@phdthesis{Lorenzin2016, author = {Lorenzin, Francesca}, title = {Regulation of transcription by MYC - DNA binding and target genes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {MYC is a transcription factor, whose expression is elevated or deregulated in many human cancers (up to 70\%) and is often associated with aggressive and poorly differentiated tumors. Although MYC is extensively studied, discrepancies have emerged about how this transcription factor works. In primary lymphocytes, MYC promotes transcriptional amplification of virtually all genes with an open promoter, whereas in tumor cells MYC regulates specific sets of genes that have significant prognostic value. Furthermore, the set of target genes that distinguish MYC's physiological function from the pathological/oncogenic one, whether it exists or not, has not been fully understood yet. In this study, it could be shown that MYC protein levels within a cell and promoter affinity (determined by E-box presence or interaction with other proteins) of target genes toward MYC are important factors that influence MYC activity. At low levels, MYC can amplify a certain transcriptional program, which includes high affinity binding sites, whereas at high levels MYC leads to the specific up- and down regulation of genes with low affinity. Moreover, the promoter affinity characterizes different sets of target genes which can be distinguished in the physiological or oncogenic MYC signatures. MYC-mediated repression requires higher MYC levels than activation and formation of a complex with MIZ1 is necessary for inhibiting expression of a subset of MYC target genes.}, subject = {MYC}, language = {en} } @phdthesis{Jung2016, author = {Jung, Lisa Anna}, title = {Targeting MYC Function as a Strategy for Tumor Therapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146993}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {A large fraction of human tumors exhibits aberrant expression of the oncoprotein MYC. As a transcription factor regulating various cellular processes, MYC is also crucially involved in normal development. Direct targeting of MYC has been a major challenge for molecular cancer drug discovery. The proof of principle that its inhibition is nevertheless feasible came from in vivo studies using a dominant-negative allele of MYC termed OmoMYC. Systemic expression of OmoMYC triggered long-term tumor regression with mild and fully reversible side effects on normal tissues. In this study, OmoMYC's mode of action was investigated combining methods of structural biology and functional genomics to elucidate how it is able to preferentially affect oncogenic functions of MYC. The crystal structure of the OmoMYC homodimer, both in the free and the E-box-bound state, was determined, which revealed that OmoMYC forms a stable homodimer, and as such, recognizes DNA via the same base-specific DNA contacts as the MYC/MAX heterodimer. OmoMYC binds DNA with an equally high affinity as MYC/MAX complexes. RNA-sequencing showed that OmoMYC blunts both MYC-dependent transcriptional activation and repression. Genome-wide DNA-binding studies using chromatin immunoprecipitation followed by high-throughput sequencing revealed that OmoMYC competes with MYC/MAX complexes on chromatin, thereby reducing their occupancy at consensus DNA binding sites. The most prominent decrease in MYC binding was seen at low-affinity promoters, which were invaded by MYC at oncogenic levels. Strikingly, gene set enrichment analyses using OmoMYC-regulated genes enabled the identification of tumor subgroups with high MYC levels in multiple tumor entities. Together with a targeted shRNA screen, this identified novel targets for the eradication of MYC-driven tumors, such as ATAD3A, BOP1, and ADRM1. In summary, the findings suggest that OmoMYC specifically inhibits tumor cell growth by attenuating the expression of rate-limiting proteins in cellular processes that respond to elevated levels of MYC protein using a DNA-competitive mechanism. This opens up novel strategies to target oncogenic MYC functions for tumor therapy.