@article{BousquetAntoBachertetal.2021, author = {Bousquet, Jean and Anto, Josep M. and Bachert, Claus and Haahtela, Tari and Zuberbier, Torsten and Czarlewski, Wienczyslawa and Bedbrook, Anna and Bosnic-Anticevich, Sinthia and Walter Canonica, G. and Cardona, Victoria and Costa, Elisio and Cruz, Alvaro A. and Erhola, Marina and Fokkens, Wytske J. and Fonseca, Joao A. and Illario, Maddalena and Ivancevich, Juan-Carlos and Jutel, Marek and Klimek, Ludger and Kuna, Piotr and Kvedariene, Violeta and Le, LTT and Larenas-Linnemann, D{\´e}sir{\´e}e E. and Laune, Daniel and Louren{\c{c}}o, Olga M. and Mel{\´e}n, Erik and Mullol, Joaquim and Niedoszytko, Marek and Odemyr, Mika{\"e}la and Okamoto, Yoshitaka and Papadopoulos, Nikos G. and Patella, Vincenzo and Pfaar, Oliver and Pham-Thi, Nh{\^a}n and Rolland, Christine and Samolinski, Boleslaw and Sheikh, Aziz and Sofiev, Mikhail and Suppli Ulrik, Charlotte and Todo-Bom, Ana and Tomazic, Peter-Valentin and Toppila-Salmi, Sanna and Tsiligianni, Ioanna and Valiulis, Arunas and Valovirta, Erkka and Ventura, Maria-Teresa and Walker, Samantha and Williams, Sian and Yorgancioglu, Arzu and Agache, Ioana and Akdis, Cezmi A. and Almeida, Rute and Ansotegui, Ignacio J. and Annesi-Maesano, Isabella and Arnavielhe, Sylvie and Basaga{\~n}a, Xavier and D. Bateman, Eric and B{\´e}dard, Annabelle and Bedolla-Barajas, Martin and Becker, Sven and Bennoor, Kazi S. and Benveniste, Samuel and Bergmann, Karl C. and Bewick, Michael and Bialek, Slawomir and E. Billo, Nils and Bindslev-Jensen, Carsten and Bjermer, Leif and Blain, Hubert and Bonini, Matteo and Bonniaud, Philippe and Bosse, Isabelle and Bouchard, Jacques and Boulet, Louis-Philippe and Bourret, Rodolphe and Boussery, Koen and Braido, Fluvio and Briedis, Vitalis and Briggs, Andrew and Brightling, Christopher E. and Brozek, Jan and Brusselle, Guy and Brussino, Luisa and Buhl, Roland and Buonaiuto, Roland and Calderon, Moises A. and Camargos, Paulo and Camuzat, Thierry and Caraballo, Luis and Carriazo, Ana-Maria and Carr, Warner and Cartier, Christine and Casale, Thomas and Cecchi, Lorenzo and Cepeda Sarabia, Alfonso M. and H. Chavannes, Niels and Chkhartishvili, Ekaterine and Chu, Derek K. and Cingi, Cemal and Correia de Sousa, Jaime and Costa, David J. and Courbis, Anne-Lise and Custovic, Adnan and Cvetkosvki, Biljana and D'Amato, Gennaro and da Silva, Jane and Dantas, Carina and Dokic, Dejan and Dauvilliers, Yves and De Feo, Giulia and De Vries, Govert and Devillier, Philippe and Di Capua, Stefania and Dray, Gerard and Dubakiene, Ruta and Durham, Stephen R. and Dykewicz, Mark and Ebisawa, Motohiro and Gaga, Mina and El-Gamal, Yehia and Heffler, Enrico and Emuzyte, Regina and Farrell, John and Fauquert, Jean-Luc and Fiocchi, Alessandro and Fink-Wagner, Antje and Fontaine, Jean-Fran{\c{c}}ois and Fuentes Perez, Jos{\´e} M. and Gemicioğlu, Bilun and Gamkrelidze, Amiran and Garcia-Aymerich, Judith and Gevaert, Philippe and Gomez, Ren{\´e} Maximiliano and Gonz{\´a}lez Diaz, Sandra and Gotua, Maia and Guldemond, Nick A. and Guzm{\´a}n, Maria-Antonieta and Hajjam, Jawad and Huerta Villalobos, Yunuen R. and Humbert, Marc and Iaccarino, Guido and Ierodiakonou, Despo and Iinuma, Tomohisa and Jassem, Ewa and Joos, Guy and Jung, Ki-Suck and Kaidashev, Igor and Kalayci, Omer and Kardas, Przemyslaw and Keil, Thomas and Khaitov, Musa and Khaltaev, Nikolai and Kleine-Tebbe, Jorg and Kouznetsov, Rostislav and Kowalski, Marek L. and Kritikos, Vicky and Kull, Inger and La Grutta, Stefania and Leonardini, Lisa and Ljungberg, Henrik and Lieberman, Philip and Lipworth, Brian and Lodrup Carlsen, Karin C. and Lopes-Pereira, Catarina and Loureiro, Claudia C. and Louis, Renaud and Mair, Alpana and Mahboub, Bassam and Makris, Micha{\"e}l and Malva, Joao and Manning, Patrick and