@phdthesis{PerpinaViciano2020, author = {Perpi{\~n}{\´a} Viciano, Cristina}, title = {Study of the activation mechanisms of the CXC chemokine receptor 4 (CXCR4) and the atypical chemokine receptor 3 (ACKR3)}, doi = {10.25972/OPUS-19237}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192371}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The CXC chemokine receptor 4 (CXCR4) and the atypical chemokine receptor 3 (ACKR3) are seven transmembrane receptors that are involved in numerous pathologies, including several types of cancers. Both receptors bind the same chemokine, CXCL12, leading to significantly different outcomes. While CXCR4 activation generally leads to canonical GPCR signaling, involving Gi proteins and β-arrestins, ACKR3, which is predominantly found in intracellular vesicles, has been shown to signal via β-arrestin-dependent signaling pathways. Understanding the dynamics and kinetics of their activation in response to their ligands is of importance to understand how signaling proceeds via these two receptors. In this thesis, different F{\"o}rster resonance energy transfer (FRET)-based approaches have been combined to individually investigate the early events of their signaling cascades. In order to investigate receptor activation, intramolecular FRET sensors for CXCR4 and ACKR3 were developed by using the pair of fluorophores cyan fluorescence protein and fluorescence arsenical hairpin binder. The sensors, which exhibited similar functional properties to their wild-type counterparts, allowed to monitor their ligand-induced conformational changes and represent the first RET-based receptor sensors in the field of chemokine receptors. Additional FRET-based settings were also established to investigate the coupling of receptors with G proteins, rearrangements within dimers, as well as G protein activation. On one hand, CXCR4 showed a complex activation mechanism in response to CXCL12 that involved rearrangements in the transmembrane domain of the receptor followed by rearrangements between the receptor and the G protein as well as rearrangements between CXCR4 protomers, suggesting a role of homodimers in the activation course of this receptor. This was followed by a prolonged activation of Gi proteins, but not Gq activation, via the axis CXCL12/CXCR4. In contrast, the structural rearrangements at each step of the signaling cascade in response to macrophage migration inhibitory factor (MIF) were dynamically and kinetically different and no Gi protein activation via this axis was detected. These findings suggest distinct mechanisms of action of CXCL12 and MIF on CXCR4 and provide evidence for a new type of sequential signaling events of a GPCR. Importantly, evidence in this work revealed that CXCR4 exhibits some degree of constitutive activity, a potentially important feature for drug development. On the other hand, by cotransfecting the ACKR3 sensor with K44A dynamin, it was possible to increase its presence in the plasma membrane and measure the ligand-induced activation of this receptor. Different kinetics of ACKR3 activation were observed in response to CXCL12 and three other agonists by means of using the receptor sensor developed in this thesis, showing that it is a valuable tool to study the activation of this atypical receptor and pharmacologically characterize ligands. No CXCL12-induced G protein activation via ACKR3 was observed even when the receptor was re-localized to the plasma membrane by means of using the mutant dynamin. Altogether, this thesis work provides the temporal resolution of signaling patterns of two chemokine receptors for the first time as well as valuable tools that can be applied to characterize their activation in response to pharmacologically relevant ligands.