@phdthesis{Stich2020, author = {Stich, Manuel}, title = {Kompatibilit{\"a}t in der medizinischen Bildgebung: Beeinflussung von Gradientenfeldern durch das Magnetsystem und Beeinflussung elektronischer Bauteile durch ionisierende Strahlung}, doi = {10.25972/OPUS-20347}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203474}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit der Kompatibilit{\"a}t in der medizinischen Bildgebung unter zwei verschiedenen Aspekten: (A) Beeinflussung von Gradientenfeldern durch das Magnetsystem eines Magnetresonanztomographen. (B) Beeinflussung elektronischer Bauteile durch ionisierende Strahlung. Imperfektionen in der Gradientenhardware (7-13) f{\"u}hren dazu, dass nicht die ideale zeitliche Gradientenform ausgespielt wird, sondern eine verzerrte Version der Gradienten (6,14). In der nicht-kartesischen Bildgebung f{\"u}hren diese resultierenden Abweichungen in den k-Raum Trajektorien zu Bildartefakten, die sich negativ auf die Diagnosestellung auswirken k{\"o}nnen. Die linearen und zeitinvarianten Eigenschaften des Gradientensystems erm{\"o}glichen die Bestimmung der {\"U}bertragungsfunktion (GSTF) (20). Diese {\"U}bertragungsfunktion kann innerhalb der Bildrekonstruktion zur Trajektorienkorrektur verwendet werden (14,15,70). In dieser Arbeit wurden mit der Feldkamera (Skope Magnetic Resonance Technologies, Z{\"u}rich, Schweiz) (22,23) und der schichtselektiven Phantommethode (5,6) zwei etablierte GSTF-Messverfahren verglichen. Dabei wurde die Notwendigkeit einer Abtastzeitkompensation festgestellt, um die GSTF-Informationen entsprechend der gew{\"a}hlten Abtastzeit zu korrigieren (s. Abbildung 16) und die Trajektorien hinreichend zu korrigieren und damit Bildartefakte zu reduzieren. Die Langzeit- und Temperaturanalyse der GSTF zeigte f{\"u}r zwei verschiedene Siemens-Tomographen (Siemens Healthcare, Erlangen, Germany) eine Langzeit und Temperaturstabilit{\"a}t, auch bei extensiven Duty-Cyclen. Damit l{\"a}sst sich auch einfach eine Pre-emphasis-Korrektur der Gradienten realisieren, was exemplarisch mit einer Zig-Zag- und einer Spiral-Sequenz gezeigt werden konnte. Die GSTF-Pre-emphasis-Korrektur lieferte dabei {\"a}hnliche Ergebnisse wie die GSTF-Post-Processing-Technik (s. Abbildung 44 und 47). In Bezug auf die Kompatibilit{\"a}t in der medizinischen Bildgebung wurde in dieser Arbeit auch die Beeinflussung von medizinischen Implantaten durch ionisierende Strahlung untersucht. Herzschrittmacher, Kardioverter-Defibrillatoren oder andere aktive medizini- sche Implantate k{\"o}nnen in ihrer Funktion durch ionisierende Strahlung, die bei verschiedenen diagnostischen und therapeutischen Anwendungen appliziert wird, beeintr{\"a}chtigt werden (28,97,111). In dieser Studie wurden verschiedene elektronische Bauteile, wie Kondensatoren, Transistoren, Batterien und Speicherkarten in einer gewebe{\"a}quivalenten Messumgebung bestrahlt und dabei auf ihre Funktionalit{\"a}t {\"u}berpr{\"u}ft. Die Messumgebung simuliert dabei die Wechselwirkungseigenschaften von menschlichem Gewebe mit ionisierender Strahlung in einem Energiebereich von 10 keV - 6 MeV. Zudem erm{\"o}glicht sie mit der Einschubeinheit die Integration von Implantaten/elektronischen Bauteilen, sowie eine realistische Bestrahlungsplanung und Dosisverifikation (35,77). Bei den Kondensatoren zeigten sich w{\"a}hrend der Bestrahlung ein ver{\"a}ndertes Funktionsverhalten, mit signifikant abweichenden Spannungen und Zeitkonstanten gegen{\"u}ber dem unbestrahlten Zustand. Auch die Batterien haben sich w{\"a}hrend der Bestrahlung signifikant schneller entladen, als ohne Strahlungsapplikation. Nach der Bestrahlung konnten bei den untersuchten SD-Speicherkarten auch Ver{\"a}nderungen in den Speicherzellen festgestellt werden. Bei den Transistoren war aufgrund von Fehlern im Messsetup und dem Schaltungsdesign keine genauere teststatistische Auswertung m{\"o}glich. Zusammenfassend l{\"a}sst sich sagen, dass sich charakteristische Kenngr{\"o}ßen der untersuchten Bauteile bei Strahlungsapplikation signifikant ver{\"a}nderten.}, subject = {Magnetresonanztomographie}, language = {de} } @phdthesis{Kraus2017, author = {Kraus, Philip}, title = {Verbesserung von Echoplanarer Bildgebung durch Phasenkorrektur}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154462}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Die Arbeit liefert eine {\"U}bersicht zu m{\"o}glichen Korrekturen dynamischer Off-Resonanzen in dichtegewichteten und kartesischen echoplanaren funktionellen MRT Sequenzen.