Marshall, Gailen D. and Masjedi, Mohamed R. and Maspero, Jorge F. and Carreiro-Martins, Pedro and Makela, Mika and Mathieu-Dupas, Eve and Maurer, Marcus and De Manuel Keenoy, Esteban and Melo-Gomes, Elisabete and Meltzer, Eli O. and Menditto, Enrica and Mercier, Jacques and Micheli, Yann and Miculinic, Neven and Mihaltan, Florin and Milenkovic, Branislava and Mitsias, Dimitirios I. and Moda, Giuliana and Mogica-Martinez, Maria-Dolores and Mohammad, Yousser and Montefort, Steve and Monti, Ricardo and Morais-Almeida, Mario and M{\"o}sges, Ralph and M{\"u}nter, Lars and Muraro, Antonella and Murray, Ruth and Naclerio, Robert and Napoli, Luigi and Namazova-Baranova, Leyla and Neffen, Hugo and Nekam, Kristoff and Neou, Angelo and Nordlund, Bj{\"o}rn and Novellino, Ettore and Nyembue, Dieudonn{\´e} and O'Hehir, Robyn and Ohta, Ken and Okubo, Kimi and Onorato, Gabrielle L. and Orlando, Valentina and Ouedraogo, Solange and Palamarchuk, Julia and Pali-Sch{\"o}ll, Isabella and Panzner, Peter and Park, Hae-Sim and Passalacqua, Gianni and P{\´e}pin, Jean-Louis and Paulino, Ema and Pawankar, Ruby and Phillips, Jim and Picard, Robert and Pinnock, Hilary and Plavec, Davor and Popov, Todor A. and Portejoie, Fabienne and Price, David and Prokopakis, Emmanuel P. and Psarros, Fotis and Pugin, Benoit and Puggioni, Francesca and Quinones-Delgado, Pablo and Raciborski, Filip and Rajabian-S{\"o}derlund, Rojin and Regateiro, Frederico S. and Reitsma, Sietze and Rivero-Yeverino, Daniela and Roberts, Graham and Roche, Nicolas and Rodriguez-Zagal, Erendira and Rolland, Christine and Roller-Wirnsberger, Regina E. and Rosario, Nelson and Romano, Antonino and Rottem, Menachem and Ryan, Dermot and Salim{\"a}ki, Johanna and Sanchez-Borges, Mario M. and Sastre, Joaquin and Scadding, Glenis K. and Scheire, Sophie and Schmid-Grendelmeier, Peter and Sch{\"u}nemann, Holger J. and Sarquis Serpa, Faradiba and Shamji, Mohamed and Sisul, Juan-Carlos and Sofiev, Mikhail and Sol{\´e}, Dirceu and Somekh, David and Sooronbaev, Talant and Sova, Milan and Spertini, Fran{\c{c}}ois and Spranger, Otto and Stellato, Cristiana and Stelmach, Rafael and Thibaudon, Michel and To, Teresa and Toumi, Mondher and Usmani, Omar and Valero, Antonio A. and Valenta, Rudolph and Valentin-Rostan, Marylin and Pereira, Marilyn Urrutia and van der Kleij, Rianne and Van Eerd, Michiel and Vandenplas, Olivier and Vasankari, Tuula and Vaz Carneiro, Antonio and Vezzani, Giorgio and Viart, Fr{\´e}d{\´e}ric and Viegi, Giovanni and Wallace, Dana and Wagenmann, Martin and Wang, De Yun and Waserman, Susan and Wickman, Magnus and Williams, Dennis M. and Wong, Gary and Wroczynski, Piotr and Yiallouros, Panayiotis K. and Yusuf, Osman M. and Zar, Heather J. and Zeng, St{\´e}phane and Zernotti, Mario E. and Zhang, Luo and Shan Zhong, Nan and Zidarn, Mihaela}, title = {ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice}, series = {Allergy}, volume = {76}, journal = {Allergy}, number = {1}, doi = {10.1111/all.14422}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228339}, pages = {168 -- 190}, year = {2021}, abstract = {Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.}, language = {en} } @article{MuellerFiebigWeidaueretal.2013, author = {Mueller, Thomas D. and Fiebig, Juliane E. and Weidauer, Stella E. and Qiu, Li-Yan and Bauer, Markus and Schmieder, Peter and Beerbaum, Monika and Zhang, Jin-Li and Oschkinat, Hartmut and Sebald, Walter}, title = {The Clip-Segment of the von Willebrand Domain 1 of the BMP Modulator Protein Crossveinless 2 Is Preformed}, series = {Molecules}, journal = {Molecules}, doi = {10.3390/molecules181011658}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97196}, year = {2013}, abstract = {Bone Morphogenetic Proteins (BMPs) are secreted protein hormones that act as morphogens and