@phdthesis{Kupper2016, author = {Kupper, Maria}, title = {The immune transcriptome and proteome of the ant Camponotus floridanus and vertical transmission of its bacterial endosymbiont Blochmannia floridanus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142534}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The evolutionary success of insects is believed to be at least partially facilitated by symbioses between insects and prokaryotes. Bacterial endosymbionts confer various fitness advantages to their hosts, for example by providing nutrients lacking from the insects' diet thereby enabling the inhabitation of new ecological niches. The Florida carpenter ant Camponotus floridanus harbours endosymbiotic bacteria of the genus Blochmannia. These primary endosymbionts mainly reside in the cytoplasm of bacteriocytes, specialised cells interspersed into the midgut tissue, but they were also found in oocytes which allows their vertical transmission. The social lifestyle of C. floridanus may facilitate the rapid spread of infections amongst genetically closely related animals living in huge colonies. Therefore, the ants require an immune system to efficiently combat infections while maintaining a "chronic" infection with their endosymbionts. In order to investigate the immune repertoire of the ants, the Illumina sequencing method was used. The previously published genome sequence of C. floridanus was functionally re-annotated and 0.53\% of C. floridanus proteins were assigned to the gene ontology (GO) term subcategory "immune system process". Based on homology analyses, genes encoding 510 proteins with possible immune function were identified. These genes are involved in microbial recognition and immune signalling pathways but also in cellular defence mechanisms, such as phagocytosis and melanisation. The components of the major signalling pathways appear to be highly conserved and the analysis revealed an overall broad immune repertoire of the ants though the number of identified genes encoding pattern recognition receptors (PRRs) and antimicrobial peptides (AMPs) is comparatively low. Besides three genes coding for homologs of thioester-containing proteins (TEPs), which have been shown to act as opsonins promoting phagocytosis in other insects, six genes encoding the AMPs defesin-1 and defensin-2, hymenoptaecin, two tachystatin-like peptides and one crustin-like peptide are present in the ant genome. Although the low number of known AMPs in comparison to 13 AMPs in the honey bee Apis mellifera and 46 AMPs in the wasp Nasonia vitripennis may indicate a less potent immune system, measures summarised as external or social immunity may enhance the immune repertoire of C. floridanus, as it was discussed for other social insects. Also, the hymenoptaecin multipeptide precursor protein may be processed to yield seven possibly bioactive peptides. In this work, two hymenoptaecin derived peptides were heterologously expressed and purified. The preliminary antimicrobial activity assays indicate varying bacteriostatic effects of different hymenoptaecin derived peptides against Escherichia coli D31 and Staphylococcus aureus which suggests a functional amplification of the immune response further increasing the antimicrobial potency of the ants. Furthermore, 257 genes were differentially expressed upon immune challenge of C. floridanus and most of the immune genes showing differential expression are involved in recognition of microbes or encode immune effectors rather than signalling components. Additionally, genes coding for proteins involved in storage and metabolism were downregulated upon immune challenge suggesting a trade-off between two energy-intensive processes in order to enhance effectiveness of the immune response. The analysis of gene expression via qRT-PCR was used for validation of the transcriptome data and revealed stage-specific immune gene regulation. Though the same tendencies of regulation were observed in larvae and adults, expression of several immune-related genes was generally more strongly induced in larvae. Immune gene expression levels depending on the developmental stage of C. floridanus are in agreement with observations in other insects and might suggest that animals from different stages revert to individual combinations of external and internal immunity upon infection. The haemolymph proteome of immune-challenged ants further established the immune-relevance of several proteins involved in classical immune signalling pathways, e.g. PRRs, extracellularly active proteases of the Toll signalling pathway and effector molecules such as AMPs, lysozymes and TEPs. Additionally, non-canonical proteins with putative immune function were enriched in immune-challenged haemolymph, e.g. Vitellogenins, NPC2-like proteins and Hemocytin. As known from previous studies, septic wounding also leads to the upregulation of genes involved in stress responses. In the haemolymph, proteins implicated in protein stabilisation and in the protection against oxidative stress and insecticides were enriched upon immune challenge. In order to identify additional putative immune effectors, haemolymph peptide samples from immune-challenged larvae and adults were analysed. The analysis in this work focussed on the identification of putative peptides produced via the secretory pathway as previously described for neuropeptides of C. floridanus. 