@phdthesis{Lodes2021, author = {Lodes, Nina Theresa}, title = {Tissue Engineering f{\"u}r seltene Erkrankungen mit St{\"o}rungen des mukozili{\"a}ren Transports}, doi = {10.25972/OPUS-20017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200178}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Bei der zystischen Fibrose (CF) sowie der prim{\"a}ren Ziliendyskinesie (PCD) handelt es sich um zwei seltene Erkrankungen, die unter anderem den mukozili{\"a}ren Transport beeintr{\"a}chtigen. CF geh{\"o}rt hierbei zu den am h{\"a}ufigsten vorkommenden angeborenen Stoffwechselerkrankungen, wobei Betroffene unter einem Defekt des Cystic Fibrosis Transmembrane Conductor Regulator (CFTR)-Gens leiden, der durch die Produktion von hochviskosem Sekret in muzinproduzierenden Organen, wie dem gastrointestinalen Trakt und der Lunge, gekennzeichnet ist. Patienten, die an PCD leiden, weisen Defekte in, zum jetzigen Zeitpunkt, ca. 38 bekannten und PCD-assoziierten Genen auf, die in strukturellen Defekten des zili{\"a}ren Apparats und somit in dysfunktionalen Kinozilien resultieren. Da aktuell weder f{\"u}r die CF noch f{\"u}r die PCD eine Heilung m{\"o}glich ist, steht bei der Therapie vor allem die Linderung der Symptome im Fokus. Grundlegendes Ziel ist der langfristige Erhalt der Lungenfunktion sowie die Pr{\"a}vention bakterieller Infekte. Als bisherige Modellsysteme zur Erforschung m{\"o}glicher Therapeutika gelten Tiermodelle, die den humanen Ph{\"a}notyp aufgrund von Speziesdiversit{\"a}t nicht vollst{\"a}ndig abbilden k{\"o}nnen. Als vielversprechende Testsysteme f{\"u}r die zystische Fibrose gelten humane intestinale Organoidkulturen. Nachdem allerdings vorwiegend respiratorische Symptome f{\"u}r die Mortalit{\"a}t der Patienten verantwortlich sind, stellen CF-Atemwegsmodelle bessere Testsysteme f{\"u}r zuk{\"u}nftige Therapeutika dar. Atmungsorganoidkulturen wurden verwendet, um die CFTR-Funktionalit{\"a}t zu untersuchen, repr{\"a}sentieren aber nicht vollst{\"a}ndig die in vivo Situation. Deshalb werden zur Entwicklung neuer Therapiestrategien patientenspezifische 3D in vitro Testsysteme der humanen Atemwege ben{\"o}tigt, die insbesondere im Hinblick auf personalisierte Medizin ihren Einsatz finden. In der vorliegenden Arbeit wurde eine f{\"u}r den Lehrstuhl neue Methode zur Zellgewinnung aus nasalen Schleimhautabstrichen etabliert, die eine standardisierte Versorgung mit humanem Prim{\"a}rmaterial garantiert. Zur Generierung einer krankheitsspezifischen Zelllinie, wie beispielsweise einer PCD-Zelllinie mit Hilfe des CRISPR/Cas9-Systems, ist eine Atemwegszelllinie erforderlich, die die in vivo Situation vollst{\"a}ndig repr{\"a}sentiert. So wurden vier verschiedene respiratorische Epithelzelllinien (HBEC3-KT, Calu-3, VA10 und Cl-huAEC) auf ihren mukozili{\"a}ren Ph{\"a}notyp hin untersucht, wobei lediglich die Zelllinie HBEC3-KT in zilientragende Zellen differenzierte. Diese zeigten jedoch nur auf ca. 5 \% der Modelloberfl{\"a}che Kinozilien, wodurch die humane respiratorische Mukosa nicht komplett abgebildet werden konnte und die HBEC3-KT-Zelllinie keine geeignete Zelllinie zur Generierung einer PCD-Zelllinie darstellte. Mit Hilfe des Tissue Engineering war es m{\"o}glich, 3D in vitro Testsysteme basierend auf zwei unterschiedlichen Matrices, der biologischen SIS (small intestinal submucosa) und der synthetischen Polyethylenterephthalat (PET)-Membran, aufzubauen. Es wurden 3D Atemwegstestsysteme mit humanen prim{\"a}ren nasalen und tracheobronchialen Epithelzellen generiert. Erg{\"a}nzend zu histologischen Untersuchungen und zur Charakterisierung spezifischer Marker des respiratorischen Systems mittels Immunfluoreszenz, wurde die Ultrastruktur der Modelle, mit speziellem Fokus auf zili{\"a}re Strukturen, analysiert. Um R{\"u}ckschl{\"u}sse auf die zili{\"a}re Funktionalit{\"a}t ziehen zu k{\"o}nnen und somit