@phdthesis{Carinci2017, author = {Carinci, Flavio}, title = {Quantitative Characterization of Lung Tissue Using Proton MRI}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151189}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The focus of the work concerned the development of a series of MRI techniques that were specifically designed and optimized to obtain quantitative and spatially resolved information about characteristic parameters of the lung. Three image acquisition techniques were developed. Each of them allows to quantify a different parameter of relevant diagnostic interest for the lung, as further described below: 1) The blood volume fraction, which represents the amount of lung water in the intravascular compartment expressed as a fraction of the total lung water. This parameter is related to lung perfusion. 2) The magnetization relaxation time T\(_2\) und T� *\(_2\) , which represents the component of T\(_2\) associated with the diffusion of water molecules through the internal magnetic field gradients of the lung. Because the amplitude of these internal gradients is related to the alveolar size, T\(_2\) und T� *\(_2\) can be used to obtain information about the microstructure of the lung. 3) The broadening of the NMR spectral line of the lung. This parameter depends on lung inflation and on the concentration of oxygen in the alveoli. For this reason, the spectral line broadening can be regarded as a fingerprint for lung inflation; furthermore, in combination with oxygen enhancement, it provides a measure for lung ventilation.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{PonceGarcia2018, author = {Ponce Garcia, Irene Paola}, title = {Strategies for optimizing dynamic MRI}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162622}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In Magnetic Resonance Imaging (MRI), acquisition of dynamic data may be highly complex due to rapid changes occurred in the object to be imaged. For clinical diagnostic, dynamic MR images require both high spatial and temporal resolution. The speed in the acquisition is a crucial factor to capture optimally dynamics of the objects to obtain accurate diagnosis. In the 90's, partially parallel MRI (pMRI) has been introduced to shorten scan times reducing the amount of acquired data. These approaches use multi-receiver coil arrays to acquire independently and simultaneously the data. Reduction in the amount of acquired data results in images with aliasing artifacts. Dedicated methods as such Sensitivity Encoding (SENSE) and Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) were the basis of a series of algorithms in pMRI. Nevertheless, pMRI methods require extra spatial or temporal information in order to optimally reconstruct the data. This information is typically obtained by an extra scan or embedded in the accelerated acquisition applying a variable density acquisition scheme. In this work, we were able to reduce or totally eliminate the acquisition of the training data for kt-SENSE and kt-PCA algorithms obtaining accurate reconstructions with high temporal fidelity. For dynamic data acquired in an interleaved fashion, the temporal average of accelerated data can generate an artifact-free image used to estimate the coil sensitivity maps avoiding the need of extra acquisitions. However, this temporal average contains errors from aliased components, which may lead to signal nulls along the spectra of reconstructions when methods like kt-SENSE are applied. The use of a GRAPPA filter applied to the temporal average reduces these errors and subsequently may reduce the null components in the reconstructed data. In this thesis the effect of using temporal averages from radial data was investigated. Non-periodic artifacts performed by undersampling radial data allow a more accurate estimation of the true temporal average and thereby avoiding undesirable temporal filtering in the reconstructed images. kt-SENSE exploits not only spatial coil sensitivity variations but also makes use of spatio-temporal correlations in order to separate the aliased signals. Spatio-temporal correlations in kt-SENSE are learnt using a training data set, which consists of several central k-space lines acquired in a separate scan. The scan of these extra lines results in longer acquisition times even for low resolution images. It was demonstrate that limited spatial resolution of training data set may lead to temporal filtering effects (or temporal blurring) in the reconstructed data. In this thesis, the auto-calibration for kt-SENSE was proposed and its feasibility was tested in order to completely eliminate the acquisition of training data. The application of a prior TSENSE reconstruction produces the training data set for the kt-SENSE algorithm. These training data have full spatial resolution. Furthermore, it was demonstrated that the proposed auto-calibrating method reduces significantly temporal filtering in the reconstructed images compared to conventional kt-SENSE reconstructions employing low resolution training images. However, the performance of auto-calibrating kt-SENSE is affected by the Signal-to-Noise Ratio (SNR) of the first pass reconstructions that propagates to the final reconstructions. Another dedicated method used in dynamic MRI applications is kt-PCA, that was first proposed for the reconstruction of MR cardiac data. In this thesis, kt-PCA was employed for the generation of spatially resolved M0, T1 and T2 maps from a single accelerated IRTrueFISP or IR-Snapshot FLASH measurement. In contrast to cardiac dynamic data, MR relaxometry experiments exhibit signal at all temporal frequencies, which makes their reconstruction more challenging. However, since relaxometry measurements can be represented by only few parameters, the use of few principal components (PC) in the kt-PCA algorithm can significantly simplify the reconstruction. Furthermore, it was found that due to high redundancy in relaxometry data, PCA can efficiently extract the required information from just a single line of training data. It has been demonstrated in this thesis that auto-calibrating kt-SENSE is able to obtain high temporal fidelity dynamic cardiac reconstructions from moderate accelerated data avoiding the extra acquisition of training data. Additionally, kt-PCA has been proved to be a suitable method for the reconstruction of highly accelerated MR relaxometry data. Furthermore, a single central training line is necessary to obtain accurate reconstructions. Both reconstruction methods are promising for the optimization of training data acquisition and seem to be feasible for several clinical applications.