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Hilbert2017, author = {Hilbert, Fabian Michael}, title = {Neue Methoden und Modelle f{\"u}r die diffusionsgewichtete Magnetresonanztomographie der Niere}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141149}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Diffusionsgewichtete MR-Bilder sind ein wichtiger Bestandteil f{\"u}r die klinische Diagnostik verschiedener Pathologien, wie z.B. bei Schlaganfall oder Tumoren. Meistens wird ein mono-exponentielles Diffusionsmodell verwendet und {\"u}ber verschiedene Raumrichtungen gemittelt. Der Einfluss von Fluss auf das diffusionsgewichtete Signal und eine m{\"o}gliche Richtungsabh{\"a}ngigkeit werden dabei vernachl{\"a}ssigt. Dabei machen Diffusionsmodelle, die mehr Eigenschaften des Signals abbilden, unter Umst{\"a}nden eine genauere Diagnostik m{\"o}glich. Mit DTI wird die Richtungsabh{\"a}ngigkeit der Diffusion erfasst und bei IVIM wird der Beitrag von Fluss zum Signal ber{\"u}cksichtigt. Die Niere ist ein stark strukturiertes Organ und weist Anisotropie in der Diffusion auf. Außerdem ist die Niere ein sehr gut durchblutetes Organ. DTI und IVIM beschreiben also unabh{\"a}ngig voneinander zwei wichtige Aspekte des diffusionsgewichteten Signals in der Niere, ohne dass der Vorteil des jeweils anderen Modells Beachtung findet. In dieser Arbeit wurde das Modell IVOF zur umfassenden Beschreibung von Diffusionssignal vorgestellt, bei dem sowohl die Richtungsabh{\"a}ngigkeit der Diffusion, als auch das Signal der fließenden Spins und deren Richtungsabh{\"a}ngigkeit abgebildet wird. Die Vorteile von DTI und IVIM werden also in IVOF vereint und dar{\"u}ber hinaus auch die m{\"o}gliche Anisotropie die Flusssignals ber{\"u}cksichtigt. Es konnte gezeigt werden, dass dieses Modell das diffusionsgewichtete Signal in der menschlichen Niere besser beschreibt als die herk{\"o}mmlichen Modelle (DTI und IVIM) und auch besser als eine Kombination von DTI und IVIM, bei der ein isotroper Flussanteil des Signals angenommen wird. Es wurde weiterhin gezeigt, dass selbst wenn der Flussanteil im verwendeten Diffusionsmodell ber{\"u}cksichtigt wird, der tats{\"a}chlich gemessene Flussanteil in der Niere von der Art der Messung, d.h. Bewegungsempfindlichkeit des Gradientenschemas abh{\"a}ngt. Das bedeutet, dass der mikroskopische Fluss in der Niere nicht, wie h{\"a}ufig angenommen, komplett zeitlich inkoh{\"a}rent ist. Bei Vergleichen von IVIM Studien an der Niere ist es deshalb notwendig, die Bewegungsempfindlichkeit der jeweiligen Gradientenschemata zu ber{\"u}cksichtigen. Wie groß das absolute Verh{\"a}ltnis von koh{\"a}rent zu inkoh{\"a}rent fließendem Signal ist, konnte nicht festgestellt werden. Ebenso wenig konnte die absolute Flussgeschwindigkeit bzw. die Art des Flusses (Laminare Str{\"o}mung, Pfropfenstr{\"o}mung, oder andere) ermittelt werden. TSE hat sich als vielversprechendes, artefaktfreies Verfahren f{\"u}r die Aufnahme diffusionsgewichteter Bilder der Niere gezeigt. Im Vergleich mit dem Standardverfahren EPI wurden {\"a}hnliche Werte der Parameter von DTI und IVIM gefunden. Abweichungen zwischen EPI und TSE sind vor allem durch die Unsch{\"a}rfe der TSE Bilder aufgrund von T2-Zerfall zu erkl{\"a}ren. Bis zur klinischen Anwendbarkeit diffusionsgewichteter TSE Bilder bzw. Parameterkarten sind noch einige Weiterentwicklungen der Methode n{\"o}tig. Vor allem sind sch{\"a}rfere TSE Bilder erstrebenswert und es sollten mehrere Schichten in einer klinisch vertretbaren Zeitspanne aufgenommen werden, ohne dass dabei die zul{\"a}ssigen SAR Grenzwerte {\"u}berschritten werden. Bei allen Untersuchungen in dieser Arbeit handelt es sich um Machbarkeitsstudien. Daher wurden alle Messungen nur an erwachsenen, gesunden Probanden durchgef{\"u}hrt, um zu zeigen, dass das jeweilige vorgeschlagene Modell zu den Daten passt bzw. dass die vorgeschlagene Methode prinzipiell funktioniert. Bei welchen Pathologien die hier vorgeschlagenen Methoden und Modelle einen diagnostischen Nutzen haben, muss in zuk{\"u}nftigen Studien erforscht werden. Außerdem wurden keine b- Werte zwischen 0 und 200 s/mm2 aufgenommen, bei denen fließende Spins noch signifikant zum Signal beitragen. Betrachtet man die Ergebnisse der Diffusionsbildgebung mit verschiedenen m1 in dieser Arbeit, dann ist neben dem b-Wert auch die Bewegungsempfindlichkeit m1 n{\"o}tig, um das Signal in diesem Bereich korrekt zu beschreiben. Alles in allem sollte der Beitrag von Fluss zum diffusionsgewichteten MR-Signal in der Niere immer ber{\"u}cksichtigt werden. Die vielf{\"a}ltigen Einfl{\"u}sse, die unterschiedliche Parameter auf das Signal von Mikrofluss haben, wurden in dieser Arbeit untersucht und pr{\"a}sentieren weiterhin ein spannendes Feld f{\"u}r kommende Studien. Diffusionsgewichtete TSE Sequenzen sind auch f{\"u}r die klinische Diagnostik eine potentielle Alternative zu Artefakt-anf{\"a}lligen EPI Sequenzen. Bis dahin sollten jedoch die Bildsch{\"a}rfe und Abdeckung der diffusionsgewichteten TSE Sequenz weiter verbessert werden.