eine hohe in vivo Korrelation zu best{\"a}tigen, wurde im Rahmen dieser Arbeit am Lehrstuhl f{\"u}r Tissue Engineering und Regenerative Medizin die Methode der Hochgeschwindigkeitsvideomikroskopie etabliert, welche die Analyse der Zilienschlagfrequenz sowie des mukozili{\"a}ren Transports erm{\"o}glicht. Ebenfalls wurde der Einfluss von isotoner Kochsalzl{\"o}sung und des � 2-adrenergen Agonisten Salbutamol, das vor allem als Bronchodilatator bei Asthmapatienten eingesetzt wird, auf die Zilienschlagfrequenz analysiert. Es konnte gezeigt werden, dass beide Substanzen den Zilienschlag im Atemwegsmodell erh{\"o}hen. Zur Generierung der Testsysteme der beiden seltenen Erkrankungen CF und PCD wurden Epithelzellen der betroffenen Patienten zun{\"a}chst mittels nicht-invasiver Raman-Spektroskopie auf einen potentiellen Biomarker untersucht, welcher Einsatz in der Diagnostik der beiden Krankheiten finden k{\"o}nnte. Es konnte jedoch weder f{\"u}r die CF noch f{\"u}r die PCD ein Biomarker aufgedeckt werden. Jedoch zeigten PCD-Zellen eine geringe Auftrennung gegen{\"u}ber nicht-PCD Zellen. Anschließend wurden 3D-Atemwegstestsysteme basierend auf Patientenzellen aufgebaut. Der Ph{\"a}notyp der CF-Modelle wurde mittels immunhistologischer F{\"a}rbung und der Analyse des gest{\"o}rten mukozili{\"a}ren Transports verifiziert. Strukturelle zili{\"a}re Defekte konnten durch die ultrastrukturelle Analyse von Zilienquerschnitten in drei donorspezifischen PCD-Modellen identifiziert werden. Dar{\"u}ber hinaus konnte die zili{\"a}re Funktionalit{\"a}t mit Hilfe der Hochgeschwindigkeitsvideomikroskopie nicht nachgewiesen werden. Zusammenfassend ist es in dieser Arbeit gelungen, eine neue Methode zur vollst{\"a}ndigen Charakterisierung von 3D-Atemwegstestsystemen zu etablieren, die die Analyse der Zilienschlagfrequenz sowie des mukozili{\"a}ren Transports erm{\"o}glicht. Es konnte erstmalig gezeigt werden, dass mit Hilfe des Tissue Engineering ein personalisiertes Krankheitsmodell f{\"u}r die PCD auf Segmenten eines dezellularisierten porzinen Jejunums generiert werden kann, das zuk{\"u}nftig ein Testsystem f{\"u}r potentielle Therapeutika darstellen kann.}, subject = {In-vitro-Kultur}, language = {de} } @phdthesis{Bleuel2021, author = {Bleuel, Gabriel}, title = {Entwicklung und Validierung eines quantitativen Verfahrens zur Beurteilung der Viabilit{\"a}t von entsprechend der GMP-Richtlinien hergestellter Knorpelimplantate f{\"u}r das Knie}, doi = {10.25972/OPUS-24248}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242481}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Due to the reversing age pyramid in Germany, more and more people are already suffering from joint cartilage damage. But not only age, but also accidents and sports injuries and being overweight can lead to irreversible cartilage defects. Although there are various treatment options, the previous methods cannot be considered a permanent cure. As part of the international research project BIO-CHIP, a promising treatment method with novel drugs was to be investigated. The patient's own cartilage cells from the nose serve as the starting material for the drug, a manufactured cartilage implant. These are isolated, multiplied and ultimately cultivated on a matrix to form a cartilage implant. In addition to toxicological and biological safety tests, an essential prerequisite for the approval of the implant is the assessment of the viability. This was previously carried out on the basis of histology from the pathology department. The aim of the present work was the development and validation of a standardized and objective viability test for the chondrocytes within the cartilage matrix. For this, the LDH was used as a marker for irreversibly damaged cells. The LDH concentration could be measured with the CyQuant LDH assay by measuring the absorption. It