}, subject = {Myc}, language = {en} } @phdthesis{Carstensen2018, author = {Carstensen, Anne Carola}, title = {Identification of novel N-MYC interacting proteins reveals N-MYC interaction with TFIIIC}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143658}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {N-MYC is a member of the human MYC proto-oncogene family, which comprises three transcription factors (C-, N- and L-MYC) that function in multiple biological processes. Deregulated expression of MYC proteins is linked to tumour initiation, maintenance and progression. For example, a large fraction of neuroblastoma displays high N-MYC levels due to an amplification of the N-MYC encoding gene. MYCN-amplified neuroblastoma depend on high N-MYC protein levels, which are maintained by Aurora-A kinase. Aurora-A interaction with N-MYC interferes with degradation of N-MYC via the E3 ubiquitin ligase SCFFBXW7. However, the underlying mechanism of Aurora-A-mediated stabilisation of N-MYC remains to be elucidated. To identify novel N-MYC interacting proteins, which could be involved in N-MYC stabilisation by Aurora-A, a proteomic analysis of purified N-MYC protein complexes was conducted. Since two alanine mutations in MBI of N-MYC, T58A and S62A (N-MYC mut), disable Aurora-A-mediated stabilisation of N-MYC, N-MYC protein complexes from cells expressing either N-MYC wt or mut were analysed. Proteomic analysis revealed that N-MYC interacts with two deubiquitinating enzymes, USP7 and USP11, which catalyse the removal of ubiquitin chains from target proteins, preventing recognition by the proteasome and subsequent degradation. Although N-MYC interaction with USP7 and USP11 was confirmed in subsequent immunoprecipitation experiments, neither USP7, nor USP11 was shown to be involved in the regulation of N-MYC stability. Besides USP7/11, proteomic analyses identified numerous additional N-MYC interacting proteins that were not described to interact with MYC transcription factors previously. Interestingly, many of the identified N-MYC interaction partners displayed a preference for the interaction with N-MYC wt, suggesting a MBI-dependent interaction. Among these were several proteins, which are involved in three-dimensional organisation of chromatin domains and transcriptional elongation by POL II. Not only the interaction of N-MYC with proteins functioning in elongation, such as the DSIF component SPT5 and the PAF1C components CDC73 and CTR9, was validated in immunoprecipitation experiments, but also with the POL III transcription factor TFIIIC and topoisomerases TOP2A/B. ChIP-sequencing analysis of N-MYC and TFIIIC subunit 5 (TFIIIC5) revealed a large number of joint binding sites in POL II promoters and intergenic regions, which are characterised by the presence of a specific motif that is highly similar to the CTCF motif. Additionally, N-MYC was shown to interact with the ring-shaped cohesin complex that is known to bind to CTCF motifs and to assist the insulator protein CTCF. Importantly, individual ChIP experiments demonstrated that N-MYC, TFIIIC5 and cohesin subunit RAD21 occupy joint binding sites comprising a CTCF motif. Collectively, the results indicate that N-MYC functions in two biological processes that have not been linked to MYC biology previously. Furthermore, the identification of joint binding sites of N-MYC, TFIIIC and cohesin and the confirmation of their interaction with each other suggests a novel function of MYC transcription factors in three-dimensional organisation of chromatin.