@article{HaferkampHesbacherWeyandtetal.2014, author = {Haferkamp, Sebastian and Hesbacher, Sonja and Weyandt, Gerhard and Vetter-Kauczok, Claudia S. and Becker, J{\"u}rgen C. and Motschenbacher, Stephanie and Wobser, Marion and Maier, Melissa and Schmid, Corinna P. and Houben, Roland}, title = {p53 regulation by TRP2 is not pervasive in melanoma}, doi = {10.1371/journal.pone.0087440}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111396}, year = {2014}, abstract = {p53 is a central tumor suppressor protein and its inhibition is believed to be a prerequisite for cancer development. In approximately 50\% of all malignancies this is achieved by inactivating mutations in the p53 gene. However, in several cancer entities, including melanoma, p53 mutations are rare. It has been recently proposed that tyrosinase related protein 2 (TRP2), a protein involved in melanin synthesis, may act as suppressor of the p53 pathway in melanoma. To scrutinize this notion we analyzed p53 and TRP2 expression by immunohistochemistry in 172 melanoma tissues and did not find any correlation. Furthermore, we applied three different TRP2 shRNAs to five melanoma cell lines and could not observe a target specific effect of the TRP2 knockdown on either p53 expression nor p53 reporter gene activity. Likewise, ectopic expression of TRP2 in a TRP2 negative melanoma cell line had no impact on p53 expression. In conclusion our data suggest that p53 repression critically controlled by TRP2 is not a general event in melanoma.}, language = {en} } @phdthesis{Vetter2012, author = {Vetter, Sebastian}, title = {Elektrophysiologische Charakterisierung von STIM2-Knock-Out-M{\"a}usen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Um eine m{\"o}gliche elektrophysiologische, kardiale Ursache f{\"u}r den pl{\"o}tzlichen Tod von STIM2 Knock-Out M{\"a}usen zu pr{\"u}fen, wurde eine elektrophysiologische Charakterisierung mittels Ruhe- und Stress-EKG, telemetrischem Langzeit-EKG sowie Elektrophysiologischer Untersuchung durchgef{\"u}hrt. Hierbei konnte keine kardial-elektrophysiologische Grundlage f{\"u}r den pl{\"o}tzlichen Tod dieser Tiere gefunden werden.}, subject = {Knock-Out }, language = {de} } @article{BuellesbachVetterSchmitt2018, author = {Buellesbach, Jan and Vetter, Sebastian G. and Schmitt, Thomas}, title = {Differences in the reliance on cuticular hydrocarbons as sexual signaling and species discrimination cues in parasitoid wasps}, series = {Frontiers in Zoology}, volume = {15}, journal = {Frontiers in Zoology}, doi = {10.1186/s12983-018-0263-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221702}, year = {2018}, abstract = {Background Cuticular hydrocarbons (CHC) have been documented to play crucial roles as species- and sex-specific cues in the chemical communication systems of a wide variety of insects. However, whether they are sufficient by themselves as the sole cue triggering sexual behavior as well as preference of con- over heterospecific mating partners is rarely assessed. We conducted behavioral assays in three representative species of parasitoid wasps (Hymenoptera: Pteromalidae) to determine their reliance on CHC as species-specific sexual signaling cues. Results We found a surprising degree of either unspecific or insufficient sexual signaling when CHC are singled out as recognition cues. Most strikingly, the cosmopolitan species Nasonia vitripennis, expected to experience enhanced selection pressure to discriminate against other co-occurring parasitoids, did not discriminate against CHC of a partially sympatric species from another genus, Trichomalopsis sarcophagae. Focusing on the latter species, in turn, it became apparent that CHC are even insufficient as the sole cue triggering conspecific sexual behavior, hinting at the requirement of additional, synergistic sexual cues particularly important in this species. Finally, in the phylogenetically and chemically most divergent species Muscidifurax uniraptor, we intriguingly found both CHC-based sexual signaling as well as species discrimination behavior intact although this species is naturally parthenogenetic with sexual reproduction only occurring under laboratory conditions. Conclusions Our findings implicate a discrepancy in the reliance on and specificity of CHC as sexual cues in our tested parasitioid wasps. CHC profiles were not sufficient for unambiguous discrimination and preference behavior, as demonstrated by clear cross-attraction between some of our tested wasp genera. Moreover, we could show that only in T. sarcophagae, additional behavioral cues need to be present for triggering natural mating behavior, hinting at an interesting shift in signaling hierarchy in this particular species. This demonstrates the importance of integrating multiple, potentially complementary signaling modalities in future studies for a better understanding of their individual contributions to natural sexual communication behavior.}, language = {en} }