could be proven that LDH has the required stability and detectability in the medium. With the help of the lysis, of cultivated mini-cartilage implants, the maximum achievable LDH concentrations could be determined. A calibration curve was generated using these concentrations. This serves to assess the viability of future measured absorptions of the supernatant medium. The developed method does not require any invasive interventions on the implant and is characterized by its simple implementation, since only the protrusion has to be measured. The validation of the method certified a high level of robustness, linearity, accuracy and precision.}, subject = {Hyaliner Knorpel}, language = {de} } @phdthesis{Ickrath2021, author = {Ickrath, Katrin Marie}, title = {DNA-Stabilit{\"a}t und -Regenerationsf{\"a}higkeit von humanen Nasenschleimhautzellen in Kulturmodellen}, doi = {10.25972/OPUS-23043}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230438}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Kulturmodelle des respiratorischen Epithels werden zur Kl{\"a}rung multipler Fragestellungen, zum Beispiel der Untersuchung seltener respiratorischer Erkrankungen, wie der prim{\"a}ren Ziliendyskinesie (PCD) herangezogen. Hierbei k{\"o}nnten in Zukunft Kulturmodelle integraler Bestandteil des Diagnosealgorithmus werden. Die Isolierung und Kultivierung von Prim{\"a}rzellen des menschlichen Respirationstrakts ist dabei wesentlich komplexer als die Nutzung etablierter Zelllinien. Jedoch erm{\"o}glicht die Verwendung der Prim{\"a}rzellkulturen eine exaktere Darstellung des mehrreihigen Flimmerepithels der oberen Atemwege. Die Gewinnung der Prim{\"a}rzellen kann mechanisch mit zus{\"a}tzlichem enzymatischen Verdau, oder durch sequentielles Auswachsen der Zellen erfolgen. Angewendet werden sowohl Epithelzell-Monokulturen wie auch Cokulturen mit Fibroblasten. Die Nutzung des Air-Liquid Interface in Transwell Systemen erm{\"o}glicht in beiden Kulturen die Differenzierung zu einem Kinozilien tragenden Flimmerepithel. Hierbei ist nicht endg{\"u}ltig gekl{\"a}rt, welches Modell die in vivo Gegebenheiten besser darstellt und welche Vorteile diese haben. Außerdem liegen bislang keine Daten {\"u}ber die Zellstabilit{\"a}t und -regenerationsf{\"a}higkeit nach genotoxischer Behandlung sowie Informationen {\"u}ber chromosomale Ver{\"a}nderungen w{\"a}hrend des Zellkultivierungsprozesses {\"u}ber mehrere Passagen vor. Derartige Informationen sind allerdings f{\"u}r die Etablierung eines Kulturmodells der oberen Atemwege von essentieller Bedeutung. Das Ziel der Arbeit war die Untersuchung der DNA-Stabilit{\"a}t und -Regenerationsf{\"a}higkeit {\"u}ber drei Passagen nach genotoxischer Behandlung, vergleichend f{\"u}r beide Kulturmodelle sowie die {\"U}berpr{\"u}fung der chromosomalen Stabilit{\"a}t innerhalb des Kultivierungsprozesses und der Funktionsf{\"a}higkeit beider Zellkulturen. Zu diesem Zweck wurde eine toxikologische Versuchsreihe von jeweils 10 Spendern f{\"u}r beide Kulturmodelle, Mono- bzw. Cokultur im Air-Liquid Interface {\"u}ber drei Passagen durchgef{\"u}hrt. Hierbei wurde die Grundsch{\"a}digung, die Sch{\"a}digung nach einst{\"u}ndiger Behandlung mit 300μl des Alkylanz Methylmethansulfonat (MMS) und nach einer 24-st{\"u}ndigen Regenerationszeit mit dem Comet Assay {\"u}berpr{\"u}ft. Zur Untersuchung der chromosomalen Stabilit{\"a}t innerhalb des Kulturprozesses wurden parallel Chromosomenaberrationstests an unbehandelten Zellen {\"u}ber drei Passagen durchgef{\"u}hrt. Zur {\"U}berpr{\"u}fung der Funktionsf{\"a}higkeit der Zellen wurde ein Interleukin-8 (IL-8) ELISA f{\"u}r 10 Versuchsans{\"a}tze in der jeweils ersten Passage beider Kulturen verwendet. Hierbei wurde die IL-8-Konzentration im {\"U}berstand der unbehandelten Zellkulturen sowie nach 1μg/ml bzw. 10μg/ml Lipopolysaccarid(LPS)- Exposition untersucht. F{\"u}r