@article{LivingstoneZarembaHornetal.2020, author = {Livingstone, E. and Zaremba, A. and Horn, S. and Ugurel, S. and Casalini, B. and Schlaak, M. and Hassel, J.C. and Herbst, R. and Utikal, J.S. and Weide, B. and Gutzmer, R. and Meier, F. and Koelsche, C. and Hadaschik, E. and Sucker, A. and Reis, H. and Merkelbach-Bruse, S. and Siewert, M. and Sahm, F. and von Deimling, A. and Cosgarea, I. and Zimmer, L. and Schadendorf, D. and Schilling, B. and Griewank, K.G.}, title = {GNAQ and GNA11 mutant nonuveal melanoma: a subtype distinct from both cutaneous and uveal melanoma}, series = {British Journal of Dermatology}, volume = {183}, journal = {British Journal of Dermatology}, number = {5}, doi = {10.1111/bjd.18947}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215434}, pages = {928 -- 939}, year = {2020}, abstract = {Background GNAQ and GNA11 mutant nonuveal melanoma represent a poorly characterized rare subgroup of melanoma with a gene mutation profile similar to uveal melanoma. Objectives To characterize these tumours in terms of clinical behaviour and genetic characteristics. Methods Patients with nonuveal GNAQ/11 mutated melanoma were identified from the prospective multicentre tumour tissue registry ADOREG, Tissue Registry in Melanoma (TRIM) and additional cooperating skin cancer centres. Extensive data on patient, tumour and treatment characteristics were collected retrospectively. Targeted sequencing was used to determine tumour mutational burden. Immunohistochemistry staining was performed for programmed death-ligand 1 and BRCA1-associated protein (BAP)1. Existing whole-exome cutaneous and uveal melanoma data were analysed for mutation type and burden. Results We identified 18 patients with metastatic GNAQ/11 mutant nonuveal melanoma. Tumours had a lower tumour mutational burden and fewer ultraviolet signature mutations than cutaneous melanomas. In addition to GNAQ and GNA11 mutations (nine each), six splicing factor 3b subunit 1 (SF3B1), three eukaryotic translation initiation factor 1A X-linked (EIF1AX) and four BAP1 mutations were detected. In contrast to uveal melanoma, GNAQ/11 mutant nonuveal melanomas frequently metastasized lymphatically and concurrent EIF1AX, SF3B1 and BAP1 mutations showed no apparent association with patient prognosis. Objective response to immunotherapy was poor with only one partial response observed in 10 treated patients (10\%). Conclusions Our findings suggest that GNAQ/11 mutant nonuveal melanomas are a subtype of melanoma that is both clinically and genetically distinct from cutaneous and uveal melanoma. As they respond poorly to available treatment regimens, novel effective therapeutic approaches for affected patients are urgently needed. What is already known about this topic? The rare occurrence of GNAQ/11 mutations in nonuveal melanoma has been documented. GNAQ/11 mutant nonuveal melanomas also harbour genetic alterations in EIF1AX, SF3B1 and BAP1 that are of prognostic relevance in uveal melanoma. What does this study add? GNAQ/11 mutant nonuveal melanomas show metastatic spread reminiscent of cutaneous melanoma, but not uveal melanoma. GNAQ/11 mutant nonuveal melanomas have a low tumour mutational burden that is higher than uveal melanoma, but lower than cutaneous melanoma. What is the translational message? Primary GNAQ/11 mutant nonuveal melanomas are a subtype of melanoma that is clinically and genetically distinct from both cutaneous and uveal melanoma. As metastatic GNAQ/11 mutant nonuveal melanomas respond poorly to available systemic therapies, including immune checkpoint inhibition, novel therapeutic approaches for these tumours are urgently needed.}, language = {en} } @article{RutkowskiErhardL'Hernaultetal.2015, author = {Rutkowski, Andrzej J. and Erhard, Florian and L'Hernault, Anne and Bonfert, Thomas and Schilhabel, Markus and Crump, Colin and Rosenstiel, Philip and Efstathiou, Stacey and Zimmer, Ralf and Friedel, Caroline C. and D{\"o}lken, Lars}, title = {Widespread disruption of host transcription termination in HSV-1 infection}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {7126}, doi = {10.1038/ncomms8126}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148643}, year = {2015}, abstract = {Herpes simplex virus 1 (HSV-1) is an important human pathogen and a paradigm for virus-induced host shut-off. Here we show that global changes in transcription and RNA processing and their impact on translation can be analysed in a single experimental setting by applying 4sU-tagging of newly transcribed RNA and ribosome profiling to lytic HSV-1 infection. Unexpectedly, we find that HSV-1 triggers the disruption of transcription termination of cellular, but not viral, genes. This results in extensive transcription for tens of thousands of nucleotides beyond poly(A) sites and into downstream genes, leading to novel intergenic splicing between exons of neighbouring cellular genes. As a consequence, hundreds of cellular genes seem to be transcriptionally induced but are not translated. In contrast to previous reports, we show that HSV-1 does not inhibit co-transcriptional splicing. Our approach thus substantially advances our understanding of HSV-1 biology and establishes HSV-1 as a model system for studying transcription termination.}, language = {en} } @article{WhisnantJuergesHennigetal.2020, author = {Whisnant, Adam W. and J{\"u}rges, Christopher S. and Hennig, Thomas and Wyler, Emanuel and Prusty, Bhupesh and Rutkowski, Andrzej J. and L'hernault, Anne and Djakovic, Lara and G{\"o}bel, Margarete and D{\"o}ring, Kristina and Menegatti, Jennifer and Antrobus, Robin and Matheson, Nicholas J. and K{\"u}nzig, Florian W. H. and Mastrobuoni, Guido and Bielow, Chris and Kempa, Stefan and Liang, Chunguang and Dandekar, Thomas and Zimmer, Ralf and Landthaler, Markus and Gr{\"a}sser, Friedrich and Lehner, Paul J. and Friedel, Caroline C. and Erhard, Florian and D{\"o}lken, Lars}, title = {Integrative functional genomics decodes herpes simplex virus 1}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-15992-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229884}, year = {2020}, abstract = {The predicted 80 open reading frames (ORFs) of herpes simplex virus 1 (HSV-1) have been intensively studied for decades. Here, we unravel the complete viral transcriptome and translatome during lytic infection with base-pair resolution by computational integration of multi-omics data. We identify a total of 201 transcripts and 284 ORFs including all known and 46 novel large ORFs. This includes a so far unknown ORF in the locus deleted in the FDA-approved oncolytic virus Imlygic. Multiple transcript isoforms expressed from individual gene loci explain translation of the vast majority of ORFs as well as N-terminal extensions (NTEs) and truncations. We show that NTEs with non-canonical start codons govern the subcellular protein localization and packaging of key viral regulators and structural proteins. We extend the current nomenclature to include all viral gene products and provide a genome browser that visualizes all the obtained data from whole genome to single-nucleotide resolution. Here, using computational integration of multi-omics data, the authors provide a detailed transcriptome and translatome of herpes simplex virus 1 (HSV-1), including previously unidentified ORFs and N-terminal extensions. The study also provides a HSV-1 genome browser and should be a valuable resource for further research.}, language = {en} }