567 regulated peptides derived from 39 proteins were identified in the larval haemolymph, whereas 342 regulated peptides derived from 13 proteins were found in the adult haemolymph. Most of the peptides are derived from hymenoptaecin or from putative uncharacterised proteins. One haemolymph peptide of immune-challenged larvae comprises the complete amino acid sequence of a predicted peptide derived from a Vitellogenin. Though the identified peptide lacks similarities to any known immune-related peptide, it is a suitable candidate for further functional analysis. To establish a stable infection with the endosymbionts, the bacteria have to be transmitted to the next generation of the ants. The vertical transmission of B. floridanus is guaranteed by bacterial infestation of oocytes. This work presents the first comprehensive and detailed description of the localisation of the bacterial endosymbionts in C. floridanus ovaries during oogenesis. Whereas the most apical part of the germarium, which contains the germ-line stem cells, is not infected by the bacteria, small somatic cells in the outer layers of each ovariole were found to be infected in the lower germarium. Only with the beginning of cystocyte differentiation, endosymbionts are exclusively transported from follicle cells into the growing oocytes, while nurse cells were never infected with B. floridanus. This infestation of the oocytes by bacteria very likely involves exocytosis-endocytosis processes between follicle cells and the oocytes. A previous study suggested a down-modulation of the immune response in the midgut tissue which may promote endosymbiont tolerance. Therefore, the expression of several potentially relevant immune genes was analysed in the ovarial tissue by qRT-PCR. The relatively low expression of genes involved in Toll and IMD signalling, and the high expression of genes encoding negative immune regulators, such as PGRP-LB, PGRP-SC2, and tollip, strongly suggest that a down-modulation of the immune response may also facilitate endosymbiont tolerance in the ovaries and thereby contribute to their vertical transmission. Overall, the present thesis improves the knowledge about the immune repertoire of C. floridanus and provides new candidates for further functional analyses. Moreover, the involvement of the host immune system in maintaining a "chronic" infection with symbiotic bacteria was confirmed and extended to the ovaries.}, subject = {Camponotus floridanus}, language = {en} } @phdthesis{Heidinger2015, author = {Heidinger, Ina M. M.}, title = {Beyond metapopulation theory: Determinants of the dispersal capacity of bush crickets and grasshoppers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135068}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Habitat fragmentation and destruction due to anthropogenic land use are the major causes of the increasing extinction risk of many species and have a detrimental impact on animal populations in numerous ways. The long-term survival and stability of spatially structured populations in fragmented landscapes largely depends on the colonisation of habitat patches and the exchange of individuals and genes between patches. The degree of inter-patch dispersal, in turn, depends on the dispersal ability of a species (i.e. the combination of physiological and morphological factors that facilitate dispersal) and the landscape structure (i.e. the nature of the landscape matrix or the spatial configuration of habitat patches). As fragmentation of landscapes is increasing and the number of species is continuously declining, a thorough understanding of the causes and consequences of dispersal is essential for managing natural populations and developing effective conservation strategies. In the context of animal dispersal, movement behaviour is intensively investigated with capture-mark-recapture studies. For the analysis of such experiments, the influence of marking technique, handling and translocation of marked animals on movement pattern is of crucial importance since it may mask the effects of the main research question. Chapter 2 of this thesis presents a capture-mark-recapture study investigating the effect of translocation on the movement behaviour of the blue-winged grasshopper Oedipoda caerulescens. Transferring individuals of this grasshopper species to suitable but unfamilliar sites has a significant influence on their movement behaviour. Translocated individuals moved longer distances, showed smaller daily turning angles, and thus their movements were more directed than those of resident individuals. The effect of translocation was most pronounced on the first day of the experiment, but may persist for longer. On average, daily moved distances of translocated individuals were about 50 \% longer than that of resident individuals because they have been transferred to an unfamiliar habitat patch. Depending on experiment duration, this leads to considerable differences in net displacement between translocated and resident individuals. In summary, the results presented in chapter 2 clearly point out that translocation effects should not be disregarded in future studies on arthropod movement, respectively dispersal. Studies not controlling for possible translocation effects may result in false predictions of dispersal behaviour, habitat detection capability or habitat preferences. Beside direct field observations via capture-mark-recapture methods, genetic markers can be used to investigate animal dispersal. Chapter 3 presents data on the genetic structure of populations of Metrioptera bicolor, a wing-dimorphic bush cricket, in a spatially structured landscape with patches of suitable habitat distributed within a diverse matrix of different habitat types. Using microsatellite markers, the effects of geographic distance and different matrix types on the genetic differentiation among 24 local populations was assessed. The results of this study clearly indicate that for M. bicolor the isolation of local populations severely depends on the type of surrounding matrix. The presence of forest and a river running through the study area was positively correlated with the extent of genetic differentiation between populations. This indicates that both matrix types severely impede gene flow and the exchange of individuals between local populations of this bush cricket. In addition, for a subsample of populations which were separated only by arable land or settlements, a significant positive correlation between pairwise genetic and geographic distances