}, subject = {G protein-coupled receptors}, language = {en} } @phdthesis{Endres2016, author = {Endres, Marcel Matthias}, title = {LASP1 reguliert die Genexpression und Sekretion von Matrix-Metalloproteasen in Brustkrebszellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136733}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Migration und Tumorzellinvasion erfordern die vorhergehende Degradation der umliegenden Extrazellul{\"a}rmartrix (EZM). Dieser Umbauprozess erfolgt prim{\"a}r durch proteolytische Endopeptidasen, sog. Matrix-Metalloproteasen (MMPs). Damit diese ihre funktionelle Aktivit{\"a}t aus{\"u}ben k{\"o}nnen, m{\"u}ssen sie zun{\"a}chst rekrutiert und mit Hilfe podosomaler bzw. invadopodialer Strukturen in die EZM sezerniert werden. Das LIM und SH3 Dom{\"a}nen Protein 1 (LASP1), ein neu in Podosomen von Makrophagen identifiziertes regulatorisches Ger{\"u}stprotein, beeinflusst, neben Gr{\"o}ße, Anzahl und Best{\"a}ndigkeit von Podosomen, in hohem Maße die Matrixdegradationskapazit{\"a}t der Zelle. Auch in invasiven Brustkrebszellen wurde eine Lokalisation von LASP1 an Invadopodien, den Podosomen-{\"a}quivalenten Strukturen, detektiert. Das prim{\"a}re Ziel der vorliegenden Arbeit war daher die funktionelle Charakterisierung von LASP1 in Invadopodien. Unter Etablierung eines Matrix-Degradations-Assays konnte gezeigt werden, dass eine Herunterregulation von LASP1 auch in der humanen Brustkrebszelllinie MDA-MB-231, die zuvor schon f{\"u}r Makrophagen gezeigte Matrixdegradation nachhaltig beeintr{\"a}chtig. Durch Analyse und Verifikation von zug{\"a}nglichen Mikroarraydaten mittels qRT-PCR und Western Blot konnte ferner belegt werden, dass LASP1 in den Brustkrebszellen die Genexpression und Proteintranslation von MMP1, -3 und -9 positiv moduliert und somit das gesamt-invasive Potential der Zelle steigert. Dar{\"u}ber hinaus deuten Zymogramme und die Analyse des konditionierten Mediums darauf hin, dass LASP1 als Strukturprotein die vesikul{\"a}re Sekretion der inaktiven Zymogene (proMMPs) in die EZM f{\"o}rdert. Demzufolge modifiziert LASP1 w{\"a}hrend der Krebsprogression die zellul{\"a}re Mikroumgebung zugunsten einer erh{\"o}hten Metastasierungsrate. Die neu identifizierte regulatorische Funktion von LASP1 auf die Transkription sowie Sekretion von Matrix-Metalloproteasen erkl{\"a}rt die in fr{\"u}heren Arbeiten beobachtete Korrelation zwischen einer erh{\"o}hten LASP1 Konzentration im Gewebe und dem vermehrten Auftreten von Metastasen, und damit einhergehend, schlechteren {\"U}berleben der Patientinnen.}, subject = {Brustkrebs}, language = {de} } @phdthesis{Laesker2023, author = {L{\"a}sker, Katharina}, title = {The influence of the short-chain fatty acid butyrate on "Signal transducer and activator of transcription 3" (STAT3) and selected inflammatory genes in the colon carcinoma cell line CACO-2 cultured in 2D and 3D}, doi = {10.25972/OPUS-30038}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300389}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {A disturbance in the symbiotic mutualism between the intestinal microbiome and the human host's organism (syn. dysbiosis) accompanies the development of a variety of inflammatory and metabolic diseases that comprise the Metabolic Syndrome, chronic inflammatory gut diseases like Crohn's disease, Non-alcoholic fatty liver disease (NAFLD) and cardiovascular diseases, among others. The changed uptake and effectiveness of short chain fatty acids (SCFAs) as well as an increase of the intestinal permeability are common, interdependent disease elements in this regard. Short chain fatty acids are end-products of intestinal bacterial fermentation and affect the mucosal barrier integrity via numerous molecular mechanisms. There is evidence to suggest, that SCFAs have a modulating influence on Signal transducer and activator of transcription 3 (STAT3) in intestinal epithelial cells. STAT3 is a central gene-transcription factor in signaling pathways of proliferation and inflammation. It can be activated by growth factors and other intercellular signaling molecules like the cytokine Oncostatin M (OSM). The mode of STAT3's activation exhibits, finally, a decisive influence on the immunological balance at the intestinal mucosa. Therefore, the posttranslational modification of STAT3 under the influence of SCFAs is likely to be a very important factor within the development and -progression of dysbiosis-associated diseases. In this study, a clear positive in vitro-effect of the short chain fatty acid butyrate on the posttranslational serine727-phosphorylation of STAT3 and its total protein amount in the human adenocarcinoma cell line CACO2 is verified. Moreover, an increased gene expression of the OSM-receptor subunit OSMRβ can be observed after butyrate incubation. Histone deacetylase inhibition is shown to have a predominant role in these effects. Furthermore, a subsequent p38 MAPK-activation by Butyrate is found to be a key molecular mechanism regarding the STAT3-phosphorylation at serine727-residues. To consider the portion of butyrate receptor signaling in this context in future assays, a CACO-2 cell 3D-culture model is introduced in which an improvement of the GPR109A-receptor expression in CACO-2 cells is accomplished.