}, subject = {Diffusionsgewichtete Magnetresonanztomografie}, language = {de} } @phdthesis{Schmitz2019, author = {Schmitz, Benedikt}, title = {Supraspinatus muscle elasticity measured with real time shear wave ultrasound elastography correlates with MRI spectroscopic measured amount of fatty degeneration}, doi = {10.25972/OPUS-17748}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177487}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Die fettige Degeneration (FD) der Rotatorenmanschettenmuskulatur beeinflusst das funktionelle und anatomische Ergebnis nach der Rotatorenmanschettenrekonstruktion. Die MRT-basierende Absch{\"a}tzung der fettigen Degeneration ist der aktuelle Goldstandard im klinischen Alltag. Es gibt Hinweise darauf, dass die Ultraschallelastographie (EUS) lokale Unterschiede der Gewebesteifigkeit in Muskeln und Sehnen feststellen kann. Mit der Scherwellenelastographie (SWE) wurde versucht zu bestimmen, in welchem ​​Ausmaß die Scherwellengeschwindigkeit mit den Messungen der Fettentartung verbunden war. Die MRT-spektroskopische Fettmessung wurde als Referenz verwendet, um die Fettmenge im Muskelbauch zu quantifizieren. METHODEN: Bei 42 Patienten wurde die SWE am dicksten Durchmesser des Supraspinatusmuskels angewendet. Anschließend wurde eine MRT-spektroskopische Fettmessung des Supraspinatusmuskels mit der SPLASH-Technik durchgef{\"u}hrt. Eine gelgef{\"u}llte Kapsel wurde verwendet, um die gemessene Fl{\"a}che im MRT zu lokalisieren. Die mit der SWE und der spektroskopischen Fettmessung gemessenen Werte der Scherwellengeschwindigkeit wurden unter Verwendung des Pearson-Korrelationstests statistisch korreliert. ERGEBNISSE: Die Korrelation der mit der MRT-Spektroskopie gemessenen Fettmenge und der mit der SWE gemessenen Scherwellengeschwindigkeit betrug p = 0,82. Das spektroskopisch gemessene Fettverh{\"a}ltnis des Supraspinatusmuskels lag zwischen 0\% und 77,41\% und der Scherwellengeschwindigkeit zwischen 1,59 m / s und 5,32 m / s. Bei 4 Patienten konnte keine ausreichende Scherwellenelastographie durchgef{\"u}hrt werden. Diese Personen wiesen einen gr{\"o}ßeren Durchmesser des dar{\"u}ber liegenden Weichgewebes auf. Die mit SWE gemessene Scherwellengeschwindigkeit zeigte eine gute Korrelation mit der MRT-spektroskopischen Fettmenge des Supraspinatusmuskels. FAZIT: Diese vorl{\"a}ufigen Daten deuten darauf hin, dass SWE eine gute Methode zum Erkennen und Absch{\"a}tzen der fettigen Degeneration im Supraspinatusmuskel in Echtzeit sein kann.}, subject = {Fettige Degeneration Muskel}, language = {de} } @phdthesis{Fuchs2014, author = {Fuchs, Kilian}, title = {Absolutquantifizierung der myokardialen Perfusion mit hochaufl{\"o}sender MRT bei 3 Tesla}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107015}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In den letzten Jahren hat die myokardiale MR-Perfusionsbildgebung als nichtinvasives Verfahren zur Darstellung von funktionellen Ver{\"a}nderungen des Myokards f{\"u}r die Diagnostik der KHK zunehmend an Bedeutung gewonnen. W{\"a}hrend in den letzten 20 Jahren die kardiale MRT {\"u}berwiegend bei einer Magnetfeldst{\"a}rke von 1,5 T durchge-f{\"u}hrt wurde und dies auch immer noch wird, findet aktuell eine rasante Verbreitung von MR-Systemen h{\"o}herer Feldst{\"a}rken statt. Von der neuen Hochfeldtechnik erhofft man sich vor allem, je nach Anwendung, eine deutliche Verbesserung der Bildqualit{\"a}t mit h{\"o}herer r{\"a}umlicher und zeitlicher Aufl{\"o}sung, wodurch der diagnostische Nutzen noch weiter gesteigert werden k{\"o}nnte. In der vorliegenden Arbeit wurden mittels First-Pass-MR-Bildgebung bei einer Magnet-feldst{\"a}rke von 3 T quantitative Werte f{\"u}r die myokardiale Perfusion von 20 gesunden Probanden unter Ruhebedingungen bestimmt. Sowohl die erhobenen absoluten Perfusionswerte (0,859 ml/g/min im Mittel) als auch die Standardabweichung des mittleren MBF (0,298 ml/g/min) entsprechen den Messungen aus den fr{\"u}heren Publikationen dieser Arbeitsgruppe. In der Gesamtzusammenschau bisher ver{\"o}ffentlichter Perfusionsstudien zeigt sich eine relativ große Variabilit{\"a}t der publizierten Ruhefl{\"u}sse. Dabei liegt der absolute MBF dieser Arbeit im mittleren Wertebereich dieser Streubreite. Er l{\"a}sst sich auch