exert essential roles during embryonic development of tissues and organs. Signaling by BMPs occurs via hetero-oligomerization of two types of serine/threonine kinase transmembrane receptors. Due to the small number of available receptors for a large number of BMP ligands ligand-receptor promiscuity presents an evident problem requiring additional regulatory mechanisms for ligand-specific signaling. Such additional regulation is achieved through a plethora of extracellular antagonists, among them members of the Chordin superfamily, that modulate BMP signaling activity by binding. The key-element in Chordin-related antagonists for interacting with BMPs is the von Willebrand type C (VWC) module, which is a small domain of about 50 to 60 residues occurring in many different proteins. Although a structure of the VWC domain of the Chordin-member Crossveinless 2 (CV2) bound to BMP-2 has been determined by X-ray crystallography, the molecular mechanism by which the VWC domain binds BMPs has remained unclear. Here we present the NMR structure of the Danio rerio CV2 VWC1 domain in its unbound state showing that the key features for high affinity binding to BMP-2 is a pre-oriented peptide loop.}, language = {en} } @article{SchmittEguWalteretal.2021, author = {Schmitt, T. and Egu, D.T. and Walter, E. and Sigmund, A.M. and Eichkorn, R. and Yazdi, A. and Schmidt, E. and S{\´a}rdy, M. and Eming, R. and Goebeler, M. and Waschke, J.}, title = {Ca\(^{2+}\) signalling is critical for autoantibody-induced blistering of human epidermis in pemphigus}, series = {British Journal of Dermatology}, volume = {185}, journal = {British Journal of Dermatology}, number = {3}, doi = {10.1111/bjd.20091}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262810}, pages = {595 -- 604}, year = {2021}, abstract = {Background Pemphigus is a severe bullous autoimmune skin disease. Pemphigus foliaceus (PF) is characterized by antidesmoglein (Dsg) 1 IgG causing epidermal blistering; mucosal pemphigus vulgaris (mPV) by anti-Dsg3 IgG inducing erosions in the mucosa; and mucocutaneous pemphigus vulgaris (PV) by affecting both, with autoantibodies targeting Dsg1 and Dsg3. Objectives To characterize the Ca\(^{2+}\) flux pathway and delineate its importance in pemphigus pathogenesis and clinical phenotypes caused by different antibody profiles. Methods Immunoprecipitation, Ca\(^{2+}\) flux analysis, Western blotting, immunofluorescence staining, dissociation assays and a human skin ex vivo model were used. Results PV IgG and PF IgG, but neither Dsg3-specific monoclonal antibody (AK23) nor mPV IgG, caused Ca\(^{2+}\) influx in primary human keratinocytes. Phosphatidylinositol 4-kinase α interacts with Dsg1 but not with Dsg3. Its downstream target - phospholipase-C-γ1 (PLC) - was activated by PV IgG and PF IgG but not AK23 or mPV IgG. PLC releases inositol 1,4,5-trisphosphate (IP3) causing IP3 receptor (IP3R) activation and Ca2+ flux from the endoplasmic reticulum into the cytosol, which stimulates Ca2+ release-activated channels (CRAC)-mediated Ca\(^{2+}\) influx. Inhibitors against PLC, IP3R and CRAC effectively blocked PV IgG and PF IgG-induced Ca\(^{2+}\) influx; ameliorated alterations of Dsg1 and Dsg3 localization, and reorganization of keratin and actin filaments; and inhibited loss of cell adhesion in vitro. Finally, inhibiting PLC or IP3R was protective against PV IgG-induced blister formation and redistribution of Dsg1 and Dsg3 in human skin ex vivo. Conclusions Ca2+-mediated signalling is important for epidermal blistering and dependent on the autoantibody profile, which indicates different roles for signalling complexes organized by Dsg1 and Dsg3. Interfering with PLC and Ca\(^{2+}\) signalling may be a promising approach to treat epidermal manifestations of pemphigus.