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Richter2014, author = {Richter, Dominik}, title = {Compressed Sensing zur Filterung und Reduktion der Rekonstruktionszeit in der Positronen-Emissions-Tomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106569}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Durch die Verwendung radioaktiver Substanzen mit ihrer sch{\"a}digenden Wirkung auf den menschlichen K{\"o}rper besteht in der Positronen-Emissions-Tomographie (PET) ein fortw{\"a}hrendes Interesse an der Reduktion der applizierten Dosis bei gleichbleibender Qualit{\"a}t der Ergebnisse. Zus{\"a}tzlich ist im Hinblick auf die Wirtschaftlichkeit der Systeme eine Reduktion sowohl der Akquisitions- als auch der Rekonstruktionszeit erstrebenswert. In dieser Arbeit werden zwei M{\"o}glichkeiten vorgestellt, diese Ziele durch den Einsatz von Compressed Sensing (CS) zu erreichen. Neben der Entwicklung neuartiger Rekonstruktionsalgorithmen k{\"o}nnen Filtertechniken eingesetzt werden, um eine qualitative Verbesserung rekonstruierter Bilder zu erzielen. Der Vorteil eines Filters besteht unter anderem darin, dass diese retrospektiv angewandt werden k{\"o}nnen. Es ist folglich m{\"o}glich, die Qualit{\"a}t eines Bildes zu {\"u}berpr{\"u}fen und lediglich im Bedarfsfall einen Filter einzusetzen. Die Technik des CS war in den letzten Jahren Gegenstand zahlreicher Forschungsarbeiten im Bereich der Bildgebung, insbesondere in der Magnetresonanztomographie und der Computertomographie (CT). Mit CS k{\"o}nnten bildgebende Verfahren wie die CT oder die PET mit weniger Messungen durchgef{\"u}hrt werden, wodurch sich die Messzeit und die Strahlenexposition reduziert. In der molekularen Bildgebung mit der PET ist CS jedoch weitgehend unbekannt. Im ersten Teil dieser Dissertation wird eine Methode vorgestellt, welche CS als Filtertechnik in der PET einsetzt. Den Ausgangspunkt stellt ein vollst{\"a}ndiger, analytisch rekonstruierter Datensatz dar. Dieser wird mit einer Reihe unterschiedlicher Abtastmuster retrospektiv unterabgetastet und jeweils erneut, unter Verwendung von CS rekonstruiert. Im rauschfreien Fall w{\"u}rde CS stets das Originalbild liefern. Das {\"u}berlagerte Rauschen f{\"u}hrt jedoch zu Artefakten und einer Verschlechterung des Ergebnisses. CS kann nun einerseits das Rauschen vermindern. Andererseits ist es durch die Mittelung mehrerer unterschiedlicher Rekonstruktionen m{\"o}glich, die Artefakte zu reduzieren. Auf diesem Weg kann die Bildqualit{\"a}t signifikant verbessert werden. Es konnte gezeigt werden, dass die Technik sowohl f{\"u}r 2D, als auch f{\"u}r 3D Datens{\"a}tze verwendet werden kann. Die gr{\"o}ßten qualitativen Verbesserungen werden erzielt, wenn der Datensatz lediglich aus wenigen Ereignissen besteht. In diesem Fall ist die Bildqualit{\"a}t der analytischen Rekonstruktionen extrem schlecht, die Verbesserung durch die Filtertechnik mit CS und die damit verbundene Erh{\"o}hung des Signal-Rausch-Verh{\"a}ltnisses jedoch am gr{\"o}ßten. Bei diesen Datens{\"a}tzen k{\"o}nnen die Ergebnisse iterativer Rekonstruktionen {\"u}bertroffen werden. In der Praxis w{\"a}re damit ein Einsatz speziell bei dynamischen oder getriggerten Aufnahmen denkbar. In beiden F{\"a}llen basieren die Rekonstruktionen nicht selten auf wenigen Ereignissen. Die resultierenden Bilder sind h{\"a}ufig von schlechter Qualit{\"a}t, womit eine Verbesserung durch Filterung sinnvoll ist. Der zweite Teil dieser Arbeit besch{\"a}ftigt sich mit der Rohdaten-basierten Triggerung am Kleintier-PET sowie mit dem Einsatz von CS zur Reduktion der Rekonstruktionszeit. Fr{\"u}here Ver{\"o}ffentlichungen zeigten bereits die Anwendbarkeit Rohdaten-basierter Triggermethoden bei humanen Datens{\"a}tzen. Im Hinblick auf eine pr{\"a}klinische Anwendung, speziell bei Datens{\"a}tzen mit dem Fokus auf M{\"a}useherzen, existieren jedoch nur wenige Studien. In dieser Arbeit wird gezeigt, dass die segmentierte Methode des Massenschwerpunkts (COMseg) eine Technik darstellt, welche die kardiale Triggerung sowohl bei Datens{\"a}tzen von Ratten, als auch von M{\"a}usen erlaubt. Ein nicht zu untersch{\"a}tzender Nachteil der COMseg besteht darin, dass vor deren Anwendung die List-Mode Datei in kleine Zeitframes unterteilt und in Sinogramme sortiert werden muss. Auf jedes Sinogramm wird im Anschluss ein Rebinning Algorithmus angewandt. Dies stellt einen enormen Zeitaufwand dar, wodurch sich eine Anwendung bei gr{\"o}ßeren Studien in der Praxis als schwierig erweist. Ziel der Triggermethoden ist die Gewinnung eines Triggersignals, durch welches beispielsweise der Herzschlag in mehrere Phasen aufgeteilt werden kann. Das Triggersignal hat f{\"u}r gew{\"o}hnlich eine d{\"u}nnbesetzte Repr{\"a}sentation im Frequenzraum. Dieses Vorwissen erm{\"o}glicht den Einsatz von CS. Anstelle des vollst{\"a}ndigen Datensatzes wurde lediglich ein Teil der Daten in kleine Zeitframes sortiert und mit der COMseg ausgewertet. Aus diesem unterabgetasteten Datensatz wird mit Hilfe von CS das vollst{\"a}ndige Triggersignal rekonstruiert. Die St{\"a}rke der Unterabtastung entspricht in etwa dem Faktor der Reduktion der Rekonstruktionszeit. Auf diesem Weg ist es m{\"o}glich, eine signifikante Beschleunigung zu erzielen. Die Anwendung dieser Technik ist jedoch nicht auf die COMseg beschr{\"a}nkt. Prinzipiell kann das Verfahren bei allen Methoden der Rohdaten-basierten Triggerung angewandt werden, welche es erlauben, die Abtastpunkte des Signals separat zu berechnen. Damit werden Algorithmen interessant, deren Einsatz aufgrund aufw{\"a}ndiger Berechnungen bislang in der Praxis nicht sinnvoll war. Zusammenfassend legen die in dieser Arbeit vorgestellten Daten nahe, dass CS ein neuartiges Werkzeug in der PET darstellen k{\"o}nnte, mit welchem eine Filterung von Bildern sowie eine Reduktion der Rekonstruktionszeit m{\"o}glich ist.}, subject = {Komprimierte Abtastung}, language = {de} } @phdthesis{Gensler2014, author = {Gensler, Daniel}, title = {Entwicklung klinischer Methoden zur Quantifizierung der longitudinalen Relaxationszeit T1 in der MRT}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126582}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Die Aufgabenstellung in der vorliegenden Arbeit bestand in der Entwicklung und Umsetzung neuer T1-Quantifizierungsverfahren, die zuverl{\"a}ssig in der klinischen Routine angewendet werden k{\"o}nnen. Die ausgearbeiteten Techniken umfassten dabei zwei Hauptarbeitsschwerpunkte. Zum einen die Implementierung einer neuartigen dynamischen T1- Thermometriemethode f{\"u}r MR-Sicherheitsuntersuchungen medizinischer Ger{\"a}te und Implantate, wie beispielsweise Kathetern oder Herzschrittmachern, und zum anderen die Entwicklung eines robusten kardialen T1-Mapping-Verfahrens, welches auch bei st{\"a}rker erkrankten Patienten mit eingeschr{\"a}nkter Atemanhaltef{\"a}higkeit stabil anwendbar ist. Mit der entwickelten kombinierten Heiz- und