die Cokultur wurden sowohl beide Zelltypen gemeinsam als auch die Epithelzellen bzw. die Fibroblasten getrennt betrachtet. In beiden Modellen wurden zus{\"a}tzlich rasterelektronenmikroskopische (REM) Aufnahmen zur Untersuchung der zili{\"a}ren Strukturen durchgef{\"u}hrt. Zur {\"U}berpr{\"u}fung der Fibroblastenkontamination in der Monokultur wurden als einmaliger Versuchsablauf Vimentin- F{\"a}rbungen {\"u}ber drei Passagen angewendet. Mit dem Comet Assay konnte in beiden Modellen eine gute Regeneration der DNA-Integrit{\"a}t nach MMS-induzierter DNA-Sch{\"a}digung {\"u}ber alle Passagen nachgewiesen werden. Als einmaliger Versuchsansatz wurde das Enzym Methylpuringlykosylase (MPG) als Teil der Basenexzisionsreparatur nachgewiesen. Es ergaben sich Unterschiede in der Kultivierbarkeit der Zellen: die Monokultur zeigte eine gute Zellkultivierbarkeit bis zur dritten Passage. Es konnte jedoch mit der Vimentinf{\"a}rbung eine Fibroblastenkontamination von Beginn an sowie eine Zunahme mit H{\"o}he der Passage nachgewiesen werden. Es handelt sich hierbei demnach nicht um eine Reinkultur respiratorischer Epithelzellen. Die Cokultur erm{\"o}glicht getrennte Epithelzell- bzw. Fibroblastenkulturen, jedoch keine gute Kultivierbarkeit bis in h{\"o}here Passage. Methodisch konnte die prinzipielle Funktionsf{\"a}higkeit des Chromosomenaberrationstests an prim{\"a}ren Nasenschleimhautzellen erstmals f{\"u}r eine große Stichprobenanzahl gezeigt werden. In den durchgef{\"u}hrten Chromosomenaberrationstests konnte eine gewisse Grundsch{\"a}digung {\"u}ber alle Passagen nachgewiesen werden, jedoch sollten weitere Tests erfolgen, um diese Tendenz zu verifizieren. Die funktionelle Integrit{\"a}t wurde mit dem IL-8 ELISA nach LPS-Exposition sowie durch den Nachweis zili{\"a}rer Strukturen im REM exemplarisch best{\"a}tigt. Die erhobenen Daten liefern zusammengefasst wichtige Informationen {\"u}ber die Zellstabilit{\"a}t und -regenerationsf{\"a}higkeit der bislang verwendeten Kulturmodelle. Insbesondere Informationen {\"u}ber chromosomale Ver{\"a}nderungen sollten in Zukunft genauer betrachtet werden. Von großem Interesse w{\"a}re außerdem die {\"U}berpr{\"u}fung derartige Zelleigenschaften in Zellkulturen von PCD erkrankten Spendern.}, subject = {Prim{\"a}relement}, language = {de} } @phdthesis{Kessie2021, author = {Kessie, David Komla}, title = {Characterisation of Bordetella pertussis virulence mechanisms using engineered human airway tissue models}, doi = {10.25972/OPUS-23571}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235717}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Pertussis is a highly contagious acute respiratory disease of humans which is mainly caused by the gram-negative obligate human pathogen Bordetella pertussis. Despite the availability and extensive use of vaccines, the disease persists and has shown periodic re-emergence resulting in an estimated 640,000 deaths worldwide in 2014. The pathogen expresses various virulence factors that enable it to modulate the host immune response, allowing it to colonise the ciliated airway mucosa. Many of these factors also directly interfere with host signal transduction systems, causing damage to the ciliated airway mucosa and increase mucous production. Of the many virulence factors of B. pertussis, only the tracheal cytotoxin (TCT) is able to recapitulate the pathophysiology of ciliated cell extrusion and blebbing in animal models and in human nasal biopsies. Furthermore, due to the lack of appropriate human models and donor materials, the role of bacterial virulence factors has been extrapolated from studies using animal models infected with either B. pertussis or with the closely related species B. bronchiseptica which naturally causes respiratory infections in these animals and produces many similar virulence factors. Thus, in the present