mit den in PET-Studien ermittelten Ergebnissen in Einklang bringen, welche als Goldstandard zur Bestimmung der absoluten myokardialen Perfusion beim Menschen gelten. Die vorliegende Arbeit best{\"a}tigt die bereits in anderen 3 T-Studien untersuchten Vorteile der Hochfeld-MRT. Die h{\"o}here Magnetfeldst{\"a}rke erm{\"o}glicht durch das gr{\"o}ßere SNR eine signifikant bessere r{\"a}umliche Aufl{\"o}sung und besticht vor allem durch die hohe Bildqualit{\"a}t. Dies k{\"o}nnte bei der Erkennung kleiner, subendokardial gelegener Perfusionsdefekte sowie der Erstellung von transmuralen Perfusionsgradienten von Bedeutung sein und verspricht neben einer Reduktion von Partialvolumeneffekten auch eine Verminderung von „dark rim"-Artefakten. Um diese Vorteile entsprechend nutzen zu k{\"o}nnen, wird die Entwicklung von Methoden zur pixelweisen Bestimmung der absoluten Fl{\"u}sse und farblich kodierten Darstellung derselben in Form von Perfusionskarten ein weiterer Schritt in Richtung klinisch einsetzbare Diagnostik sein. Eine Voraussetzung hierf{\"u}r ist die Entwicklung einer exakten und sehr stabilen Bewegungskorrektur in weiterf{\"u}hrenden Studien. Durch den Wechsel zu einer h{\"o}heren Magnetfeldst{\"a}rke von 3 T und den sich daraus ergebenden Vorteilen kann das Potential der MR-Perfusionsbildgebung, insbesondere der Bestimmung quantitativer Perfusionswerte, im Bereich der nichtinvasiven KHK-Diagnostik zuk{\"u}nftig weiter gesteigert werden.}, subject = {Kernspintomographie}, language = {de} } @phdthesis{TranGia2014, author = {Tran-Gia, Johannes}, title = {Model-Based Reconstruction Methods for MR Relaxometry}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-109774}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this work, a model-based acceleration of parameter mapping (MAP) for the determination of the tissue parameter T1 using magnetic resonance imaging (MRI) is introduced. The iterative reconstruction uses prior knowledge about the relaxation behavior of the longitudinal magnetization after a suitable magnetization preparation to generate a series of fully sampled k-spaces from a strongly undersampled acquisition. A Fourier transform results in a spatially resolved time course of the longitudinal relaxation process, or equivalently, a spatially resolved map of the longitudinal relaxation time T1. In its fastest implementation, the MAP algorithm enables the reconstruction of a T1 map from a radial gradient echo dataset acquired within only a few seconds after magnetization preparation, while the acquisition time of conventional T1 mapping techniques typically lies in the range of a few minutes. After validation of the MAP algorithm for two different types of magnetization preparation (saturation recovery \& inversion recovery), the developed algorithm was applied in different areas of preclinical and clinical MRI and possible advantages and disadvantages were evaluated.}, subject = {Kernspintomographie}, language = {en} } @phdthesis{Geier2021, author = {Geier, Bettina}, title = {Kernspintomografische Natriumbildgebung in Haut und Muskel}, doi = {10.25972/OPUS-24942}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249429}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Die vorliegende Arbeit untersucht den Natriumgehalt verschiedener Kompartimente des K{\"o}rpers mittels Magnetresonanztomographie (= MRT). Die Korrelation zwischen erh{\"o}htem Salzkonsum und arterieller Hypertonie ist bereits umfangreich analysiert worden. F{\"u}r das Verst{\"a}ndnis der pathophysiologischen Zust{\"a}nde und deren Regulation, ist eine Quantifizierung von Natriumkonzentrationen in verschiedenen Gewebearten bedeutsam. Die exakte Messung von Natriumkonzentrationen im menschlichen Gewebe ist derzeit experimentell. Im Rahmen der hier vorgelegten Arbeit wurden die Natriumkonzentrationen von Haut und Skelettmuskel mittels 23Na Magnetresonanztomographie (= 23 Na MRT) im menschlichen K{\"o}rper quantifiziert. Natriummessungen wurden bei Patienten mit prim{\"a}rem Hyperaldosteronismus (= PHA), bei Patienten mit essentieller Hypertonie (= EH), sowie einer gesunden Kontrollgruppe vorgenommen. Die Ergebnisse zeigten, dass Haut und Skelettmuskel Speicherorgane f{\"u}r Natrium im menschlichen K{\"o}rper darstellen. Durch gezielte Therapie waren die Natriumkonzentrationen in beiden Speicherorganen modulierbar}, subject = {Natrium-23}, language = {de} } @phdthesis{Schindele2016, author = {Schindele, Andreas}, title = {Proximal methods in medical image reconstruction and in nonsmooth optimal control of partial differential