T1-Thermometriesequenz konnte ein neues Verfahren pr{\"a}sentiert werden, mit dem ein zu untersuchendes medizinisches Ger{\"a}t oder Implantat kontrolliert erw{\"a}rmt und die Temperatur{\"a}nderung zeitgleich pr{\"a}zise erfasst werden kann. Dabei war es m{\"o}glich, die HF-induzierte Erw{\"a}rmung der metallischen Beispielimplantate sowohl in homogenem Gel als auch in inhomogenem Muskelgewebe exakt und ortsaufgel{\"o}st zu quantifizieren. Die MR-technisch errechneten Temperaturwerte zeigten dabei eine sehr gute {\"U}bereinstimmung zu den ermittelten Referenzwerten mit einer Temperaturabweichung von meist weniger als 1K. Die Ergebnisse zeigen, dass es mit der pr{\"a}sentierten Methode m{\"o}glich ist, die r{\"a}umliche Temperaturverteilung in einem großen Bereich mit einer einzigen Messung quantitativ zu erfassen. Dies ist neben der Nichtinvasivit{\"a}t der Methode der gr{\"o}ßte Vorteil im Vergleich zu der Einzelpunktmessung mittels eines bei solchen Messungen sonst zumeist verwendeten fluoroptischen Temperatursensors. Bei gestreckten Implantaten kann demnach idealerweise das gesamte Objekt w{\"a}hrend einer einzigen Messung auf potentielle Temperatur{\"a}nderungen oder sogenannte Hotspots untersucht werden, was bei der Verwendung von Temperatursensoren lediglich mit großem Zeitaufwand m{\"o}glich ist, da hier die Temperatur jeweils nur punktuell erfasst werden kann. Im Vergleich zu anderen publizierten MR-Thermometrieverfahren, welche auf der PRF-Technik basieren, bietet die hier pr{\"a}sentierte Methode vor allem den Vorteil, dass hiermit auch eine pr{\"a}zise Temperaturquantifizierung in inhomogenem biologischem Gewebe mit starken Suszeptibilit{\"a}tsunterschieden wie beispielsweise zwischen Herz und Lunge m{\"o}glich ist. Somit stellt die Methode ein leistungsstarkes Hilfsmittel f{\"u}r nicht-invasive MR-Sicherheitsuntersuchungen nicht nur an medizinischen Implantaten sondern beispielsweise auch f{\"u}r MR-gef{\"u}hrte Interventionen dar. Mit der entwickelten kardialen T1-Mapping-Sequenz TRASSI wurde eine leistungsstarke Methode zur exakten und hoch aufgel{\"o}sten Generierung kardialer T1-Karten in {\"a}ußerst kurzer Messzeit (< 6 s) vorgestellt. Durch ihre außerordentliche Robustheit sowohl gegen{\"u}ber Bildartefakten als auch Herzrhythmusst{\"o}rungen w{\"a}hrend der Datenakquisition bietet die Sequenz deutlich verbesserte M{\"o}glichkeiten f{\"u}r die Diagnostik verschiedener Herzerkrankungen. Aufgrund der sehr kurzen Akquisitionszeit wird insbesondere auch die Generierung von T1-Karten bei schwer erkrankten Patienten mit kurzer Atemanhaltef{\"a}higkeit erm{\"o}glicht. Im Vergleich zu derzeit {\"u}blicherweise verwendeten alternativen Verfahren wie etwa MOLLI, konnten die T1-Karten mit vergleichbarer Bildaufl{\"o}sung in bis zu 70\% k{\"u}rzerer Messzeit akquiriert werden. Die Ergebnisse der durchgef{\"u}hrten Phantommessungen belegen außerdem, dass die Methode exaktere T1-Werte liefert als dies beispielsweise mit MOLLI m{\"o}glich ist. Des Weiteren weist TRASSI im Gegensatz zu MOLLI keine T1-Abh{\"a}ngigkeit von der Herzrate auf, wodurch die vorgestellte Technik besonders f{\"u}r diagnostische Studien geeignet ist, welche eine sehr hohe Genauigkeit und Reproduzierbarkeit im Zeitverlauf oder zwischen verschiedenen Patienten erfordern. Mit TRASSI konnten die Strukturen des Herzens bei den durchgef{\"u}hrten in vivo Untersuchungen durchweg mit scharfen Kanten und ohne Bewegungsartefakte dargestellt werden. Dabei wurde unabh{\"a}ngig von der Herzrate und der Bildebene stets eine sehr gute Bildqualit{\"a}t erreicht. Der Hauptgrund hierf{\"u}r ist vermutlich in der sehr kurzen Akquisitionszeit und der radialen Datenaufnahme zu sehen. Beide Verfahren reduzieren Artefakte aufgrund von Bewegungen wie beispielsweise Herzschlag und Atmung erheblich. Die aufgenommenen T1-Karten zeigen bei allen Probanden und Patienten eine gute diagnostische Bildqualit{\"a}t. So konnten auch die infarzierten Bereiche bei Patienten mit Myokardinfarkt deutlich visualisiert und quantitativ erfasst werden. Nochmals hervorzuheben ist die beobachtete besondere Robustheit der TRASSI Methode gegen{\"u}ber Artefakten beziehungsweise T1-Quantifizierungsfehlern bei Patienten mit Herzrhythmusst{\"o}rungen. Auch bei untersuchten Patienten mit starken Arrhythmien w{\"a}hrend der Bildgebung konnte eine sehr gute Bildqualit{\"a}t und Genauigkeit der errechneten T1-Karten erreicht werden. Die Ergebnisse der Extrazellularvolumen-Quantifizierung zeigen zudem, dass mittels TRASSI auch weiterf{\"u}hrende diagnostische Methoden entwickelt und angewandt werden k{\"o}nnen. Dabei konnten durch R{\"u}ckrechnung hochaufgel{\"o}ster und pr{\"a}ziser Extrazellularvolumen-Karten beispielsweise Infarktbereiche deutlich visualisiert und signifikante Unterschiede zwischen akut und chronisch infarziertem Herzmuskelgewebe nicht nur identifiziert sondern auch quantitativ charakterisiert werden. Somit ist diese Methode insbesondere f{\"u}r eine potentielle Differenzierung zwischen reversibel und irreversibel gesch{\"a}digten Herzarealen interessant. F{\"u}r die Zukunft ist es w{\"u}nschenswert, weitergehende Untersuchungen an verschiedenen spezifischen Herzerkrankungen vorzunehmen. Zu solchen Erkrankungen geh{\"o}ren beispielsweise die Herzmuskelentz{\"u}ndung (Myokarditis) oder Herzklappenerkrankungen. Diese Krankheitsbilder sind hinsichtlich einer m{\"o}glichen transienten oder permanenten Sch{\"a}digung des Herzmuskels mit den bisher verf{\"u}gbaren Verfahren nur sehr schwer oder lediglich im weit fortgeschrittenen Stadium exakt diagnostizierbar. Die vorgestellte TRASSI-Sequenz bietet hier eine gute M{\"o}glichkeit f{\"u}r eine fr{\"u}hzeitige Erkennung der Auswirkungen solcher Erkrankungen auf den Herzmuskel. Weiterf{\"u}hrende Untersuchungen der TRASSI-Methode zu deren Robustheit gegen{\"u}ber spezifischen Herzrhythmusst{\"o}rungen und ein umfassender Vergleich zum bereits etablierten MOLLI-Verfahren k{\"o}nnten dar{\"u}ber hinaus die Alltagstauglichkeit von TRASSI weiter spezifizieren und den Weg in die klinische Routine ebnen. Die bereits dargelegten positiven Ergebnisse des Verfahrens lassen vermuten, dass TRASSI potentiell ein sehr gutes nicht-invasives Diagnoseverfahren f{\"u}r verschiedenste Herzerkrankungen darstellt. Im Vergleich zu bereits bestehenden Techniken liegen die Vorteile der TRASSI-Methode nach den bisher vorliegenden Ergebnissen zusammenfassend vor allem in der Generierung diagnostisch verl{\"a}sslicherer T1-Werte bei gleichzeitig verringerter Messzeit, wodurch das Verfahren insbesondere auch f{\"u}r schwer erkrankte Patienten mit starken Arrhythmien und eingeschr{\"a}nkter Atemanhaltef{\"a}higkeit geeignet ist. TRASSI ist dar{\"u}ber hinaus aber auch f{\"u}r MR-Untersuchungen im Hochfeld besser geeignet als entsprechende