}, subject = {Butyrate }, language = {en} } @phdthesis{Fusi2023, author = {Fusi, Lorenza}, title = {Crosstalk between the MEK5/ERK5 and PKB/FoxO pathways: underlying mechanism and its relevance for vasoprotection and tumorigenesis}, doi = {10.25972/OPUS-29676}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296769}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Forkhead box O transcription factors are a family of proteins involved in cellular processes downstream of the Insulin-PI3K-PKB pathway. In response to extra- or intracellular stresses, for example starvation or oxidative stress, FoxOs are required to direct cell cycle progression and apoptosis. In endothelial cells, they induce apoptosis, and their deregulation is linked to diseases involving the insulin pathway, such as diabetes. FoxOs also exhibit a complex role in tumour transformation: here their main function is to suppress tumorigenesis. In both physiological and cancer contexts, FoxO activation leads to the transcription of some general targets, such as p27kip1 or IGFBP1. The FoxOs can also induce tissue-specific genes, as ANGPT2 and BIM in the endothelium. In endothelial cells, another pathway with a pivotal function is the MEK5/ERK5 MAPK signalling way. Its activation promotes cell survival and proliferation in stressful conditions, e.g., when blood vessels are exposed to the shear forces exerted by the blood stream. Furthermore, recent data described ERK5 as a kinase directing tumour resistance upon therapy-induced stress. Comparing their reported roles in various tumours and in the endothelium, FoxO proteins and the MEK5/ERK5 MAPK cascade appear to exert opposite functions. First non-published data confirmed the hypothesis that FoxO factors are subject to a negative modulation by the MEK5/ERK5 pathway. Hence, one goal of this PhD project was to further characterise this crosstalk at molecular level. The major mechanism of FoxO regulation is the balance among several post translational modifications, such as phosphorylation, acetylation, and ubiquitination. Most importantly, the PKB dependent phosphorylation of FoxOs negatively controls their activity, and it is critical for their subcellular localization. Therefore, the regulation of FoxO localization as mechanism of ERK5 dependent suppression was studied, but the results presented in this thesis argue against this hypothesis. However, additional experiments are required to explore the impact of ERK5 activity on FoxO post-translational modifications. FoxO activity can also be modulated by the interaction with other proteins, which in turn could explain general- and tissue-specific gene expression. Thus, another objective of this work was to investigate FoxO3-interactome in endothelial cells and the impact of MEK5/ERK5 activation on it. As published in (Fusi et al. 2022) and presented here, this analysis unveiled TRRAP as new FoxO bound protein in several cell types. Moreover, the interaction did not rely on the capacity of the FoxOs to bind their consensus DNA sequences at the promoter of target genes. Functional data demonstrated that TRRAP is required for FoxO-dependent gene transcription in endothelial and osteosarcoma cells. In addition, TRRAP expression in the endothelium is important for FoxO induced apoptosis. In summary, the interaction between FoxO factors and TRRAP revealed a new regulatory mechanism of FoxO-dependent gene transcription. It remains to be analysed whether the MEK5/ERK5 cascade may exert its suppressive effect on FoxO activity by interfering with their binding to TRRAP and whether such a mechanism may be relevant for tumorigenesis.}, subject = {Endothel}, language = {en} }