}, subject = {Biologie}, language = {en} } @phdthesis{Mak2020, author = {Mak, Ka Yan}, title = {TFIIIC subunits employ different modes of action for regulating N-MYC}, doi = {10.25972/OPUS-18596}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-185969}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Amplification of N-MYC is a poor prognostic and survival marker of neuroblastoma. To broaden the scope of knowledge in N-MYC cancer biology, interactors of N-MYC should be investigated. TFIIIC complex was identified as a new protein interacting partner of N-MYC. TFIIIC is a core component of RNAPIII transcription machinery which is important for the synthesis of tRNA genes. TFIIIC recognizes and binds to B-box located internal of tRNA genes which subsequently initiate the RNAPIII transcription process. Apart from the role in RNAPIII transcription machinery, TFIIIC is an architectural protein. TFIIIC binds to thousands of sites across the genome without RNAPIII and TFIIIB. These binding loci are known as Extra TFIIIC (ETC) sites at which TFIIIC perform its role in genome organization. However, knowledge of TFIIIC is mostly restricted to studies conducted in yeasts, the exact function of TFIIIC and how it regulates N-MYC remains to be elucidated. To obtain a better overview about TFIIIC functions, two TFIIIC subunits (TFIIIC5 and TFIIIC2) which represent sub-complexes A and B were chosen for investigation. ChIP-seq experiment of RNAPIII transcription machinery was performed. It showed that both TFIIIC subunits functioned together as a complex. Next, joint binding sites of two TFIIIC subunits and N-MYC were identified. The data revealed that co-occupancies between N-MYC and TFIIIC subunits had different preference on genomic distribution. Furthermore, TFIIIC5 exhibited strong binding association with architectural proteins RAD21 and CTCF whereas TFIIIC2 was only modestly enriched with these two proteins. Both TFIIIC subunits showed equal but weak enrichment with accessory protein CAPH2. Despite the weak association with other architectural proteins, TFIIIC2 binds preferentially to repetitive elements SINE. In order to understand how TFIIIC5 affects other architectural proteins in chromatin binding, cells were depleted of TFIIIC protein upon doxycycline induction of shRNA. N-MYC binding was not affected. Yet, 50\% reduction of RAD21 binding to joint N-MYC/TFIIIC sites was noticed. CAPH2 binding was increased at some joint sites while some did not respond. Lastly, CTCF did not show changes in binding under the effect of TFIIIC5 knockdown. In summary, the data indicated TFIIIC subunits from different sub-complexes diverge in functions other than tRNA synthesis. The association of TFIIIC5 with architectural proteins and TFIIIC2 with SINE elements were suggested to be distinct mechanisms to regulate N-Myc directly or indirectly.}, language = {en} } @phdthesis{Dirks2019, author = {Dirks, Johannes}, title = {Charakterisierung der Wechselwirkung zwischen N-Myc und Aurora-A im MYCN-amplifizierten Neuroblastom}, doi = {10.25972/OPUS-18660}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186600}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Im Neuroblastom ist die Amplifikation des MYCN-Gens, eines Mitglieds der MYC-Onkogenfamilie, mit einer ung{\"u}nstigen Prognose assoziiert. Der von dem Gen kodierte Transkriptionsfaktor N-Myc ist f{\"u}r die Proliferation der MYCN-amplifizierten Neuroblastomzelllinien notwendig und seine Depletion oder Destabilisierung f{\"u}hren zum Proliferationsarrest (Otto et al., 2009). Da N-Myc auf Proteinebene durch die Interaktion mit der mitotischen Kinase Aurora-A