bSSFP-basierende Verfahren wie beispielsweise MOLLI. Dies liegt vor allem daran, dass TRASSI eine Gradientenecho-basierte Bildgebungsmethode ist und somit eine niedrige spezifische Absorptionsrate aufweist. Zudem sind Gradientenecho-Sequenzen allgemein weniger empfindlich gegen{\"u}ber Suszeptibilit{\"a}tsartefakten, so dass beispielsweise metallische Implantate bei Patienten sich weniger st{\"o}rend auf die erreichbare Bildqualit{\"a}t auswirken. In der vorliegenden Arbeit wurde sowohl eine exakte T1-Thermometriesequenz als auch eine sehr schnelle und pr{\"a}zise kardiale T1-Mapping-Methode vorgestellt. F{\"u}r zuk{\"u}nftige Arbeiten ist es w{\"u}nschenswert, beide Sequenzen bzw. deren Mechanismen zu vereinen und eine Temperaturquantifizierung am Herzen praktisch durchzuf{\"u}hren. Dies w{\"a}re zum einen f{\"u}r MR-Sicherheitsuntersuchungen von Schrittmacherelektroden in vivo vorteilhaft, und zum anderen w{\"a}re hiermit eine direkte Erfolgskontrolle w{\"a}hrend einer Katheterablation realisierbar. Eine solche Ablationsbehandlung k{\"o}nnte durch eine genaue Lokalisierung des behandelten - also erhitzten - Herzareals sehr viel pr{\"a}ziser durchgef{\"u}hrt werden, wodurch auch bei komplexeren Ablationen die Behandlungserfolge erh{\"o}ht werden k{\"o}nnten. In einer ersten Ver{\"o}ffentlichung hierzu konnte bereits gezeigt werden, dass eine MR-gest{\"u}tzte Katheterablation die Heilungs- und Erfolgsaussichten des Eingriffes steigern kann. Dieses Verfahren k{\"o}nnte potentiell mit Hilfe einer Echtzeittemperatur{\"u}berwachung basierend auf dem TRASSI-Verfahren noch weiter verbessert werden. In Zusammenfassung wurden in dieser Arbeit zwei neue T1-Quantifizierungsverfahren entwickelt und vorgestellt, die voraussichtlich zuverl{\"a}ssig im klinischen Alltag angewendet werden k{\"o}nnen und neue nicht-invasive diagnostische M{\"o}glichkeiten er{\"o}ffnen. Die implementierten Sequenzen erm{\"o}glichen dabei zum einen eine exakte Temperaturquantifizierung und zum anderen ein pr{\"a}zises kardiales T1-Mapping. Beide Verfahren versprechen dabei robuste und reproduzierbare Ergebnisse und k{\"o}nnten in Zukunft den Weg in die klinische Routine finden und so bei einer fundierten Diagnostik verschiedenster Herzerkrankungen behilflich sein.}, subject = {Kernspintomographie}, language = {de} } @phdthesis{Bachschmidt2015, author = {Bachschmidt, Theresa}, title = {Magnetic Resonance Imaging in Proximity to Metal Implants at 3 Tesla}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135690}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Magnetic resonance imaging is derogated by the presence of metal implants and image quality is impaired. Artifacts are categorized according to their sources, the differences in susceptibility between metal and tissue and the modulation of the magnetic radiofrequency (RF) transmit field. Generally, these artifacts are intensified at higher field strength. The purpose of this work is to analyze the efficiency of current methods used for metal artifact reduction at 3T and to investigate improvements. The impact of high-bandwidth RF pulses on susceptibility-induced artifacts is tested. In addition, the benefit of a two-channel transmit system with respect to shading close to total hip replacements and other elongated metal structures in parallel to the magnetic field is analyzed. Local transmit/receive coils feature a higher peak B1 amplitude than conventional body coils and thus enable high-bandwidth RF pulses. Susceptibility-induced through-plane distortion relates reciprocally to the RF bandwidth, which is evaluated in vitro for a total knee arthroplasty. Clinically relevant sequences (TSE and SEMAC) with conventional and high RF pulse bandwidths and different contrasts are tested on eight patients with different types of knee implants. Distortion is rated by two radiologists. An additional analysis assesses the capability of a local spine transmit coil. Furthermore, B1 effects close to elongated metal structures are described by an analytical model comprising a water cylinder and a metal rod, which is verified numerically and experimentally. The dependence of the optimal polarization of the transmit B1 field, creating minimum shading, on the position of the metal is analyzed. In addition, the optimal polarization is determined for two patients; its benefit compared to circular polarization is assessed. Phantom experiments confirm the relation of the RF bandwidth and the through-plane distortion, which can be reduced by up to 79\% by exploitation of a commercial local transmit/receive knee coil at 3T. On average, artifacts are rated "hardly visible" for patients with joint arthroplasties, when high-bandwidth RF pulses and SEMAC are used, and for patients with titanium fixtures, when high-bandwidth RF pulses are used in combination with TSE. The benefits of the local spine transmit coil are less compared to the knee coil, but enable a bandwidth 3.9 times as high as the body coil. The modulation of B1 due to metal is approximated well by the model presented and the position of the metal has strong influence on this effect. The optimal polarization can mitigate shading substantially. In conclusion, through-plane distortion and related artifacts can be reduced significantly by the application of high-bandwidth RF pulses by local transmit coils at 3T. Parallel transmission offers an option to substantially reduce shading close to long metal structures aligned with the magnetic field. Effective techniques dedicated for metal implant imaging at 3T are introduced in this work.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Staeb2013, author = {St{\"a}b, Daniel}, title = {Erweiterung der Anatomischen Abdeckung in der MRT des Herzens}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93405}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die MRT hat sich in den letzten Jahren zu einem wichtigen Instrument in der Diagnostik von Herzerkrankungen entwickelt. Da sie ohne ionisierende Strahlung auskommt, stellt sie vor allem auch eine nichtinvasive Alternative zu den nuklearmedizinischen Verfahren und der Computertomographie dar. Im speziellen erm{\"o}glicht die kardiale MRT die ortsaufgel{\"o}ste Darstellung des Herzens mit einer Vielzahl an Kontrasten. Neben der Morphologie k{\"o}nnen damit auch zahlreiche Funktionsparameter des Herzens, wie die Ejektionsfraktion des linken Ventrikels, oder die Viabilit{\"a}t und Perfusion des Herzmuskels untersucht werden. Atmung und Herzbewegung stellen allerdings große Anforderungen an die MR-Herzbildgebung. Die beiden St{\"o}rfaktoren limitieren den Zeitraum, der zur Bildakquisition zur Verf{\"u}gung steht und erzeugen so Konflikte zwischen r{\"a}umlicher Aufl{\"o}sung, anatomischer Abdeckung, zeitlicher Aufl{\"o}sung und dem