}, language = {en} } @article{DongBoeppleThieletal.2023, author = {Dong, Meng and B{\"o}pple, Kathrin and Thiel, Julia and Winkler, Bernd and Liang, Chunguang and Schueler, Julia and Davies, Emma J. and Barry, Simon T. and Metsalu, Tauno and M{\"u}rdter, Thomas E. and Sauer, Georg and Ott, German and Schwab, Matthias and Aulitzky, Walter E.}, title = {Perfusion air culture of precision-cut tumor slices: an ex vivo system to evaluate individual drug response under controlled culture conditions}, series = {Cells}, volume = {12}, journal = {Cells}, number = {5}, issn = {2073-4409}, doi = {10.3390/cells12050807}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311030}, year = {2023}, abstract = {Precision-cut tumor slices (PCTS) maintain tissue heterogeneity concerning different cell types and preserve the tumor microenvironment (TME). Typically, PCTS are cultured statically on a filter support at an air-liquid interface, which gives rise to intra-slice gradients during culture. To overcome this problem, we developed a perfusion air culture (PAC) system that can provide a continuous and controlled oxygen medium, and drug supply. This makes it an adaptable ex vivo system for evaluating drug responses in a tissue-specific microenvironment. PCTS from mouse xenografts (MCF-7, H1437) and primary human ovarian tumors (primary OV) cultured in the PAC system maintained the morphology, proliferation, and TME for more than 7 days, and no intra-slice gradients were observed. Cultured PCTS were analyzed for DNA damage, apoptosis, and transcriptional biomarkers for the cellular stress response. For the primary OV slices, cisplatin treatment induced a diverse increase in the cleavage of caspase-3 and PD-L1 expression, indicating a heterogeneous response to drug treatment between patients. Immune cells were preserved throughout the culturing period, indicating that immune therapy can be analyzed. The novel PAC system is suitable for assessing individual drug responses and can thus be used as a preclinical model to predict in vivo therapy responses.}, language = {en} } @article{SchmidSteinleinFeichtingeretal.2014, author = {Schmid, Michael and Steinlein, Claus and Feichtinger, Wolfgang and Haaf, Thomas and Mijares-Urrutia, Abraham and Schargel, Walter E. and Hedges, S. Blair}, title = {Cytogenetic Studies on Gonatodes (Reptilia, Squamata, Sphaerodactylidae)}, series = {Cytogenetic and Genome Research}, volume = {144}, journal = {Cytogenetic and Genome Research}, number = {1}, issn = {1424-8581}, doi = {10.1159/000367929}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196753}, pages = {47-61}, year = {2014}, abstract = {Mitotic and meiotic chromosomes of 5 species of the reptile genus Gonatodes are described by means of conventional staining, banding analyses and in situ hybridization using a synthetic telomeric DNA probe. The amount, location and fluorochrome affinities of constitutive heterochromatin, the number and positions of nucleolus organizer regions, and the patterns of telomeric DNA sequences were determined for most of the species. The karyotypes of G. falconensis and G. taniae from northern Venezuela are distinguished by their extraordinarily reduced diploid chromosome number of 2n = 16, which is the lowest value found so far in reptiles. In contrast to most other reptiles, both species have exclusively large biarmed (meta- and submetacentric) chromosomes. Comparison of the karyotypes of G. falconensis and G. taniae with those of other Gonatodes species indicates that the exceptional 2n = 16 karyotype originated by a series of 8 centric fusions. The karyotypes of G. falconensis and G. taniae are further characterized by the presence of considerable amounts of (TTAGGG)n telomeric sequences in the centromeric regions of all chromosomes. These are probably not only relics of the centric fusion events, but a component of the highly repetitive DNA in the constitutive heterochromatin of the chromosomes. The genome sizes of 4 Gonatodes species were determined using flow cytometry. For comparative purposes, all previously published cytogenetic data on Gonatodes and other sphaerodactylids are included and discussed.