stabilisiert wird, bewirkt deren Depletion oder die Hemmung der Interaktion der beiden Proteine mittels spezieller Aurora- A-Inhibitoren (z.B. MLN8054 und MLN8237) ebenso eine Hemmung der Proliferation - in vitro und in vivo (Brockmann et al., 2013). Bisher ist jedoch unklar, {\"u}ber welchen Mechanismus Aurora-A die Stabilisierung von N-Myc erreicht, die Kinaseaktivit{\"a}t spielt hierbei jedoch keine Rolle (Otto et al., 2009). Eine M{\"o}glichkeit stellt die Rekrutierung von Usps dar, die das angeh{\"a}ngte Ubiquitinsignal so modifizieren, dass die Erkennung und der Abbau des Proteins durch das Proteasom verringert werden. In der vorliegenden Arbeit wurde die Wirkung von Usp7 und Usp11 auf die Stabilit{\"a}t von N-Myc untersucht. F{\"u}r beide konnte in Immunpr{\"a}zipitationen die Interaktion mit N-Myc gezeigt werden. Ebenso erh{\"o}hten beide Proteasen in {\"U}berexpressionsexperimenten die vorhandene Menge an NMyc. Die Depletion von Usp7 mittels shRNAs f{\"u}hrte in IMR-32 zu einem Arrest in der G1-Phase und zur Differenzierung der Zellen. Gleichzeitig wurden stark erniedrigte mRNA- und Proteinmengen von N-Myc und Aurora-A nachgewiesen. Es konnte jedoch nicht eindeutig gezeigt werden, ob die beobachteten zellul{\"a}ren Effekte durch eine vermehrte proteasomale Degradation von N-Myc begr{\"u}ndet sind oder ob dabei die ver{\"a}nderte Regulation weiterer Zielproteine von Usp7 eine Rolle spielt. Die Depletion von Usp11 mit shRNAs bewirkte eine Abnahme der N-Myc-Mengen auf posttranslationaler Ebene. Somit stellen beide Usps vielversprechende Angriffspunkte einer gezielten Therapie in MYCN-amplifizierten Neuroblastomen dar und sollten deshalb Gegenstand weiterf{\"u}hrender Untersuchungen sein. {\"U}ber welche Proteindom{\"a}ne in N-Myc die Interaktion mit Aurora-A stattfindet ist nicht bekannt. Eine m{\"o}gliche Pseudosubstratbindungssequenz in Myc-Box I (Idee Richard Bayliss, University of Leicester) wurde in der vorliegenden Arbeit untersucht. Durch Mutation dieser Sequenz sollte die Bindung von Aurora-A unm{\"o}glich gemacht werden. Allerdings wurde die erwartete Abnahme der St{\"a}rke der Interaktion von Aurora-A und N-Myc durch die Mutation ebensowenig beobachtet wie eine verringerte Stabilit{\"a}t. Die Regulation der Phosphorylierung von N-Myc im Verlauf des Zellzyklus wurde durch die Mutation beeintr{\"a}chtigt. Wie diese Ver{\"a}nderung exakt zu begr{\"u}nden ist bedarf weiterer Experimente}, subject = {Neuroblastom}, language = {de} } @phdthesis{Walz2014, author = {Walz, Susanne}, title = {DNA-Bindung von Myc und Miz1 und transkriptionelle Regulation ihrer Zielgene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106249}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Die Deregulation des Transkriptionsfaktors Myc ist ein charakteristisches Merkmal f{\"u}r eine Vielzahl von humanen Tumoren. Durch die transkriptionelle Aktivierung von Genen, die im Zusammenhang mit Metabolismus, Translation und Proliferation stehen, wird dadurch das Tumorwachstum beg{\"u}nstigt. Myc bildet zudem mit dem Zinkfinger-Protein Miz1 einen Komplex, der hemmend auf die Transkription von Zielgenen wirkt. Bisher sind nur wenige Myc/Miz1-reprimierte Zielgene bekannt. In der vorliegenden Arbeit konnten genomweit die DNA-Bindestellen von Myc und Miz1 durch Chromatin-Immunpr{\"a}zipitationen gefolgt von Hochdurchsatzsequenzierung in einer Zervixkarzinomzelllinie bestimmt werden. Es konnte gezeigt werden, dass Myc an Promotoren aller drei RNA-Polymerasen sowie in enhancer-Regionen bindet, w{\"a}hrend Miz1 Kernpromotoren von RNA-Polymerase II- und III-transkribierten Genen besetzt. reChIP-Experimente zeigten, dass Myc und Miz1 als Komplex an Promotoren von Zielgenen binden. Zudem wurde ein Miz1-DNA-Bindemotiv identifiziert und