Signal-zu-Rausch-Verh{\"a}ltnis (SNR). Ferner ergibt sich f{\"u}r die meisten eingesetzten Verfahren eine erh{\"o}hte Komplexit{\"a}t. Die Bildgebungssequenzen m{\"u}ssen mittels EKG an den Herzrhythmus des Patienten angepasst und die Bildakquisitionen im Atemanhaltezustand durchgef{\"u}hrt werden. In manchen F{\"a}llen ist sogar eine Aufspaltung der Messung in mehrere Einzelakquisitionen n{\"o}tig, was wiederum die Dauer der Untersuchungen verl{\"a}ngert und den Patientenkomfort reduziert. Mit technischen Entwicklungen im Bereich der Gradienten und der Empfangsspulen sowie durch den Einsatz dedizierter Bildgebungstechniken konnten in den letzten Jahren signifikante Verbesserungen erzielt und der Stellenwert der MR-Bildgebung in der Herzdiagnostik erh{\"o}ht werden. Von großer Bedeutung sind dabei auch Beschleunigungsverfahren wie die Parallele Bildgebung, die eine deutliche Verk{\"u}rzung der Datenakquisition erm{\"o}glichen und so den Einfluss von Atmung und Herzbewegung wirksam reduzieren. Die Beschleunigung wird dabei grunds{\"a}tzlich durch eine unvollst{\"a}ndige Datenakquisition bzw. Unterabtastung des k-Raums erzielt, welche im Zuge der Bildrekonstruktion durch Ausnutzen zus{\"a}tzlich vorhandener Informationen kompensiert wird. Bei der Parallelen Bildgebung ersetzen beispielsweise mehrere um das Objekt herum angeordnete Empfangsspulen die zum Teil unvollst{\"a}ndig durchgef{\"u}hrte Gradientenbasierte Ortskodierung. Die Beschleunigungsverfahren sind allerdings wegen der verringerten Datenaufnahme auch immer mit einer Reduktion des SNR verbunden. Eine alternative Strategie zur Beschleunigung der 2D-Bildgebung mit mehreren Schichten stellt die simultane Multischichtbildgebung mit Multi-Slice Controlled Aliasing In Parallel Imaging Results In Higher Acceleration(MS-CAIPIRINHA) dar. Anders als bei der konventionellen Parallelen Bildgebung wird die Beschleunigung hier nicht durch eine reduzierte Datenaufnahme erzielt. Vielmehr werden Multiband-RF-Pulse eingesetzt, um die Spins in mehreren Schichten gleichzeitig anzuregen. Durch Anwenden schichtspezifischer RF-Phasenzyklen wird die Phase der Spins individuell in jeder Schicht moduliert, wodurch sich eine gegenseitige Verschiebung der Schichten im FOV ergibt. Die Verschiebung erleichtert die Separation der gleichzeitig angeregten Schichten mit Verfahren der Parallelen Bildgebung. Sie erlaubt außerdem eine Minimierung der bei der Rekonstruktion entstehenden Rauschverst{\"a}rkung. Die Multischichtbildgebungstechnik zeichnet sich gegen{\"u}ber der konventionellen Parallelen Bildgebung durch ein wesentlich h{\"o}heres SNR und durch eine Bildrekonstruktion mit geringeren Rekonstruktionsfehlern aus. In dieser Dissertation wurden verschiedene Strategien zur Anwendung von MS-CAIPIRINHA in der MRT des Herzens pr{\"a}sentiert sowie ihre Vorund Nachteile gegen{\"u}bergestellt. Im Allgemeinen erm{\"o}glichen die vorgestellten Konzepte eine hinsichtlich des SNR sehr effiziente Erweiterung der anatomischen Abdeckung. Unter anderem wurde eine M{\"o}glichkeit vorgestellt, mit der es uneingeschr{\"a}nkt gelingt, MS-CAIPIRINHA in der Bildgebung mit bSSFP-Sequenzen anzuwenden. Die Steady-State-Sequenz wird aufgrund ihres hohen intrinsischen SNR und vorteilhaften Kontrastverhaltens sehr h{\"a}ufig in der MRT des Herzens bei 1,5T eingesetzt. Wie auch die simultane Multischichtbildgebung erfordert sie zum Halten der Magnetisierung im station{\"a}ren Zustand die Applikation eines dedizierten RF-Phasenzyklus w{\"a}hrend der Datenakquisition. Der Phasenzyklus der Sequenz ist allerdings nicht ohne Weiteres mit den Phasenzyklen der Multischichttechnik kompatibel, so dass eine Verkn{\"u}pfung der beiden Verfahren bisher nur durch Aufspalten der Bildakquisition in mehrere Teilmessungen gelang. Mit dem in Kapitel 5 vorgestellten Konzept ist diese zumeist impraktikable Segmentierung nicht mehr erforderlich. Generalisierte RF-Phasenzyklen, die sowohl die Anforderungen der Sequenz, als auch die der Multischichtbildgebung erf{\"u}llen, erm{\"o}glichen eine uneingeschr{\"a}nkte Anwendung der Multischichttechnik in der Bildgebung mit bSSFP oder vergleichbaren Steady-State-Sequenzen. Die Multischichttechnik ist damit auch bei Untersuchungen in Echtzeit oder mit Magnetisierungspr{\"a}paration - Verfahren, die unter anderem in der MR-Herzdiagnostik Verwendung finden - einsetzbar. Anhand von Echtzeit-, Cine- und First-Pass-Herzperfusionsuntersuchungen am menschlichen Herzen konnte die Anwendbarkeit des Konzepts erfolgreich demonstriert werden. Durch die Akquisition zweier Schichten in der Zeit, die normalerweise zur Bildgebung einer einzelnen Schicht ben{\"o}tigt wird, gelang eine Verdoppelung der anatomischen Abdeckung bei unver{\"a}ndert hoher Bildqualit{\"a}t. Bei den Herzperfusionsuntersuchungen konnten je RR-Intervall sechs Schichten akquiriert werden. Bei Echtzeit- und Cine-Messungen erlaubt das Konzept eine signifikante Reduktion der Anzahl der Atemanhaltezust{\"a}nde und dementsprechend eine wirksame Verk{\"u}rzung der Patientenuntersuchung und eine Verbesserung des Patientenkomforts. In Kapitel 6 wurde eine effiziente Strategie zur Anwendung der simultanen Multischichtbildgebung in der First-Pass-Herzperfusionsbildgebung bei 3T vorgestellt. Es wurde gezeigt, dass durch den Einsatz von MS-CAIPIRINHA mit Beschleunigungsfaktoren, die gr{\"o}ßer sind als die Anzahl der simultan angeregten Schichten, neben der anatomischen Abdeckung auch die r{\"a}umliche Aufl{\"o}sung innerhalb der Bildgebungsschicht erh{\"o}ht werden kann. Beide Verbesserungen sind f{\"u}r die MR-gest{\"u}tzte Diagnostik der Koronaren Herzerkrankung von Bedeutung. W{\"a}hrend mit einer hohen r{\"a}umlichen Aufl{\"o}sung subendokardiale und transmurale Infarktareale unterschieden werden k{\"o}nnen, erleichtert eine hohe anatomische Abdeckung die genaue Eingrenzung hypoperfundierter Bereiche. Das grunds{\"a}tzliche Prinzip der vorgestellten Strategie besteht in der Kombination zweier unterschiedlicher Beschleunigungsans{\"a}tze: Zur Verbesserung der anatomischen Abdeckung kommt die simultane Multischichtbildgebung zum Einsatz. Zus{\"a}tzlich zur gleichzeitigen Anregung mehrerer Schichten wird der k-Raum regelm{\"a}ßig unterabgetastet. Die dabei erzielte Beschleunigung wird zur Verbesserung der r{\"a}umlichen Aufl{\"o}sung eingesetzt. Die Bildrekonstruktion erfolgt mit Verfahren der Parallelen Bildgebung. Der Vorteil des Konzepts liegt insbesondere im vollst{\"a}ndigen Erhalt der Datenakquisitionszeit gegen{\"u}ber einer unbeschleunigten Messung mit Standardabdeckung und -aufl{\"o}sung. Anders als bei konventionellen Beschleunigungsverfahren wirken sich lediglich die Verkleinerung der Voxelgr{\"o}ße sowie die Rauschverst{\"a}rkung der Bildrekonstruktion SNR-reduzierend aus. Die Rauschverst{\"a}rkung wird dabei, durch die