equations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136569}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Proximal methods are iterative optimization techniques for functionals, J = J1 + J2, consisting of a differentiable part J2 and a possibly nondifferentiable part J1. In this thesis proximal methods for finite- and infinite-dimensional optimization problems are discussed. In finite dimensions, they solve l1- and TV-minimization problems that are effectively applied to image reconstruction in magnetic resonance imaging (MRI). Convergence of these methods in this setting is proved. The proposed proximal scheme is compared to a split proximal scheme and it achieves a better signal-to-noise ratio. In addition, an application that uses parallel imaging is presented. In infinite dimensions, these methods are discussed to solve nonsmooth linear and bilinear elliptic and parabolic optimal control problems. In particular, fast convergence of these methods is proved. Furthermore, for benchmarking purposes, truncated proximal schemes are compared to an inexact semismooth Newton method. Results of numerical experiments are presented to demonstrate the computational effectiveness of our proximal schemes that need less computation time than the semismooth Newton method in most cases. Results of numerical experiments are presented that successfully validate the theoretical estimates.}, subject = {Optimale Kontrolle}, language = {en} } @phdthesis{Vaegler2016, author = {Vaegler, Sven}, title = {Entwicklung eines neuen vorwissensbasierten Bildrekonstruktionsalgorithmus f{\"u}r die Cone-Beam-CT Bildgebung in der Strahlentherapie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137445}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {In der heutigen Strahlentherapie kann durch eine am Linearbeschleuniger integrierte R{\"o}ntgenr{\"o}hre eine 3D-Bildgebung vor der Bestrahlung durchgef{\"u}hrt werden. Die sogenannte Kegel-Strahl-CT (Cone-Beam-CT, CBCT) erlaubt eine pr{\"a}zise Verifikation der Patientenlagerung sowie ein Ausgleich von Lagerungsungenauigkeiten. Dem Nutzen der verbesserten Patientenlagerung steht jedoch bei t{\"a}glicher Anwendung eine erh{\"o}hte, nicht zu vernachl{\"a}ssigbare Strahlenexposition des Patienten gegen{\"u}ber. Eine Verringerung des Dosisbeitrages bei der CBCT-Bildgebung l{\"a}sst sich durch Reduzierung des Stroms zur Erzeugung der R{\"o}ntgenstrahlung sowie durch Verringerung der Anzahl an Projektionen erreichen. Die so aufgenommen Projektionen lassen sich dann aber nur durch aufwendige Rekonstruktionsverfahren zu qualitativ hochwertigen Bilddatens{\"a}tzen rekonstruieren. Ein Verfahren, dass f{\"u}r die Rekonstruktion vorab vorhandene Vorwissensbilder verwendet, ist der Prior-Image- Constrained-Compressed-Sensing-Rekonstruktionsalgorithmus (PICCS). Die Rekonstruktionsergebnisse des PICCS-Verfahrens {\"u}bertreffen die Ergebnisse des auf den konventionellen Feldkamp-Davis-Kress-Algorithmus (FDK) basierenden Verfahrens, wenn nur eine geringe Anzahl an Projektionen zur Verf{\"u}gung steht. Allerdings k{\"o}nnen bei dem PICCS-Verfahren derzeit keine großen Variationen in den Vorwissensbildern ber{\"u}cksichtigt werden und f{\"u}hren zu einer geringeren Bildqualit{\"a}t. Diese Variationen treten insbesondere durch anatomische Ver{\"a}nderungen wie Tumorverkleinerung oder Gewichtsver{\"a}nderungen auf. Das Ziel der vorliegenden Arbeit bestand folglich darin, einen neuen vorwissensbasierten Rekonstruktionsalgorithmus zu entwickeln, der auf Basis des PICCS-Verfahrens zus{\"a}tzlich die Verwendung von lokalen Verl{\"a}sslichkeitsinformationen {\"u}ber das Vorwissensbild erm{\"o}glicht, um damit die Variationen in den Vorwissensbildern bei der Rekonstruktion entsprechend ber{\"u}cksichtigen zu k{\"o}nnen. Die grundlegende Idee des neu entwickelten Rekonstruktionsverfahrens ist die Annahme, dass die Vorwissensbilder aus Bereichen mit kleinen und großen Variationen bestehen. Darauf aufbauend wird eine Gewichtungsmatrix erzeugt, die die St{\"a}rke der Variationen des Vorwissens im Rekonstruktionsalgorithmus ber{\"u}cksichtigt. In Machbarkeitsstudien wurde das neue Verfahren hinsichtlich der Verbesserung der Bildqualit{\"a}t unter Ber{\"u}cksichtigung g{\"a}ngiger Dosisreduzierungsstrategien untersucht. Dazu z{\"a}hlten die Reduktion der Anzahl der Projektionen, die Akquisition von Projektionen mit kleinerer Fluenz sowie die Verkleinerung des Akquisitionsbereiches. Die Studien erfolgten an einem Computerphantom sowie insbesondere an experimentellen Daten, die mit dem klinischen CBCT aufgenommen worden sind. Zum Vergleich erfolgte die Rekonstruktion mit