der transaktivierende Einfluss von Miz1 auf Gene mit diesem Motiv nachgewiesen. Das {\"u}berwiegende Vorhandensein von Myc/Max-Komplexen f{\"u}hrt zu einer Transaktivierung von E-Box-haltigen Promotoren. Andererseits erfolgt die transkriptionelle Repression von Myc/Miz1-Zielgenen an Promotoren, an denen der Myc/Miz1-Komplex vorherrscht. In aktuellen Publikationen konnte gezeigt werden, dass nach mitogener Stimulation von Lymphozyten es zu einer Erh{\"o}hung der Myc-Expression kommt, wodurch Myc als ein genereller Transkriptionsaktivator fungiert, der alle Gene gleichermaßen induziert. Trotz hoher Myc-Mengen in Tumorzellen konnte die generelle Myc-vermittelte Transaktivierung nicht nachgewiesen werden. Zus{\"a}tzlich zur Myc-abh{\"a}ngigen Transaktivierung von E-Box-haltigen Genen, z. B. beteiligt an Translation und RNA-Prozessierung, und der Miz1-vermittelten transkriptionellen Aktivierung von Genen mit Miz1-Motiv (z. B. involviert in Autophagie), konnte entgegen dem Modell der generellen Genamplifikation durch Myc eine Myc/Miz1-abh{\"a}ngige Repression von Zielgenen belegt werden. Die neu gewonnenen Erkenntnisse des Bindeverhaltens des Myc/Miz1-Komplexes und der daraus resultierenden transkriptionellen Regulation von Myc/Miz1-Zielgenen erm{\"o}glichen ein besseres Verst{\"a}ndnis der Myc-Funktion in Tumorzellen und k{\"o}nnte zur Verbesserung von Tumortherapien f{\"u}hren.}, subject = {Myc}, language = {de} } @phdthesis{Kurz2014, author = {Kurz, Antje}, title = {Hemmung des PI3K-Signalweges im Ovarialkarzinom}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103872}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {St{\"o}rungen des PI3K-AKT-Signalweges treten besonders h{\"a}ufig in Endometrium und Ovarialkarzinomen auf. Ursache kann eine {\"U}beraktivierung von Wachstumsfaktor-Rezeptoren, Mutationen oder der Funktionsverlust von PTEN sein, was zu einer St{\"o}rung der Regulation und damit zu einer {\"U}beraktivierung des PI3K-AKTSignalweges f{\"u}hrt und so das Einleiten autophagischer Prozesse verhindert. Hierauf kommt es zu unkontrollierter Zellvermehrung, welche zur Tumorentstehung und Tumorprogression beitr{\"a}gt [12][23]. Die in dieser Arbeit durchgef{\"u}hrten Untersuchungen konnten zeigen, dass die Hemmung des PI3K-AKT-Signalweges durch den PI3K-Inhibitor AEZS-126 erfolgversprechende antiproliferative Effekte in in vitro-Modellen des Ovarialkarzinoms zeigte. In vitro konnte die niedermolekulare Pyridopyrazin-Verbindung AEZS-126 das Wachstum und die Progression von Zellen der parentalen Ovarialkarzinom-Zelllinie A2780, der daraus abgeleiteten cis-Platin-resistenten Tochterzelllinie Acis2780 und der aus einem Ovar-Adenokarzinom gewonnenen Zelllinie SKOV-3 signifikant hemmen. In Vitalit{\"a}tsassays ermittelte IC50-Werte lagen im mikromolaren Bereich und zeigten konzentrationsabh{\"a}ngige Antitumor-Effekte. Neben den AEZS-126-abh{\"a}ngigen Effekten wurde auch die Wirksamkeit des mTOR-Inhibitors Rapamycin auf die Zelllinien A2780 und Acis2780 untersucht. Es zeigten sich ebenfalls konzentrationsabh{\"a}ngige antiproliferative Effekte. Durch die Kombination der beiden Inhibitoren AEZS-126 und Rapamycin konnte zus{\"a}tzlich eine gesteigerte Wirksamkeit gegen die Tumorzellen erzielt werden und synergistische Effekte traten auf. ImWestern-Blot konnte nach Inkubation der Ovarialkarzinomzelllinien mit AEZS-126 durch den Einsatz von AEZS-126 eine verminderte Expression von pAKT nachgewiesen werden, welche insbesondere bei den cis-Platin-resistenten Acis2780-Zellen durch die Kombination mit Rapamycin noch verst{\"a}rkt wurde. Durch FACS-Analysen konnte gezeigt werden, dass die Ovarialkarzinomzellen durch die Behandlung mit AEZS-126 im Wachstum gehemmt werden und unabh{\"a}ngig von ihrer Zellzyklusphase