exists. For the complete data set, this correlation could not be found. This is most probably due to the adverse effect of forest and river on gene flow which dominates the effect of geographic distance in the limited set of patches investigated in this study. The analyses in chapter 3 clearly emphasize the differential resistance of different habitat types on dispersal and the importance of a more detailed view on matrix 'quality' in metapopulation studies. Studies that focus on the specific dispersal resistance of different matrix types may provide much more detailed information on the dispersal capacity of species than a mere analysis of isolation by distance. Such information is needed to improve landscape oriented models for species conservation. In addition to direct effects on realised dispersal (see chapter 3), landscape structure on its own is known to act as an evolutionary selection agent because it determines the costs and benefits of dispersal. Both morphological and behavioural traits of individuals and the degree to which a certain genotype responds to environmental variation have heritable components, and are therefore expected to be able to respond to selection pressures. Chapter 4 analyses the influence of patch size, patch connectivity (isolation of populations) and sand dynamics (stability of habitat) on thorax- and wing length as proxies for dispersal ability of O. caerulescens in coastal grey dunes. This study revealed clear and sex-specific effects of landscape dynamics and patch configuration on dispersal-related morphology. Males of this grasshopper species were smaller and had shorter wings if patches were larger and less connected. In addition, both sexes were larger in habitat patches with high sand dynamics compared to those in patches with lower dynamics. The investments in wing length were only larger in connected populations when sand dynamics were low, indicating that both landscape and patch-related environmental factors are of importance. These results are congruent with theoretical predictions on the evolution of dispersal in metapopulations. They add to the evidence that dispersal-related morphology varies and is selected upon in recently structured populations even at small spatial scales. Dispersal involves different individual fitness costs like increased predation risk, energy expenditure, costs of developing dispersal-related traits, failure to find new suitable habitat as well as reproductive costs. Therefore, the decision to disperse should not be random but depend on the developmental stage or the physiological condition of an individual just as on actual environmental conditions (context-dependent dispersal, e.g. sex- and wing morph-biased dispersal). Biased dispersal is often investigated by comparing the morphology, physiology and behaviour of females and males or sedentary and dispersive individuals. Studies of biased dispersal in terms of capture-mark-recapture experiments, investigating real dispersal and not routine movements, and genetic proofs of biased dispersal are still rare for certain taxa, especially for orthopterans. However, information on biased dispersal is of great importance as for example, undetected biased dispersal may lead to false conclusions from genetic data. In chapter 5 of this thesis, a combined approach of morphological and genetic analyses was used to investigate biased dispersal of M. bicolor. The presented results not only show that macropterous individuals are predestined for dispersal due to their morphology, the genetic data also indicate that macropters are more dispersive than micropters. Furthermore, even within the group of macropterous individuals, males are supposed to be more dispersive than females. To get an idea of the flight ability of M. bicolor, the morphological data were compared with that of Locusta migratoria and Schistocerca gregaria, which are proved to be very good flyers. Based on the morphological data presented here, one can assume a good flight ability for macropters of M. bicolor, although flying individuals of this species are seldom observed in natural populations.}, subject = {Heuschrecken <{\"U}berfamilie>}, language = {en} } @phdthesis{LindenbergverhSchubert2021, author = {Lindenberg [verh. Schubert], Annekathrin}, title = {Timing of sensory preferences in \(Camponotus\) Ants}, doi = {10.25972/OPUS-16094}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160948}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Ants belong to the most successful insects living on our planet earth. One criterion of their tremendous success is the division of labor among workers that can be related to age (age¬- or temporal polyethism) and/ or body size (size-related polymorphism). Young ants care for the queen and brood in the nest interior and switch to foraging tasks in the outside environment with ongoing age. This highly flexible interior-exterior transition probably allows the ant workers to properly match the colony needs and is one of the most impressive behaviors a single worker undergoes during its life. As environmental stimuli are changing with this transition, workers are required to perform a new behavioral repertoire. This requires significant adaptions in sensory and higher¬-order integration centers in the brain, like the mushroom bodies. Furthermore, foragers need proper time measuring mechanisms to cope with daily environmental changes and to adapt their own mode of life. Therefore, they possess a functional endogenous clock that generates rhythms with a period length of approximately 24 hours. The species-rich genus of Camponotus ants constitute a rewarding model to study how behavioral duties of division of labor were performed and modulated within the colony and how synaptic plasticity in the brain is processed, as they can divide their labor to both, age and body size, simultaneously. In my PhD thesis, I started to investigate the behavioral repertoire (like foraging and