dem Standardverfahren basierend auf der gefilterten R{\"u}ckprojektion, dem Compressed Sensing- sowie dem konventionellen PICCS-Verfahren. Das neue Verfahren konnte in den untersuchten F{\"a}llen Bilddatens{\"a}tze mit verbesserter bis ausgezeichneter Qualit{\"a}t rekonstruieren, sogar dann, wenn nur eine sehr geringe Anzahl an Projektionen oder nur Projektionen mit starkem Rauschen zur Verf{\"u}gung standen. Demgegen{\"u}ber wiesen die Rekonstruktionsergebnisse der anderen Algorithmen starke Artefakte auf. Damit er{\"o}ffnet das neu entwickelte Verfahren die M{\"o}glichkeit durch die Integration von Zuverl{\"a}ssigkeitsinformationen {\"u}ber die vorhandenen Vorwissensbildern in den Rekonstruktionsalgorithmus, den Dosisbeitrag bei der t{\"a}glichen CBCT-Bildgebung zu minimieren und eine ausgezeichnete Bildqualit{\"a}t erzielen zu k{\"o}nnen.}, subject = {Strahlentherapie}, language = {de} } @phdthesis{Staeb2013, author = {St{\"a}b, Daniel}, title = {Erweiterung der Anatomischen Abdeckung in der MRT des Herzens}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93405}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die MRT hat sich in den letzten Jahren zu einem wichtigen Instrument in der Diagnostik von Herzerkrankungen entwickelt. Da sie ohne ionisierende Strahlung auskommt, stellt sie vor allem auch eine nichtinvasive Alternative zu den nuklearmedizinischen Verfahren und der Computertomographie dar. Im speziellen erm{\"o}glicht die kardiale MRT die ortsaufgel{\"o}ste Darstellung des Herzens mit einer Vielzahl an Kontrasten. Neben der Morphologie k{\"o}nnen damit auch zahlreiche Funktionsparameter des Herzens, wie die Ejektionsfraktion des linken Ventrikels, oder die Viabilit{\"a}t und Perfusion des Herzmuskels untersucht werden. Atmung und Herzbewegung stellen allerdings große Anforderungen an die MR-Herzbildgebung. Die beiden St{\"o}rfaktoren limitieren den Zeitraum, der zur Bildakquisition zur Verf{\"u}gung steht und erzeugen so Konflikte zwischen r{\"a}umlicher Aufl{\"o}sung, anatomischer Abdeckung, zeitlicher Aufl{\"o}sung und dem Signal-zu-Rausch-Verh{\"a}ltnis (SNR). Ferner ergibt sich f{\"u}r die meisten eingesetzten Verfahren eine erh{\"o}hte Komplexit{\"a}t. Die Bildgebungssequenzen m{\"u}ssen mittels EKG an den Herzrhythmus des Patienten angepasst und die Bildakquisitionen im Atemanhaltezustand durchgef{\"u}hrt werden. In manchen F{\"a}llen ist sogar eine Aufspaltung der Messung in mehrere Einzelakquisitionen n{\"o}tig, was wiederum die Dauer der Untersuchungen verl{\"a}ngert und den Patientenkomfort reduziert. Mit technischen Entwicklungen im Bereich der Gradienten und der Empfangsspulen sowie durch den Einsatz dedizierter Bildgebungstechniken konnten in den letzten Jahren signifikante Verbesserungen erzielt und der Stellenwert der MR-Bildgebung in der Herzdiagnostik erh{\"o}ht werden. Von großer Bedeutung sind dabei auch Beschleunigungsverfahren wie die Parallele Bildgebung, die eine deutliche Verk{\"u}rzung der Datenakquisition erm{\"o}glichen und so den Einfluss von Atmung und Herzbewegung wirksam reduzieren. Die Beschleunigung wird dabei grunds{\"a}tzlich durch eine unvollst{\"a}ndige Datenakquisition bzw. Unterabtastung des k-Raums erzielt, welche im Zuge der Bildrekonstruktion durch Ausnutzen zus{\"a}tzlich vorhandener Informationen kompensiert wird. Bei der Parallelen Bildgebung ersetzen beispielsweise mehrere um das Objekt herum angeordnete Empfangsspulen die zum Teil unvollst{\"a}ndig durchgef{\"u}hrte Gradientenbasierte Ortskodierung. Die Beschleunigungsverfahren sind allerdings wegen der verringerten Datenaufnahme auch immer mit einer Reduktion des SNR verbunden. Eine alternative Strategie zur Beschleunigung der 2D-Bildgebung mit mehreren Schichten stellt die simultane Multischichtbildgebung mit Multi-Slice Controlled Aliasing In Parallel Imaging Results In Higher Acceleration(MS-CAIPIRINHA) dar. Anders als bei der konventionellen Parallelen Bildgebung wird die Beschleunigung hier nicht durch eine reduzierte Datenaufnahme erzielt. Vielmehr werden Multiband-RF-Pulse eingesetzt, um die Spins in mehreren Schichten gleichzeitig anzuregen. Durch Anwenden schichtspezifischer RF-Phasenzyklen wird die Phase der Spins individuell in jeder Schicht moduliert, wodurch sich eine gegenseitige Verschiebung der Schichten im FOV ergibt. Die Verschiebung erleichtert die Separation der gleichzeitig angeregten Schichten mit Verfahren der Parallelen Bildgebung. Sie erlaubt außerdem eine Minimierung der bei der Rekonstruktion entstehenden Rauschverst{\"a}rkung. Die Multischichtbildgebungstechnik zeichnet sich gegen{\"u}ber der