work, in vitro airway mucosa models developed by co-culturing human airway epithelia cells and fibroblasts from the conduction zone of the respiratory tract on a decellularized porcine small intestine submucosa scaffold (SISser®) were used, since these models have a high correlation to native human conducting zone respiratory epithelia. The major aim was to use the engineered airway mucosa models to elucidate the contribution of B. pertussis TCT in the pathophysiology of the disease as well as the virulence mechanism of B. pertussis in general. TCT and lipopolysaccharide (LPS) either alone or in combination were observed to induce epithelial cell blebbing and necrosis in the in vitro airway mucosa model. Additionally, the toxins induced viscous hyper-mucous secretion and significantly disrupted barrier properties of the in vitro airway mucosa models. This work also sought to assess the invasion and intracellular survival of B. pertussis in the polarised epithelia, which has been critically discussed for many years in the literature. Infection of the models with B. pertussis showed that the bacteria can adhere to the models and invade the epithelial cells as early as 6 hours post inoculation. Invasion and intracellular survival assays indicated the bacteria could invade and persist intracellularly in the epithelial cells for up to 3 days. Due to the novelty of the in vitro airway mucosa models, this work also intended to establish a method for isolating individual cells for scRNA-seq after infection with B. pertussis. Cold dissociation with Bacillus licheniformis subtilisin A was found to be capable of dissociating the cells without inducing a strong fragmentation, a problem which occurs when collagenase and trypsin/EDTA are used. In summary, the present work showed that TCT acts possibly in conjunction with LPS to disrupt the human airway mucosa much like previously shown in the hamster tracheal ring models and thus appears to play an important role during the natural B. pertussis infection. Furthermore, we established a method for infecting and isolating infected cells from the airway mucosa models in order to further investigate the effect of B. pertussis infection on the different cell populations in the airway by single cell analytics in the future.}, subject = {Tissue engineering}, language = {en} } @phdthesis{Sivarajan2023, author = {Sivarajan, Rinu}, title = {Engineered Human Airway Mucosa for Modelling Respiratory Infections: Characterisation and Applications}, doi = {10.25972/OPUS-32241}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322414}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Respiratory infections are a significant health concern worldwide, and the airway epithelium plays a crucial role in regulating airway function and modulating inflammatory processes. However, most studies on respiratory infections have used cell lines or animal models, which may not accurately reflect native physiological conditions, especially regarding human pathogens. We generated human nasal mucosa (hNM) and tracheobronchial mucosa (hTM) models to address this issue using primary human airway epithelial cells and fibroblasts. We characterised these human airway tissue models (hAM) using high speed video microscopy, single cell RNA sequencing, immunofluorescence staining, and ultrastructural analyses that revealed their complexity and cellular heterogeneity. We demonstrated that Bordetella pertussis virulence factor adenylate cyclase toxin (CyaA) elevated the intracellular production of cyclic adenosine monophosphate (cAMP) and secretion of interleukin (IL) 6, IL 8, and human beta defensin 2 (HBD2). In addition, we compared the responses of the tissue models from two different anatomical sites (the upper and lower respiratory mucosa) and are the first to report such differential susceptibility towards