}, language = {en} } @article{MitchellLiWeinholdetal.2016, author = {Mitchell, Jonathan S. and Li, Ni and Weinhold, Niels and F{\"o}rsti, Asta and Ali, Mina and van Duin, Mark and Thorleifsson, Gudmar and Johnson, David C. and Chen, Bowang and Halvarsson, Britt-Marie and Gudbjartsson, Daniel F. and Kuiper, Rowan and Stephens, Owen W. and Bertsch, Uta and Broderick, Peter and Campo, Chiara and Einsele, Hermann and Gregory, Walter A. and Gullberg, Urban and Henrion, Marc and Hillengass, Jens and Hoffmann, Per and Jackson, Graham H. and Johnsson, Ellinor and J{\"o}ud, Magnus and Kristinsson, Sigurdur Y. and Lenhoff, Stig and Lenive, Oleg and Mellqvist, Ulf-Henrik and Migliorini, Gabriele and Nahi, Hareth and Nelander, Sven and Nickel, Jolanta and N{\"o}then, Markus M. and Rafnar, Thorunn and Ross, Fiona M. and da Silva Filho, Miguel Inacio and Swaminathan, Bhairavi and Thomsen, Hauke and Turesson, Ingemar and Vangsted, Annette and Vogel, Ulla and Waage, Anders and Walker, Brian A. and Wihlborg, Anna-Karin and Broyl, Annemiek and Davies, Faith E. and Thorsteinsdottir, Unnur and Langer, Christian and Hansson, Markus and Kaiser, Martin and Sonneveld, Pieter and Stefansson, Kari and Morgan, Gareth J. and Goldschmidt, Hartmut and Hemminki, Kari and Nilsson, Bj{\"o}rn and Houlston, Richard S.}, title = {Genome-wide association study identifies multiple susceptibility loci for multiple myeloma}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165983}, pages = {12050}, year = {2016}, abstract = {Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a new GWAS and perform replication analyses resulting in 9,866 cases and 239,188 controls. We confirm all nine known risk loci and discover eight new loci at 6p22.3 (rs34229995, P=1.31 × 10-8), 6q21 (rs9372120, P=9.09 × 10-15), 7q36.1 (rs7781265, P=9.71 × 10-9), 8q24.21 (rs1948915, P=4.20 × 10-11), 9p21.3 (rs2811710, P=1.72 × 10-13), 10p12.1 (rs2790457, P=1.77 × 10-8), 16q23.1 (rs7193541, P=5.00 × 10-12) and 20q13.13 (rs6066835, P=1.36 × 10-13), which localize in or near to JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC, RFWD3 and PREX1. These findings provide additional support for a polygenic model of MM and insight into the biological basis of tumour development.}, language = {en} } @article{WalterCollenburgJaptoketal.2016, author = {Walter, T. and Collenburg, L. and Japtok, L. and Kleuser, B. and Schneider-Schaulies, S. and M{\"u}ller, N. and Becam, J. and Schubert-Unkmeir, A. and Kong, J. N. and Bieberich, E. and Seibel, J.}, title = {Incorporation and visualization of azido-functionalized N-oleoyl serinol in Jurkat cells, mouse brain astrocytes, 3T3 fibroblasts and human brain microvascular endothelial cells}, series = {Chemical Communications}, volume = {52}, journal = {Chemical Communications}, number = {55}, doi = {10.1039/c6cc02879a}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191263}, pages = {8612-8614}, year = {2016}, abstract = {The synthesis and biological evaluation of azido-N-oleoyl serinol is reported. It mimicks biofunctional lipid ceramides and has shown to be capable of click reactions for cell membrane imaging in Jurkat and human brain microvascular endothelial cells.}, language = {en} } @article{McCarthySebaldGrossetal.1986, author = {McCarthy, J. E. and Sebald, Walter and Gross, G. and Lammers, R.