konventionellen Parallelen Bildgebung durch ein wesentlich h{\"o}heres SNR und durch eine Bildrekonstruktion mit geringeren Rekonstruktionsfehlern aus. In dieser Dissertation wurden verschiedene Strategien zur Anwendung von MS-CAIPIRINHA in der MRT des Herzens pr{\"a}sentiert sowie ihre Vorund Nachteile gegen{\"u}bergestellt. Im Allgemeinen erm{\"o}glichen die vorgestellten Konzepte eine hinsichtlich des SNR sehr effiziente Erweiterung der anatomischen Abdeckung. Unter anderem wurde eine M{\"o}glichkeit vorgestellt, mit der es uneingeschr{\"a}nkt gelingt, MS-CAIPIRINHA in der Bildgebung mit bSSFP-Sequenzen anzuwenden. Die Steady-State-Sequenz wird aufgrund ihres hohen intrinsischen SNR und vorteilhaften Kontrastverhaltens sehr h{\"a}ufig in der MRT des Herzens bei 1,5T eingesetzt. Wie auch die simultane Multischichtbildgebung erfordert sie zum Halten der Magnetisierung im station{\"a}ren Zustand die Applikation eines dedizierten RF-Phasenzyklus w{\"a}hrend der Datenakquisition. Der Phasenzyklus der Sequenz ist allerdings nicht ohne Weiteres mit den Phasenzyklen der Multischichttechnik kompatibel, so dass eine Verkn{\"u}pfung der beiden Verfahren bisher nur durch Aufspalten der Bildakquisition in mehrere Teilmessungen gelang. Mit dem in Kapitel 5 vorgestellten Konzept ist diese zumeist impraktikable Segmentierung nicht mehr erforderlich. Generalisierte RF-Phasenzyklen, die sowohl die Anforderungen der Sequenz, als auch die der Multischichtbildgebung erf{\"u}llen, erm{\"o}glichen eine uneingeschr{\"a}nkte Anwendung der Multischichttechnik in der Bildgebung mit bSSFP oder vergleichbaren Steady-State-Sequenzen. Die Multischichttechnik ist damit auch bei Untersuchungen in Echtzeit oder mit Magnetisierungspr{\"a}paration - Verfahren, die unter anderem in der MR-Herzdiagnostik Verwendung finden - einsetzbar. Anhand von Echtzeit-, Cine- und First-Pass-Herzperfusionsuntersuchungen am menschlichen Herzen konnte die Anwendbarkeit des Konzepts erfolgreich demonstriert werden. Durch die Akquisition zweier Schichten in der Zeit, die normalerweise zur Bildgebung einer einzelnen Schicht ben{\"o}tigt wird, gelang eine Verdoppelung der anatomischen Abdeckung bei unver{\"a}ndert hoher Bildqualit{\"a}t. Bei den Herzperfusionsuntersuchungen konnten je RR-Intervall sechs Schichten akquiriert werden. Bei Echtzeit- und Cine-Messungen erlaubt das Konzept eine signifikante Reduktion der Anzahl der Atemanhaltezust{\"a}nde und dementsprechend eine wirksame Verk{\"u}rzung der Patientenuntersuchung und eine Verbesserung des Patientenkomforts. In Kapitel 6 wurde eine effiziente Strategie zur Anwendung der simultanen Multischichtbildgebung in der First-Pass-Herzperfusionsbildgebung bei 3T vorgestellt. Es wurde gezeigt, dass durch den Einsatz von MS-CAIPIRINHA mit Beschleunigungsfaktoren, die gr{\"o}ßer sind als die Anzahl der simultan angeregten Schichten, neben der anatomischen Abdeckung auch die r{\"a}umliche Aufl{\"o}sung innerhalb der Bildgebungsschicht erh{\"o}ht werden kann. Beide Verbesserungen sind f{\"u}r die MR-gest{\"u}tzte Diagnostik der Koronaren Herzerkrankung von Bedeutung. W{\"a}hrend mit einer hohen r{\"a}umlichen Aufl{\"o}sung subendokardiale und transmurale Infarktareale unterschieden werden k{\"o}nnen, erleichtert eine hohe anatomische Abdeckung die genaue Eingrenzung hypoperfundierter Bereiche. Das grunds{\"a}tzliche Prinzip der vorgestellten Strategie besteht in der Kombination zweier unterschiedlicher Beschleunigungsans{\"a}tze: Zur Verbesserung der anatomischen Abdeckung kommt die simultane Multischichtbildgebung zum Einsatz. Zus{\"a}tzlich zur gleichzeitigen Anregung mehrerer Schichten wird der k-Raum regelm{\"a}ßig unterabgetastet. Die dabei erzielte Beschleunigung wird zur Verbesserung der r{\"a}umlichen Aufl{\"o}sung eingesetzt. Die Bildrekonstruktion erfolgt mit Verfahren der Parallelen Bildgebung. Der Vorteil des Konzepts liegt insbesondere im vollst{\"a}ndigen Erhalt der Datenakquisitionszeit gegen{\"u}ber einer unbeschleunigten Messung mit Standardabdeckung und -aufl{\"o}sung. Anders als bei konventionellen Beschleunigungsverfahren wirken sich lediglich die Verkleinerung der Voxelgr{\"o}ße sowie die Rauschverst{\"a}rkung der Bildrekonstruktion SNR-reduzierend aus. Die Rauschverst{\"a}rkung wird dabei, durch die gegenseitige Verschiebung der simultan angeregten Schichten im FOV, so gering wie m{\"o}glich gehalten. Die Anwendbarkeit des Konzepts konnte anhand von Simulationen sowie Untersuchungen an Probanden und Herzinfarktpatienten erfolgreich demonstriert werden. Simultanes Anregen zweier Schichten und 2,5-faches Unterabtasten des k-Raums