CyaA using 3D primary airway cell derivedmodels. The effect of toxin treatment on the epithelial barrier integrity of the tissue models was assessed by measuring the flux of fluorescein isothiocyanate (FITC)-conjugated dextran across the models. Though we observed a cell type specific response with respect to intracellular cAMP production and IL 6, IL 8, and HBD2 secretion in the models treated with CyaA on the apical side, the epithelial membrane barrier integrity was not compromised. In addition to toxin studies, using these characterised models, we established viral infection studies for Influenza A (IAV), Respiratory Syncytial Virus subtype B (RSV), and severe acute respiratory syndrome coronavirus 2. We visualised the morphological consequences of the viral infection using ultrastructural analysis and immunofluorescence. We verified the effective infection in hAM by measuring the viral RNA using RTqPCR and detected elevated cytokine levels in response to infection using biochemical assays. In contrast to cell lines, studies on viral infection using hAM demonstrated that infected areas were localized to specific regions. This led to the formation of infection hotspots, which were more likely to occur when models derived from different donors were infected separately with all three viruses. IAV infected tissue models replicate the clinical findings of H1N1 infection, such as mucus hypersecretion, cytokine release, and infection-associated epithelial cell damage.Finally, we paved the steps towards understanding the impact of IAV infection on disease models. We generated hTM from biopsies obtained from chronic obstructive pulmonary disease (COPD) patients. As a model to study the impact of COPD on respiratory infections, considering the increase in COPD cases in the past decade and the continued predicted increase in the future. We established the IAV infection protocol to capture the early infection signatures in non-COPD and COPD conditions using scRNA-seq. We investigated the infection kinetics of IAV (H1N1-clinical isolate) in hTM and found that viruses were actively released approximately 24 hours post infection. The scRNA-seq data from the hTM derived from non-COPD and COPD patients, revealed lower levels of SCGB1A1 (club cell marker) gene expression in the COPD-control group compared to the non-COPD control group, consistent with previous clinical studies. Furthermore, we observed that IAV infection elevated SCGB1A1 gene expression especially in secretory cells of both the COPD and non COPD groups. This may imply the role of club cells as early responders during IAV infection providing epithelial repair, regeneration, and resistance to spread of infection. This is the first study to address the molecular diversity in COPD and non-COPD disease models infected with IAV investigating the early response (6 h) of specific cell types in the human lower airways towards infection using scRNA-seq. These findings highlight the potential interplay between COPD, IAV infection, and altered vulnerability to other viral infections and respiratory illnesses making the hAM applicable for addressing more specific research questions and validating potential targets, such as SCGB1A1 targeted therapy for chronic lung diseases. Our findings demonstrate the potential of the hNM and hTM for investigating respiratory infections, innate immune responses, and trained immunity in non-immune cells. Our experiments show that hAM may represent a more accurate representation of the native physiological condition and improve our understanding of the disease mechanisms. Furthermore, these models promote non-animal research as they replicate clinical findings. We can further increase their complexity by incorporating dynamic flow systems and immune cells catered to the research question.}, subject = {Atemwege}, language = {en} }