in den Zelltod gef{\"u}hrt werden k{\"o}nnen. So zeigte sich in den Zellzyklusanalysen eine konzentrationsabh{\"a}ngige Verschiebung der Zellzahl von der G0/G1-Phase in die sub-G0-Phase, welche die Population der toten Zellen darstellt. Eine Spezifizierung des Zelltod-Mechanismuses erfolgte einerseits durch Annexin-V-FITC-FACS-Analysen und andererseits durch Vitalit{\"a}tsassays mit Koinkubation von AEZS-126 mit dem Caspase-Inhibitor zVAD-fmk, dem Nekroptose-Inhibitor Necrostatin-1 und dem Nekrose-Inhibitor Necrox-2. Aus diesen Untersuchungen ging klar hervor, dass AEZS-126 in den Zelllinien A2780, Acis2780 und SKOV-3 Nekroptose induziert. Rapamycin alleine zeigte sowohl apoptotische als auch nekrotische Wirkmechanismen. Die Kombination der beiden Inhibitoren AEZS-126 und Rapamycin f{\"u}hrte zu einer synergistischen Wirkverst{\"a}rkung, was sich in einem verst{\"a}rkten Absterben der Zellen schon bei geringeren eingesetzten Konzentrationen der beiden Inhibitoren zeigte. Auch hier traten haupts{\"a}chlich nekrotische Effekte auf. Von besonderem Interesse war die Interaktion von Ovarialkarzinomzellen (A2780, Acis2780), die mit AEZS-126 vorbehandelt worden waren, mit Zellen des Immunsystems. So konnte gezeigt werden, dass AEZS-126 eine verbesserte Zelllyse der Tumorzellen durch NK-Zellen erm{\"o}glicht. Zus{\"a}tzlich konnten die cis-Platin-resistenten Acis2780-Zellen durch Vorbehandlung mit entsprechende Konzentrationen des PI3KInhibitors in vergleichbarem Ausmaß wie die parentalen A2780-Zellen f{\"u}r die Lyse durch NK-Zellen zug{\"a}nglich gemacht werden. AEZS-126 scheint auf Grund dieser Ergebnisse und der schon nachgewiesenen guten antiproliferativen Wirkung von AEZS-126 auf verschiedene Zelllinien ein geeigneter Kandidat f{\"u}r weiterf{\"u}hrende in vivo-Versuche zu sein. Zus{\"a}tzlich sollte erwogen werden, neben der Inhibiton des PI3K-AKT-Signalweges eine zeitgleiche Hemmung des Ras-Raf-MEK-ERK-Signalweges in Betracht zu ziehen. Durch die Interaktionen der beiden Signalwege k{\"o}nnte es sonst bei der Inaktivierung des einen zur Aktivierung des anderen Signalweges kommen [143]. Durch eine {\"U}berexpression von pAKT durch eine PTEN-Mutation kommt es beispielsweise zur Inaktivierung von Ras und der darauf folgenden Signalkaskade, w{\"a}hrend ein erh{\"o}htes Expressionsniveau an pAKT im PI3K-AKT-Signalweg zu einer Aktivierung von mTOR und damit zur Hemmung autophagischer Prozesse f{\"u}hrt [23]. So kann die Phosphorylierung des Proteins p70S6K, dem Schl{\"u}sselmolek{\"u}l zwischen den beiden Signalwegen, welches mTOR nachgeschaltet ist, durch Rapamycin gehemmt werden und damit zu einer erh{\"o}hten Aktivierung von AKT und ERK f{\"u}hren [143]. Durch die Kombinationsbehandlung mit Inhibitoren des PI3K-AKT-Signalweges, die an verschiedenen Stellen der Signalkaskade angreifen, kann, wie in dieser Arbeit gezeigt wurde, die Antitumorwirkung verst{\"a}rkt werden. Die in dieser Arbeit untersuchten Inhibitoren AEZS-126 und Rapamycin zeigten bei den parentalen Ovarialkarzinom- zellen A2780 und den cis-Platin-resistenten Acis2780-Zellen in der Kombinationsbehandlung synergistische Effekte und f{\"u}hrten schon bei geringen Konzentrationen zu verst{\"a}rkter antiproliferativer Wirksamkeit. Aus den erzielten Ergebnissen geht hervor, dass die Kombinationsbehandlung mit AEZS-126 und Rapamycin geeignet w{\"a}re, in in vivo-Experimenten weiter untersucht zu werden.