gegenseitige Verschiebung der simultan angeregten Schichten im FOV, so gering wie m{\"o}glich gehalten. Die Anwendbarkeit des Konzepts konnte anhand von Simulationen sowie Untersuchungen an Probanden und Herzinfarktpatienten erfolgreich demonstriert werden. Simultanes Anregen zweier Schichten und 2,5-faches Unterabtasten des k-Raums erm{\"o}glichte die Durchf{\"u}hrung von Untersuchungen mit einer anatomischen Abdeckung von sechs bis acht Schichten je RR-Intervall und einer r{\"a}umlichen Aufl{\"o}sung von 2,0×2,0×8,0mm3. Es konnte gezeigt werden, dass die angewandte GRAPPA-Rekonstruktion, trotz der effektiv f{\"u}nffachen Beschleunigung, robust und im Wesentlichen mit geringer Rauschverst{\"a}rkung durchf{\"u}hrbar ist. Bildqualit{\"a}t und SNR waren f{\"u}r eine sektorweise Absolutquantifizierung der Myokardperfusion ausreichend, w{\"a}hrend die hohe r{\"a}umliche Aufl{\"o}sung die Abgrenzung kleiner subendokardialer Perfusionsdefizite erm{\"o}glichte. Aufgrund seiner großen Flexibilit{\"a}t und recht einfachen Implementierbarkeit ist das Beschleunigungskonzept vielversprechend hinsichtlich einer Anwendung in der klinischen Routine. Die diesbez{\"u}gliche Tauglichkeit ist allerdings in weiterf{\"u}hrenden Patientenstudien noch zu evaluieren. Alternativ zu diesem Konzept wurde in Kapitel 7 noch eine weitere, ebenfalls auf MS-CAIPIRINHA basierende Strategie f{\"u}r die First-Pass-Herzperfusionsbildgebung bei 3T mit großer anatomischer Abdeckung und hoher r{\"a}umlicher Aufl{\"o}sung vorgestellt. Wie zuvor bestand die Grundidee des Konzepts darin, MS-CAIPIRINHA mit Beschleunigungsfaktoren anzuwenden, welche gr{\"o}ßer sind als die Anzahl der simultan angeregten Schichten und die Vergr{\"o}ßerung der anatomischen Abdeckung durch simultanes Anregen mehrerer Schichten zu realisieren. Um allerdings die bei der Bildrekonstruktion und Schichtseparation entstehende Rauschverst{\"a}rkung zu minimieren, wurde zur Verbesserung der r{\"a}umlichen Aufl{\"o}sung innerhalb der Schicht das nichtlineare Beschleunigungsverfahren Compressed Sensing zum Einsatz gebracht. Die erst in den letzten Jahren entwickelte Technik erm{\"o}glicht die exakte Rekonstruktion zuf{\"a}llig unterabgetasteter Daten, sofern bekannt ist, dass sich das rekonstruierte Bild in eine wohldefinierte sparse Darstellung {\"u}berf{\"u}hren l{\"a}sst. Neben der Erreichbarkeit hoher Beschleunigungsfaktoren bietet Compressed Sensing den Vorteil einer Bildrekonstruktion ohne signifikante Rauscherh{\"o}hung. Zur Einbindung des Verfahrens in das Multischichtbildgebungskonzept erfolgt die f{\"u}r die Verbesserung der Aufl{\"o}sung n{\"o}tige Unterabtastung des k-Raums, zuf{\"a}llig und inkoh{\"a}rent. Zur Bildrekonstruktion sind zwei Teilschritte erforderlich. Im ersten Teilschritt werden die durch die zuf{\"a}llige Unterabtastung entstandenen inkoh{\"a}renten Artefakte mit Compressed Sensing entfernt, im zweiten die gleichzeitig angeregten Schichten mit Verfahren der Parallelen MRT separiert. Es konnte gezeigt werden, dass die Kombination aus Compressed Sensing und MS-CAIPIRINHA eine Reduktion der inhomogenen Rauschverst{\"a}rkung erm{\"o}glicht und zur Durchf{\"u}hrung von qualitativen First-Pass-Herzperfusionsuntersuchungen mit einer Abdeckung von sechs bis acht Schichten je RR-Intervall sowie einer r{\"a}umlichen Aufl{\"o}sung von 2,0 × 2,0 × 8,0mm3 geeignet ist. Des Weiteren konnte gezeigt werden, dass das angewandte Multischicht-Bildgebungskonzept einer Anwendung des entsprechenden Compressed-Sensing-Konzepts ohne simultane Multischichtanregung {\"u}berlegen ist. Es stellte sich allerdings auch heraus, dass die rekonstruierten Bilder mit systematischen Fehlern behaftet sind, zu welchen auch ein signifikanter rekonstruktionsbedingter Verlust an zeitlicher Aufl{\"o}sung z{\"a}hlt. Dieser kann zu einer Verzerrung quantitativ bestimmter Perfusionswerte f{\"u}hren und verhindert so robuste quantitative Messungen der Myokardperfusion. Es ist außerdem davon auszugehen, dass auch abrupte Signalver{\"a}nderungen, die bei Arrhythmien oder Bewegung auftreten, nur sehr ungenau rekonstruiert werden k{\"o}nnen. Die Systematischen Rekonstruktionsfehler konnten anhand zweier Verfahren, einer Monte-Carlo-Simulation sowie einer Analyse der lokalen Punktantworten pr{\"a}zise Untersucht werden. Die beiden Analysemethoden erm{\"o}glichten einerseits die genaue Bestimmung systematischer und statistischer Abweichungen der Signalamplitude und andererseits die Quantifizierung rekonstruktionsbedingter zeitlicher und r{\"a}umlicher Aufl{\"o}sungsverluste. Dabei konnte ein Mangel an Sparsit{\"a}t als grundlegende Ursache der Rekonstruktionsfehler ermittelt werden. Die bei der Analyse eingesetzten Verfahren erleichtern das Verst{\"a}ndnis von Compressed Sensing und k{\"o}nnen beispielsweise bei der Entwicklung nichtlinearer Beschleunigungskonzepte zur Bildqualit{\"a}tsanalyse eingesetzt werden.}, subject = {Kernspintomographie}, language = {de} } @phdthesis{GraetzgebDittmann2022, author = {Graetz [geb. Dittmann], Jonas}, title = {X-Ray Dark-Field Tensor Tomography : a Hitchhiker's Guide to Tomographic Reconstruction and Talbot Imaging}, doi = {10.25972/OPUS-28143}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281437}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {X-ray dark-field imaging allows to resolve the conflict between the demand for centimeter scaled fields of view and the spatial resolution required for the characterization of fibrous materials structured on the micrometer scale. It draws on the ability of X-ray Talbot interferometers to provide full field images of a sample's ultra small angle scattering properties, bridging a gap of multiple orders of magnitude between the imaging resolution and the contrasted structure scale. The correspondence between shape anisotropy and oriented scattering thereby allows to infer orientations within a sample's microstructure below the imaging resolution. First demonstrations have shown the general feasibility of doing so in a tomographic fashion, based on various heuristic signal models and reconstruction approaches. Here, both a verified model of the signal anisotropy and a reconstruction technique practicable for general imaging geometries and large tensor valued volumes is developed based on in-depth reviews of dark-field imaging and tomographic reconstruction techniques. To this end, a wide interdisciplinary field of imaging and reconstruction methodologies is revisited. To begin with, a novel introduction to the mathematical description of perspective projections provides essential insights into the relations between the tangible real space properties of cone beam imaging geometries and their technically relevant description in terms of homogeneous coordinates and projection matrices. Based on these fundamentals, a