locomotor activity) of two sympatric Camponotus species, C. mus and C. rufipes workers under natural and under controlled conditions. Furthermore, I focused on the division of labor in C. rufipes workers and started to examine structural and ultrastructural changes of neuronal architectures in the brain that are accompanied by the interior-exterior transition of C. rufipes ants. In the first part of my thesis, I started to analyze the temporal organization of task allocation throughout the life of single C. rufipes workers. Constant video-tracking of individually labeled workers for up to 11 weeks, revealed an age-related division of labor of interior and exterior workers. After emergence, young individuals are tended to by older ones within the first 48 hours of their lives before they themselves start nurturing larvae and pupae. Around 52\% switch to foraging duties at an age of 14-20 days. The workers that switched to foraging tasks are mainly media-sized workers and seem to be more specialized than nurses. Variations in proportion and the age of switching workers between and within different subcolonies indicate how highly flexible and plastic the age-related division of labor occurs in this ant species. Most of the observed workers were engaged in foraging tasks exclusively during nighttime. As the experiments were conducted in the laboratory, they are completely lacking environmental stimuli of the ants´ natural habitat. I therefore asked in a second study, how workers of the two closely related Camponotus species, C. rufipes and C. mus, adapt their daily activity patterns (foraging and locomotor activity) under natural (in Uruguay, South America) and controlled (in the laboratory) conditions to changing thermal conditions. Monitoring the foraging activity of both Camponotus species in a field experiment revealed, that C. mus workers are exclusively diurnal, whereas C. rufipes foragers are predominantly nocturnal. However, some nests showed an elevated daytime activity, which could be an adaption to seasonally cold night temperatures. To further investigate the impact of temperature and light on the differing foraging activity patterns in the field, workers of both Camponotus species were artificially exposed to different thermal regimes in the laboratory, simulating local winter and summer conditions. Here again, C. mus workers display solely diurnal locomotor activity, whereas workers of C. rufipes shifted their locomotor activity from diurnal under thermal winter conditions to nocturnal under thermal summer conditions. Hence, the combination of both, field work and laboratory studies, shows that daily activity is mostly shaped by thermal conditions and that temperature cycles are not just limiting foraging activity but can be used as zeitgeber to schedule the outside activities of the nests. Once an individual worker switches from indoor duties to exterior foraging tasks, it is confronted with an entirely new set of sensory information. To cope with changes of the environmental conditions and to facilitate the behavioral switch, workers need a highly flexible and plastic neuronal system. Hence, my thesis further focuses on the underlying neuronal adaptations of the visual system, including the optic lobes as the primary visual neuropil and the mushroom bodies as secondary visual brain neuropil, that are accompanied with the behavioral switch from nursing to foraging. The optic lobes as well as the mushroom bodies of light-deprived workers show an `experience-independent´ volume increase during the first two weeks of adulthood. An additional light exposure for 4 days induces an `experience-dependent´ decrease of synaptic complexes in the mushroom body collar, followed by an increase after extended light exposure for 14 days. I therefore conclude, that the plasticity of the central visual system represents important components for the optimal timing of the interior-exterior transitions and flexibility of the age-related division of labor. These remarkable structural changes of synaptic complexes suggest an active involvement of the mushroom body neuropil in the lifetime plasticity that promotes the interior-exterior transition of Camponotus rufipes ants. Beside these investigations of neuronal plasticity of synaptic complexes in the mushroom bodies on a structural level, I further started to examine mushroom body synaptic structures at the ultrastructural level. Until recently, the detection of synaptic components in projection neuron axonal boutons were below resolution using classical Transmission Electron Microscopy. Therefore, I started to implement Electron Tomography to increase the synaptic resolution to understand architectural changes in neuronal plasticity process. By acquiring double tilt series and consecutive computation of the acquired tilt information, I am now able to resolve individual clear-core and dense-core vesicles within the projection neuron cytoplasm of C. rufipes ants. I additionally was able to reveal single postsynaptic Kenyon cell dendritic spines (~62) that surround one individual projection neuron bouton. With this, I could reveal first insights into the complex neuronal architecture of single projection neuron boutons in the olfactory mushroom body lip region. The high resolution images of synaptic architectures at the ultrastructural level, received with Electron Tomography would promote the understanding of architectural changes in neuronal plasticity. In my PhD thesis, I demonstrate that the temporal organization within Camponotus colonies involves the perfect timing of different tasks. Temperature seems to be the most scheduling abiotic factors of foraging and locomotor activity. The ants do not only need to adapt their behavioral repertoire in accordance to the interior-exterior switch, also the parts in the peripheral and central that process visual information need to adapt to the new sensory environment.}, subject = {Rossameise}, language = {en} }