}, subject = {pi3k-signalweg}, language = {de} } @phdthesis{Jaenicke2015, author = {J{\"a}nicke, Laura Annika}, title = {Regulation of MYC Activity by the Ubiquitin-Proteasome System}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123339}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The oncogenic MYC protein is a transcriptional regulator of multiple cellular processes and is aberrantly activated in a wide range of human cancers. MYC is an unstable protein rapidly degraded by the ubiquitin-proteasome system. Ubiquitination can both positively and negatively affect MYC function, but its direct contribution to MYC-mediated transactivation remained unresolved. To investigate how ubiquitination regulates MYC activity, a non-ubiquitinatable MYC mutant was characterized, in which all lysines are replaced by arginines (K-less MYC). The absence of ubiquitin-acceptor sites in K-less MYC resulted in a more stable protein, but did not affect cellular localization, chromatin-association or the ability to interact with known MYC interaction partners. Unlike the wild type protein, K-less MYC was unable to promote proliferation in immortalized mammary epithelial cells. RNA- and ChIP-Sequencing analyses revealed that, although K-less MYC was present at MYC-regulated promoters, it was a weaker transcriptional regulator. The use of K-less MYC, a proteasomal inhibitor and reconstitution of individual lysine residues showed that proteasomal turnover of MYC is required for MYC target gene induction. ChIP-Sequencing of RNA polymerase II (RNAPII) revealed that MYC ubiquitination is dispensable for RNAPII recruitment and transcriptional initiation but is specifically required to promote transcriptional elongation. Turnover of MYC is required to stimulate histone acetylation at MYC-regulated promoters, which depends on a highly conserved region in MYC (MYC box II), thereby enabling the recruitment of BRD4 and P-TEFb and the release of elongating RNAPII from target promoters. Inhibition of MYC turnover enabled the identification of an intermediate in MYC-mediated transactivation, the association of MYC with the PAF complex, a positive elongation factor, suggesting that MYC acts as an assembly factor transferring elongation factors onto RNAPII. The interaction between MYC and the PAF complex occurs via a second highly conserved region in MYC's amino terminus, MYC box I. Collectively, the data of this work show that turnover of MYC coordinates histone acetylation with recruitment and transfer of elongation factors on RNAPII involving the cooperation of MYC box I and MYC box II.}, subject = {Myc}, language = {en} } @phdthesis{Pfann2020, author = {Pfann, Christina}, title = {Untersuchungen zu neuen therapeutischen Ans{\"a}tzen zur Beeinflussung der MYC-Expression im kolorektalen Karzinom}, doi = {10.25972/OPUS-21668}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216687}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Eine ver{\"a}nderte Expression des Transkriptionsfaktors MYC wird als entscheidender Faktor f{\"u}r Tumorentstehung und -progress im kolorektalen Karzinom gesehen. Somit ist die Hemmung dessen Expression und Funktion ein zentraler Ansatz bei der zielgerichteten Tumortherapie. Als geeignete Strategie, sowohl die Halbwertszeit als auch die Translation von MYC zu verringern, erschien eine duale PI3K-/mTOR-Hemmung durch den small molecule-Inhibitor BEZ235. Gegenteilig ist jedoch unter Behandlung mit BEZ235 eine verst{\"a}rkte MYC-Expression in verschiedenen Kolonkarzinom-Zelllinien zu beobachten. Neben verst{\"a}rkter Transkription, konnte eine verst{\"a}rkte IRES-abh{\"a}ngige Translation von MYC nach Hemmung der mTOR-/5´Cap-abh{\"a}ngigen Translation durch BEZ235, als Ursache der MYC-Induktion nachgewiesen werden. Es konnte gezeigt werden, dass die Induktion von MYC nach PI3K-/mTOR-Hemmung durch eine kompensatorische Aktivierung des MAPK-Signalwegs in Folge einer FOXO-abh{\"a}ngigen Induktion von Rezeptortyrosinkinasen, stattfindet. Eine m{\"o}gliche Strategie, diese Feedback-Mechanismen zu umgehen, ist die direkte Hemmung der Translationsinitiation. Hierf{\"u}r