novel auto-calibration approach is developed, facilitating the practical determination of perspective imaging geometries with minimal experimental constraints. A corresponding generalized formulation of the widely employed Feldkamp algorithm is given, allowing fast and flexible volume reconstructions from arbitrary tomographic imaging geometries. Iterative reconstruction techniques are likewise introduced for general projection geometries, with a particular focus on the efficient evaluation of the forward problem associated with tomographic imaging. A highly performant 3D generalization of Joseph's classic linearly interpolating ray casting algorithm is developed to this end and compared to typical alternatives. With regard to the anisotropic imaging modality required for tensor tomography, X-ray dark-field contrast is extensively reviewed. Previous literature is brought into a joint context and nomenclature and supplemented by original work completing a consistent picture of the theory of dark-field origination. Key results are explicitly validated by experimental data with a special focus on tomography as well as the properties of anisotropic fibrous scatterers. In order to address the pronounced susceptibility of interferometric images to subtle mechanical imprecisions, an efficient optimization based evaluation strategy for the raw data provided by Talbot interferometers is developed. Finally, the fitness of linear tensor models with respect to the derived anisotropy properties of dark-field contrast is evaluated, and an iterative scheme for the reconstruction of tensor valued volumes from projection images is proposed. The derived methods are efficiently implemented and applied to fiber reinforced plastic samples, imaged at the ID19 imaging beamline of the European Synchrotron Radiation Facility. The results represent unprecedented demonstrations of X-ray dark-field tensor tomography at a field of view of 3-4cm, revealing local fiber orientations of both complex shaped and low-contrast samples at a spatial resolution of 0.1mm in 3D. The results are confirmed by an independent micro CT based fiber analysis.}, subject = {Dreidimensionale Rekonstruktion}, language = {en} } @phdthesis{Kampf2018, author = {Kampf, Thomas}, title = {Quantifizierung myokardialer Mikrostruktur und Perfusion mittels longitudinaler NMR Relaxation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174261}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Ziel der Arbeit war es die Quantifizierung funktioneller bzw. mikrostruktureller Parameter des Herzmuskels mit Hilfe T1-basierter Methoden zu verbessern. Diese Methoden basieren darauf, die gew{\"u}nschte Information durch eine geeignete Pr{\"a}paration der Magnetisierung bzw. durch die Gabe von Kontrastmittel in den Zeitverlauf der longitudinalen Relaxation zu kodieren. Aus der {\"A}nderung der Relaxationszeit l{\"a}ßt sich dann die gew{\"u}nschte Information bestimmen. Daf{\"u}r sollte sowohl der Einfluß der Anatomie als auch derjenige der Meßmethodik auf die Bestimmung der longitudinalen Relaxationszeit und damit auf die Quantifizierung der Funktion bzw. Mikrostrukturparameter untersucht werden. Speziell der Einfluß der Bildgebungssequenz f{\"u}hrt dazu, daß nur eine scheinbare Relaxationszeit gemessen wird. W{\"a}hrend dies keinen Einfluß auf die T1-basierte Bestimmung der untersuchten Mikrostrukturparameter hatte, ergab sich f{\"u}r die Perfusionsquantifizierung eine deutliche Abh{\"a}ngigkeit von den Parametern der verwendeten IRLL-Sequenz. Um diesen Einfluß gerecht zu werden, wurden an die Meßmethodik angepaßte Gleichungen zur Bestimmung der Perfusion gefunden mit denen die systematischen Abweichungen korrigiert werden k{\"o}nnen. Zus{\"a}tzlich reduzieren die angepaßten Gleichungen die Anforderungen bez{\"u}glich der Inversionsqualit{\"a}t im schichtselektiven Experiment. Dies wurde in einem weiteren Projekt bei der Bestimmung der Nierenperfusion im Mausmodell ausgenutzt. Neben der Untersuchung der Auswirkungen der Meßmethode wurde auch der Einfluß der anatomischen Besonderheiten des Blutkreislaufs am Herzen auf die Parameterquantifizierung mittels T1-basierter Methoden untersucht. Es konnte gezeigt werden, daß auf Grund der Anatomie des Herzens bei typischen Orientierungen der Bildgebungsschicht, auch bei der schichtselektiven Inversionspr{\"a}paration der Magnetisierung des Herzmuskels ein Anteil des Blutpools invertiert wird. Daraus folgt, daß die vereinfachende Annahme, nach welcher bei schichtselektiver Pr{\"a}paration in Folge von Perfusion nur Blut mit Gleichgewichtsmagnetisierung den Herzmuskel erreicht, nicht erf{\"u}llt ist. Es konnte gezeigt werden, daß dies bei Perfusion zu einer deutlichen Untersch{\"a}tzung der berechneten Perfusionswertes f{\"u}hrt. Um mit diesem Problem umgehen zu k{\"o}nnen, wurde aufbauend auf einem vereinfachten Modell der zeitlichen Entwicklung der Blutmagnetisierung eine Korrektur f{\"u}r die Bestimmung der Perfusionswerte gefunden welche den Einfluß der anatomischen Besonderheiten ber{\"u}cksichtigt. Das f{\"u}r die Perfusionskorrektur eingef{\"u}hrte Model prognostiziert ebenso, daß auch bei schichtselektiver Inversion die T1-basierte Bestimmung der untersuchten Mikrostrukturparameter von der Perfusion abh{\"a}ngig wird und eine systematische {\"U}bersch{\"a}tzung der quantifizierten Werte verursacht. Da die Perfusion im Kleintier deutlich h{\"o}her ist als im Menschen, ist dieser Einfluß besonders in der pr{\"a}klinischen Forschung zu beachten. So k{\"o}nnen dort allein durch verminderte Perfusion deutliche {\"A}nderungen in den bestimmten Werten der Mikrostrukturparameter erzeugt werden, welche zu einer fehlerhaften Interpretation der Ergebnisse f{\"u}hren und somit ein falsches Bild f{\"u}r die Vorg{\"a}nge im Herzmuskel suggerieren. Dabei best{\"a}tigt der Vergleich mit experimentellen Ergebnissen aus der Literatur die Vorhersagen f{\"u}r das Rattenmodell. Beim Menschen ist der prognostizierte Effekt deutlich kleiner. Der prognostizierte Fehler bspw. im RBV-Wert liegt in diesem Fall bei etwa 10\% und wird {\"u}blicherweise in der aktuellen Forschung vernachl{\"a}ssigt. Inwieweit dies in er klinischen Forschung gerechtfertigt ist, muß in weiteren Untersuchungen gekl{\"a}rt werden. Den untersuchten Methoden zur Bestimmung von funktionellen und mikrostrukturellen Parametern ist gemein, daß sie eine exakte Quantifizierung der longitudinalen Relaxationszeit T1 ben{\"o}tigen. Dabei ist im Kleintierbereich die klassische IRLL-Methode als zuverl{\"a}ssige Sequenz zur T1-Quantifizierung etabliert. In der klinischen Bildgebung werden auf Grund der unterschiedlichen Zeitskalen und anderer technischer Voraussetzungen andere Anforderungen an die Datenakquisition gestellt. Dabei hat in den letzten Jahren die MOLLI-Sequenz