erm{\"o}glichte die Durchf{\"u}hrung von Untersuchungen mit einer anatomischen Abdeckung von sechs bis acht Schichten je RR-Intervall und einer r{\"a}umlichen Aufl{\"o}sung von 2,0×2,0×8,0mm3. Es konnte gezeigt werden, dass die angewandte GRAPPA-Rekonstruktion, trotz der effektiv f{\"u}nffachen Beschleunigung, robust und im Wesentlichen mit geringer Rauschverst{\"a}rkung durchf{\"u}hrbar ist. Bildqualit{\"a}t und SNR waren f{\"u}r eine sektorweise Absolutquantifizierung der Myokardperfusion ausreichend, w{\"a}hrend die hohe r{\"a}umliche Aufl{\"o}sung die Abgrenzung kleiner subendokardialer Perfusionsdefizite erm{\"o}glichte. Aufgrund seiner großen Flexibilit{\"a}t und recht einfachen Implementierbarkeit ist das Beschleunigungskonzept vielversprechend hinsichtlich einer Anwendung in der klinischen Routine. Die diesbez{\"u}gliche Tauglichkeit ist allerdings in weiterf{\"u}hrenden Patientenstudien noch zu evaluieren. Alternativ zu diesem Konzept wurde in Kapitel 7 noch eine weitere, ebenfalls auf MS-CAIPIRINHA basierende Strategie f{\"u}r die First-Pass-Herzperfusionsbildgebung bei 3T mit großer anatomischer Abdeckung und hoher r{\"a}umlicher Aufl{\"o}sung vorgestellt. Wie zuvor bestand die Grundidee des Konzepts darin, MS-CAIPIRINHA mit Beschleunigungsfaktoren anzuwenden, welche gr{\"o}ßer sind als die Anzahl der simultan angeregten Schichten und die Vergr{\"o}ßerung der anatomischen Abdeckung durch simultanes Anregen mehrerer Schichten zu realisieren. Um allerdings die bei der Bildrekonstruktion und Schichtseparation entstehende Rauschverst{\"a}rkung zu minimieren, wurde zur Verbesserung der r{\"a}umlichen Aufl{\"o}sung innerhalb der Schicht das nichtlineare Beschleunigungsverfahren Compressed Sensing zum Einsatz gebracht. Die erst in den letzten Jahren entwickelte Technik erm{\"o}glicht die exakte Rekonstruktion zuf{\"a}llig unterabgetasteter Daten, sofern bekannt ist, dass sich das rekonstruierte Bild in eine wohldefinierte sparse Darstellung {\"u}berf{\"u}hren l{\"a}sst. Neben der Erreichbarkeit hoher Beschleunigungsfaktoren bietet Compressed Sensing den Vorteil einer Bildrekonstruktion ohne signifikante Rauscherh{\"o}hung. Zur Einbindung des Verfahrens in das Multischichtbildgebungskonzept erfolgt die f{\"u}r die Verbesserung der Aufl{\"o}sung n{\"o}tige Unterabtastung des k-Raums, zuf{\"a}llig und inkoh{\"a}rent. Zur Bildrekonstruktion sind zwei Teilschritte erforderlich. Im ersten Teilschritt werden die durch die zuf{\"a}llige Unterabtastung entstandenen inkoh{\"a}renten Artefakte mit Compressed Sensing entfernt, im zweiten die gleichzeitig angeregten Schichten mit Verfahren der Parallelen MRT separiert. Es konnte gezeigt werden, dass die Kombination aus Compressed Sensing und MS-CAIPIRINHA eine Reduktion der inhomogenen Rauschverst{\"a}rkung erm{\"o}glicht und zur Durchf{\"u}hrung von qualitativen First-Pass-Herzperfusionsuntersuchungen mit einer Abdeckung von sechs bis acht Schichten je RR-Intervall sowie einer r{\"a}umlichen Aufl{\"o}sung von 2,0 × 2,0 × 8,0mm3 geeignet ist. Des Weiteren konnte gezeigt werden, dass das angewandte Multischicht-Bildgebungskonzept einer Anwendung des entsprechenden Compressed-Sensing-Konzepts ohne simultane Multischichtanregung {\"u}berlegen ist. Es stellte sich allerdings auch heraus, dass die rekonstruierten Bilder mit systematischen Fehlern behaftet sind, zu welchen auch ein signifikanter rekonstruktionsbedingter Verlust an zeitlicher Aufl{\"o}sung z{\"a}hlt. Dieser kann zu einer Verzerrung quantitativ bestimmter Perfusionswerte f{\"u}hren und verhindert so robuste quantitative Messungen der Myokardperfusion. Es ist außerdem davon auszugehen, dass auch abrupte Signalver{\"a}nderungen, die bei Arrhythmien oder Bewegung auftreten, nur sehr ungenau rekonstruiert werden k{\"o}nnen. Die Systematischen Rekonstruktionsfehler konnten anhand zweier Verfahren, einer Monte-Carlo-Simulation sowie einer Analyse der lokalen Punktantworten pr{\"a}zise Untersucht werden. Die beiden Analysemethoden erm{\"o}glichten einerseits die genaue Bestimmung systematischer und statistischer Abweichungen der Signalamplitude und andererseits die Quantifizierung rekonstruktionsbedingter zeitlicher und r{\"a}umlicher Aufl{\"o}sungsverluste. Dabei konnte ein Mangel an Sparsit{\"a}t als grundlegende Ursache der Rekonstruktionsfehler ermittelt werden. Die bei der Analyse eingesetzten Verfahren erleichtern das Verst{\"a}ndnis von Compressed Sensing und k{\"o}nnen beispielsweise bei der Entwicklung nichtlinearer Beschleunigungskonzepte zur Bildqualit{\"a}tsanalyse eingesetzt werden.}, subject = {Kernspintomographie}, language = {de} }