wurden Rocaglamid und dessen Derivat Silvestrol als small molecule-Inhibitoren der eIF4A-Helikase verwendet. Im Gegensatz zur PI3K/mTOR-Hemmung, ist durch eIF4A-Inhibition eine Reduktion der MYC-Proteinexpression in verschiedenen Kolonkarzinom-Zelllinien zu erreichen - ohne einhergehende MAPK-Aktivierung. Anhand der Ergebnisse kann postuliert werden, dass Silvestrol das Potential besitzt, sowohl die Cap-/eIF4F-abh{\"a}ngie als auch die somit eIF4A-abh{\"a}ngige IRES-vermittelte Translation von MYC zu hemmen. Weiterhin kann eine proliferationshemmende Wirkung durch Silvestrol auf Kolonkarzinom-Zellen in vitro, via Zellzyklusarrest und Induktion von Apoptose, gezeigt werden. Dies stellt die Voraussetzung f{\"u}r eine potentielle Eignung als tumorhemmender Wirkstoff in der Therapie des kolorektalen Karzinoms dar.}, language = {de} } @phdthesis{Roeschert2021, author = {R{\"o}schert, Isabelle}, title = {Aurora-A prevents transcription-replication conflicts in MYCN-amplified neuroblastoma}, doi = {10.25972/OPUS-24303}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243037}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Neuroblastoma is the most abundant, solid, extracranial tumor in early childhood and the leading cause of cancer-related childhood deaths worldwide. Patients with high-risk neuroblastoma often show MYCN-amplification and elevated levels of Aurora-A. They have a low overall survival and despite multimodal therapy options a poor therapeutic prognosis. MYCN-amplified neuroblastoma cells depend on Aurora-A functionality. Aurora-A stabilizes MYCN and prevents it from proteasomal degradation by competing with the E3 ligase SCFFBXW7. Interaction between Aurora-A and MYCN can be observed only in S phase of the cell cycle and activation of Aurora-A can be induced by MYCN in vitro. These findings suggest the existence of a profound interconnection between Aurora-A and MYCN in S phase. Nevertheless, the details remain elusive and were investigated in this study. Fractionation experiments show that Aurora-A is recruited to chromatin in S phase in a MYCN-dependent manner. Albeit being unphosphorylated on the activating T288 residue, Aurora-A kinase activity was still present in S phase and several putative, novel targets were identified by phosphoproteomic analysis. Particularly, eight phosphosites dependent on MYCN-activated Aurora-A were identified. Additionally, phosphorylation of serine 10 on histone 3 was verified as a target of this complex in S phase. ChIP-sequencing experiments reveal that Aurora-A regulates transcription elongation as well as histone H3.3 variant incorporation in S phase. 4sU-sequencing as well as immunoblotting demonstrated that Aurora-A activity impacts splicing. PLA measurements between the transcription and replication machinery revealed that Aurora-A prevents the formation of transcription-replication conflicts, which activate of kinase ATR. Aurora-A inhibitors are already used to treat neuroblastoma but display dose-limiting toxicity. To further improve Aurora-A based therapies, we investigated whether low doses of Aurora-A inhibitor combined with ATR inhibitor could increase the efficacy of the treatment albeit reducing toxicity. The study shows that the combination of both drugs leads to a reduction in cell growth as well as an increase in apoptosis in MYCN-amplified neuroblastoma cells, which is not observable in MYCN non-amplified neuroblastoma cells. This new approach was also tested by a collaboration partner in vivo resulting in a decrease in tumor burden, an increase in overall survival and a cure of 25\% of TH-MYCN mice. These findings indicate indeed a therapeutic window for targeting MYCN-amplified neuroblastoma.}, subject = {Neuroblastom}, language = {en} }