}, title = {Enhancement of translational efficiency by the Escherichia coli atpE translational initiation region: its fusion with two human genes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62626}, year = {1986}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{GabelliniHarnischMcCarthyetal.1985, author = {Gabellini, N. and Harnisch, U. and McCarthy, J. E. and Hauska, G. and Sebald, Walter}, title = {Cloning and expression of the fbc operon encoding the FeS protein, cytochrome b and cytochrome c\(_1\) from the Rhodopseudomonas sphaeroides b/c\(_1\) complex}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62642}, year = {1985}, abstract = {The gene for the FeS protein of the Rhodopseudomonas sphaeroides b/c1 complex was identified by means of crosshybridization with a segment of the gene encoding the corresponding FeS protein of Neurospora crassa. Plasmids (pRSF1-14) containing the cross-hybridizing region, covering in total 13.5 kb of chromosomal DNA, were expressed in vitro in a homologous system. One RSF plasmid directed the synthesis of all three main polypeptides of the R. sphaeroides blc1 complex: the FeS protein, cytochrome b and cytochrome c1• The FeS protein and cytochrome c1 were apparently synthesized as precursor fonns. None of the pRSF plasmids directed the synthesis of the 10-kd polypeptide found in b/c1 complex preparations. Partial sequencing of the cloned region was performed. Several sites of strong homology between R. sphaeroides and eukaryotic polypeptides of the b/c1 complex were identified. The genes encode the three b/c1 polypeptides in the order: (5') FeS protein, cytochrome b, cytochrome c1• The three genes are transcribed to give a polycistronic mRNA of 2.9 kb. This transcriptional unit has been designated the jbc operon; its coding capacity corresponds to the size of the polycistronic mRNA assuming that only the genes for the FeS protein (jbcF), cytochrome b (jbcß) and cytochrome c1 (jbcC) are present. This could indicate that these three subunits constitute the minimal catalytic unit of the b/c1 complex from photosynthetic membranes.}, subject = {Biochemie}, language = {en} } @article{McCarthySchairerSebald1985, author = {McCarthy, J. E. and Schairer, H. U. and Sebald, Walter}, title = {Translational initiation frequency of atp genes from Escherichia coli: identification of an intercistronic sequence that enhances translation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62657}, year = {1985}, abstract = {The c, b and {\"o} subunit genes of the Escherichia coli atp operon were cloned individually in an expression vector between the tac fusion promoter and the galK gene. The relative rates of subunit synthesis directed by the cloned genes were similar in vitro andin vivo and compared favourably with the subunit stoichiometry of the assembled proton-translocating A TP synthase of E. coli in vivo. The rate of synthesis of subunit c was at least six times that of subunit b and 18 times that of subunit {\"o}. Progressive shortening of the long intercistronic sequence lying upstream of the subunit c gene showed that maximal expression of this gene is dependent upon the presence of a sequence stretching > 20 bp upstream of the Shine-Dalgarno site. This sequence thus acts to enhance the rate of translational initiation. The possibility that similar sequences might perform the same function in other operons of E. coli and bacteriophage A is also discussed. Translation of the subunit b cistron is partially coupled to translation of the preceding subunit c cistron. In conclusion, the expression of all the atp operon genes could be adjusted to accommodate the subunit requirements of A TP synthase assembly primarily by means of mechanisms which control the efficiency of translational initiation and re-initiation at the respective cistron start codons.}, subject = {Biochemie}, language = {en} }