the positioning of the orthosteric ammonium group of all ligands, suggesting that this interaction is essential for stimulating G protein activation. However, β-arrestin recruitment is not affected. The novel set of bitopic ligands may constitute a toolbox to study the requirements of β-arrestin recruitment during ligand design for therapeutic usage.}, language = {en} } @article{SeitzerKlapperMazigoetal.2021, author = {Seitzer, Moritz and Klapper, Sylvia and Mazigo, Humphrey D. and Holzgrabe, Ulrike and Mueller, Andreas}, title = {Quality and composition of Albendazole, Mebendazole and Praziquantel available in Burkina Faso, C{\^o}te d'Ivoire, Ghana and Tanzania}, series = {PLoS Neglected Tropical Diseases}, volume = {15}, journal = {PLoS Neglected Tropical Diseases}, number = {1}, doi = {10.1371/journal.pntd.0009038}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270434}, year = {2021}, abstract = {Background Even though the international combat against Neglected Tropical Diseases such as schistosomiasis or soil-transmitted helminthiases depends on reliable therapeutics, anthelminthic pharmacovigilance has been neglected on many national African drug markets. Therefore, quality and composition of Albendazole, Mebendazole and Praziquantel locally collected in Burkina Faso, C{\^o}te d'Ivoire, Ghana and Tanzania were analysed. Methods Samples of 88 different batches were obtained from randomly selected facilities. Sampling took place in Northwest Tanzania, Western Burkina Faso, Southeast C{\^o}te d'Ivoire and Southwest Ghana. Visual examination of both packaging and samples was performed according to the WHO 'Be Aware' tool. Products were then screened with the GPHF Minilab, consisting of tests of mass uniformity, disintegration times and thin-layer chromatography (TLC). Confirmatory tests were performed according to international pharmacopoeiae, applying assays for dissolution profiles and high-performance liquid chromatography (HPLC). Findings Despite minor irregularities, appearance of the products did not hint at falsified medicines. However, 19.6\% of the brands collected in Ghana and Tanzania were not officially licensed for sale. Mass uniformity was confirmed in 53 out of 58 brands of tablets. 41 out of 56 products passed disintegration times; 10 out of the 15 failing products did not disintegrate at all. Evaluating TLC results, only 4 out of 83 batches narrowly missed specification limits, 18 batches slightly exceeded them. Not more than 46.3\% (31 / 67) of the tablets assayed passed the respective pharmaceutical criteria for dissolution. HPLC findings confirmed TLC results despite shifted specification limits: 10 out of 83 tested batches contained less than 90\%, none exceeded 110\%. Conclusion In the four study countries, no falsified anthelminthic medicine was encountered. The active pharmaceutical ingredient was not found to either exceed or fall below specification limits. Galenic characteristics however, especially dissolution profiles, revealed great deficits.}, language = {en} } @article{RaschigRamirez‐ZavalaWiestetal.2023, author = {Raschig, Martina and Ram{\´i}rez-Zavala, Bernardo and Wiest, Johannes and Saedtler, Marco and Gutmann, Marcus and Holzgrabe, Ulrike and Morschh{\"a}user, Joachim and Meinel, Lorenz}, title = {Azobenzene derivatives with activity against drug-resistant Candida albicans and Candida auris}, series = {Archiv der Pharmazie}, volume = {356}, journal = {Archiv der Pharmazie}, number = {2}, doi = {10.1002/ardp.202200463}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312295}, year = {2023}, abstract = {Increasing resistance against antimycotic drugs challenges anti-infective therapies today and contributes to the mortality of infections by drug-resistant Candida species and strains. Therefore, novel antifungal agents are needed. A promising approach in developing new drugs is using naturally occurring molecules as lead structures. In this work, 4,4'-dihydroxyazobenzene, a compound structurally related to antifungal stilbene derivatives and present in Agaricus xanthodermus (yellow stainer), served as a starting point for the synthesis of five azobenzene derivatives. These compounds prevented the growth of both fluconazole-susceptible and fluconazole-resistant Candida albicans and Candida auris strains. Further in vivo studies are required to confirm the potential therapeutic value of these compounds.}, language = {en} } @article{BalasubramanianSkafHolzgrabeetal.2018, author = {Balasubramanian, Srikkanth and Skaf, Joseph and Holzgrabe, Ulrike and Bharti, Richa and F{\"o}rstner, Konrad U. and Ziebuhr, Wilma and Humeida, Ute H. and Abdelmohsen, Usama R. and Oelschlaeger, Tobias A.}, title = {A new bioactive compound from the marine sponge-derived Streptomyces sp. SBT348 inhibits staphylococcal growth and biofilm formation}, series = {Frontiers in Microbiology}, volume = {9}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2018.01473}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221408}, year = {2018}, abstract = {Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 \(\mu\)g/ml) and biofilm formation (sub-MIC range: 1.95-<31.25 \(\mu\)g/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs.}, language = {en} }