große Verbreitung gefunden. Sie ist eine Abwandlung der IRLL-Sequenz, bei der mit einer bSSFP-Bildgebungssequenz getriggert ganze Bilder w{\"a}hrend eines Herzschlages aufgenommen werden. Die MOLLI-Sequenz reagiert dabei empfindlich auf die Wartezeiten zwischen den einzelnen Transienten. Um mit diese Problematik in den Griff zu bekommen und gleichzeitig die Meßzeit verk{\"u}rzen zu k{\"o}nnen wurde eine neue Methode zum Fitten der Daten entwickelt, welche die Abh{\"a}ngigkeit der scheinbaren Relaxationszeit von der Wartezeit zwischen den einzelnen Transienten, sowie der mittleren Herzrate fast vollst{\"a}ndig eliminiert. Diese Methode liefert f{\"u}r das ganze klinisch Spektrum an erwarteten T1-Zeiten, vor und nach Kontrastmittelgabe, stabile Ergebnisse und erlaubte ein deutliche Verk{\"u}rzung der Meßzeit, ohne die Anzahl der aufgenommenen Meßzeitpunkte zu reduzieren. Dies wurde in einer initialen klinischen Studie genutzt, um ECV-Werte in Patienten zu bestimmen. Ein Nachteil der Verwendung der MOLLI-Sequenz ist, daß nur die scheinbare Relaxationszeit aus den Fit der Meßdaten bestimmt wird. Die standardm{\"a}ßig genutzte Korrektur benutzt aber dem gefitteten Wert der Gleichgewichtsmagnetisierung um den wahren T1-Wert zu bestimmen. Somit ist es f{\"u}r die Bestimmung des T1-Wertes notwendig, die Qualit{\"a}t der Inversionspr{\"a}paration zu kennen. Auf Basis der neuen Fitmethode wurde eine Anpassung der MOLLI-Sequenz demonstriert, welche die Bestimmung der Gleichgewichtsmagnetisierung unabh{\"a}ngig von der Qualit{\"a}t der Inversionspr{\"a}paration erlaubt. Daf{\"u}r verl{\"a}ngert sich die Meßdauer lediglich um einen Herzschlag um in geeigneter Weise ein zus{\"a}tzliches Bild aufnehmen zu k{\"o}nnen. Abschließend wurde in dieser Arbeit der Signal-Zeit-Verlauf der MOLLI-Sequenz eingehend theoretische untersucht um ein besseres Verst{\"a}ndnis der getriggerten IRLL-Sequenzen zu entwickeln. In diesem Zusammenhang konnte eine einfache Interpretation der scheinbaren Relaxationszeit gefunden werden. Ebenso konnte erkl{\"a}rt werden, warum die f{\"u}r ungetriggerte IRLL-Sequenzen abgeleitete Korrekturgleichung auch im getriggerten Fall erstaunlich gute Ergebnisse liefert. Weiterhin konnten Fehlerquellen f{\"u}r die verbleibenden Abweichungen identifiziert werden, welche als Ausgangspunkt f{\"u}r die Ableitung verbesserter Korrekturgleichungen genutzt werden k{\"o}nnen.}, subject = {Kernspintomographie}, language = {de} } @phdthesis{Gutjahr2019, author = {Gutjahr, Fabian Tobias}, title = {Neue Methoden der physiologischen Magnet-Resonanz-Tomographie: Modellbasierte T1-Messungen und Darstellung von chemischem Austausch mit positivem Kontrast}, doi = {10.25972/OPUS-16106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161061}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Ziel dieser Arbeit war es, neue quantitative Messmethoden am Kleintier, insbesondere die Perfusionsmessung am M{\"a}useherz, zu etablieren. Hierf{\"u}r wurde eine retrospektiv getriggerte T1-Messmethode entwickelt. Da bei retrospektiven Methoden keine vollst{\"a}ndige Abtastung garantiert werden kann, wurde ein Verfahren gefunden, das mit Hilfe von Vorwissen {\"u}ber das gemessene Modell sehr effizient die fehlenden Daten interpolieren kann. Mit Hilfe dieser Technik werden dynamische T1-Messungen mit hoher r{\"a}umlicher und zeitlicher Aufl{\"o}sung m{\"o}glich. Dank der hohen Genauigkeit der T1-Messmethode l{\"a}sst sich diese f{\"u}r die nichtinvasive Perfusionsmessung am M{\"a}useherz mittels der FAIR-ASL-Technik nutzen. Da auf Grund der retrospektiven Triggerung Daten an allen Positionen im Herzzyklus akquiriert werden, konnten T1- und Perfusionskarten nach der Messung zu beliebigen Punkten im Herzzyklus rekonstruiert werden. Es bietet sich an, Techniken, die f{\"u}r die myokardiale Perfusion angewandt werden, auch f{\"u}r die Nierenperfusionsmessung zu verwenden, da die Niere in ihrer Rinde (Cortex) eine {\"a}hnlich hohe Perfusion aufweist wie das Myokard. Gleichzeitig f{\"u}hren Nierenerkrankungen oftmals zu schlechter Kontrastmittelvertr{\"a}glichkeit, da diese bei Niereninsuffizienz u.U. zu lange im K{\"o}rper verweilen und die Niere weiter sch{\"a}digen. Auch deshalb sind die kontrastmittelfreien Spin-Labeling-Methoden hier interessant. Die FAIR-ASL-Technik ist jedoch an M{\"a}usen in koronaler Ansicht f{\"u}r die Niere schlecht geeignet auf Grund des geringen Unterschieds zwischen dem markierten und dem Vergleichsexperiment. Als L{\"o}sung f{\"u}r dieses Problem wurde vorgeschlagen, die Markierungsschicht senkrecht zur Messschicht zu orientieren. Hiermit konnte die Sensitivit{\"a}t gesteigert und gleichzeitig die Variabilit{\"a}t der Methode deutlich verringert werden. Mit Hilfe von kontrastmittelgest{\"u}tzten Messungen konnten auch das regionale Blutvolumen und das Extrazellularvolumen bestimmt werden. In den letzten Jahren hat das Interesse an Extrazellularvolumenmessungen zugenommen, da das Extrazellularvolumen stellvertretend f{\"u}r diffuse Fibrose gemessen werden kann, die bis dahin nichtinvasiven Methoden nicht zug{\"a}nglich war. Die bisher in der Literatur verwendeten Quantifizierungsmethoden missachten den Einfluss, den das H{\"a}matokrit auf den ECV-Wert hat. Es wurde eine neue Korrektur vorgeschlagen, die allerdings zus{\"a}tzlich zur ECV-Messung auch eine RBV-Messung ben{\"o}tigt. Durch gleichzeitige Messung beider Volumenanteile konnte auch erstmals das Extrazellulare-Extravaskul{\"a}re-Volumen bestimmt werden. Eine g{\"a}nzlich andere kontrastmittelbasierte Methode in der MRT ist die Messung des chemischen Austauschs. Hierbei wirkt das Kontrastmittel nicht direkt beschleunigend auf die Relaxation, sondern der Effekt des Kontrastmittels wird gezielt durch HF-Pulse an- und ausgeschaltet. Durch den chemischen Austausch kann die Auswirkung der HF-Pulse akkumuliert werden. Bislang wurde bei solchen Messungen ein negativer Kontrast erzeugt, der ohne zus{\"a}tzliche Vergleichsmessungen schwer detektierbar war. Im letzten Teil dieser Arbeit konnte eine neue Methode zur Messung des chemischen Austauschs gezeigt werden, die entgegen der aus der Literatur bekannten Methoden nicht S{\"a}ttigung, sondern Anregung {\"u}bertr{\"a}gt. Diese {\"A}nderung erlaubt es, einen echten positiven chemischen Austausch-Kontrast zu erzeugen, der nicht zwingend ein Vergleichsbild ben{\"o}tigt. Gleichzeitig erm{\"o}glicht die Technik, dadurch dass Anregung {\"u}bertragen wird, die Phase der Anregung zu kontrollieren und nutzen. Eine m{\"o}gliche Anwendung ist die Unterscheidung verschiedener Substanzen in einer Messung. In der Summe wurden im Rahmen dieser Arbeit verschiedene robuste Methoden eta- bliert, die die M{\"o}glichkeiten der quantitativen physiologischen MRT erweitern.}, subject = {Kernspintomografie}, language = {de} }