@phdthesis{Voelckel2022, author = {Voelckel, Markus}, title = {Zeitaufgel{\"o}ste Spektroskopie von nanoskaligen Halbleitern und Pyrenderivaten}, doi = {10.25972/OPUS-27611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276119}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Um den jahrtausendealten Weg der Menschheit vom Papyrus {\"u}ber Buchdruck und siliziumbasierte Halbleiter in Richtung noch leistungsf{\"a}higerer Technologien zu gehen und weiterhin Heureka-Momente zu schaffen, bieten Kohlenstoffnanor{\"o}hren ein weites Forschungsfeld. Besonders die halbleitenden Charakteristika von SWNTs sowie die Manipulation dieser durch Dotierung bergen viele M{\"o}glichkeiten f{\"u}r zuk{\"u}nftige Anwendungen in moderner Elektrotechnologie. Der Weg zu einer industriellen Implementierung von SWNTs in neuartigen optoelektronischen Bauteilen ließe sich durch eine Ausweitung des Wissens bez{\"u}glich SWNTs und der dotierungsbasierten Anpassung ihrer Eigenschaften ebnen. Mit dieser Erkenntniserweiterung als Zielsetzung wurden im Rahmen dieser Dissertation halbleitende, einwandige (6,5)-Kohlenstoffnanor{\"o}hren als chiralit{\"a}tsreine, polymerstabilisierte Proben untersucht. Die ultrakurzzeitaufgel{\"o}ste Spektroskopie der SWNTs erfolgte an organischen Suspensionen wie auch D{\"u}nnschichtfilmen, die je mittels eines gewissen Quantums an Gold(III)-chlorid dotiert worden waren. So konnten die ablaufenden Dynamiken auf einer ps-Zeitskala untersucht werden. In Kapitel 4 konnte mittels transienter Absorptionsexperimente an redoxchemisch p-dotierter SWNT-Suspensionen zun{\"a}chst gezeigt werden, dass sich die bei optischer Anregung gebildeten Trionen nicht analog zu Exzitonen diffusiv entlang der Nanor{\"o}hre bewegen, sondern lokalisiert vorliegen. Die l{\"a}ngere trionischen Zerfallsdauer nach X\$_1\$- verglichen mit X\$_1^+\$-resonanter Anregung zeugt außerdem davon, dass das Trion aus dem Exziton gespeist wird. Der Einfluss der Dotierung auf die Zerfallsdynamiken von X\$_1\$ und X\$_1^+\$ wurde an SWNT-D{\"u}nnschichtfilmen untersucht. Das Photobleichsignal des Exzitons verschiebt hypsochrom und zerf{\"a}llt schneller mit zunehmender Ladungstr{\"a}gerdichte durch h{\"o}herer Gold(III)-chloridkonzentrationen. Dies resultiert aus dem verringerten Abstand zwischen den Ladungstr{\"a}gern, welche als nichtstrahlende L{\"o}schstellen fungieren. F{\"u}r das X\$_1^+\$-PB ist ein {\"a}hnliches Verhalten zu beobachten. Dabei wird dieses Signal mit weiter steigender Dotierung von einer der H-Bande zuzuordnenden Photoabsorption {\"u}berlagert. Diese l{\"a}sst sich in einer starken S{\"a}ttigung der Dotierung wie auch einer hohen Bandkantenverschiebung begr{\"u}nden. In Kapitel 5 wurde die Gr{\"o}ße der Exzitonen und Trionen in dotierten SWNT-D{\"u}nnschichtfilmen mittels des Phasenraumf{\"u}llmodells bestimmt. Dabei lag besonderes Augenmerk auf der Kompensation des PB/PA-{\"U}berlapps, dem schnellen Zerfall, einem Ausgleich von Differenzen zwischen Anrege- und Absorptionsspektrum sowie dem Anteil intrinsischer/dotierter Nanorohrsegmente, um korrigierte Gr{\"o}ßen \$\xi_\mathrm{k}\$ zu erhalten. F{\"u}r die Trionengr{\"o}ße wurde zus{\"a}tzlich der {\"U}berlapp der Absorptionsbanden einbezogen, um korrigierte Werte \$\xi_{\mathrm{T,k}}\$ zu bestimmen. \$\xi_\mathrm{k}\$ betr{\"a}gt in der intrinsischen Form 6\$\pm\$2\,nm und bleibt bis zu einer Ladungstr{\"a}gerdichte \$n_{\mathrm{LT}}<0.10\$\,nm\$^{-1}\$ etwa gleich, anschließend ist ein Absinken bis auf etwa 4\,nm bei \$n_{\mathrm{LT}}\approx0.20\$\,nm\$^{-1}\$ zu beobachten. F{\"u}r diesen Trend ist die {\"U}berlagerung von Exziton- und H-Bande verantwortlich, da so der Faktor zur Bestimmung des Anteils intrinsischer Nanorohrsegmente an der SWNT verf{\"a}lscht wird. Die Abweichung der intrinsischen Gr{\"o}ße von den in der Literatur berichteten 13\$\pm\$3\,nm ist m{\"o}glicherweise auf Unterschiede in der Probenpr{\"a}paration zur{\"u}ckzuf{\"u}hren. F{\"u}r die Trionengr{\"o}ße ergibt sich bei steigender Dotierung ein {\"a}hnliches Verhalten: Sie betr{\"a}gt f{\"u}r \$n_{\mathrm{LT}}<0.20\$\,nm\$^{-1}\$ 1.83\$\pm\$0.47\,nm, was in der Gr{\"o}ßenordnung in guter {\"U}bereinstimmung mit der Literatur ist. F{\"u}r h{\"o}here Dotierungen sinkt \$\xi_{\mathrm{T,k}}\$ bis auf 0.92\$\pm\$0.26nm ab. Dies erkl{\"a}rt sich dadurch, dass bei h{\"o}herer \$n_{\mathrm{LT}}\$ die H-Bande das Spektrum dominiert, sodass der Einfluss der Absorptionsbanden{\"u}berlagerung nicht mehr vollst{\"a}ndig durch den entsprechenden Korrekturfaktor kompensiert werden kann. Kapitel 6 besch{\"a}ftigte sich anstelle redoxchemischer Dotierung der nanoskaligen Halbleiter mit der (spektro-)elektrochemischen Untersuchung von Vorl{\"a}ufern molekularer Radikale. SWV-Messungen weisen dabei darauf hin, dass die Pyrene Pyr1-Pyr3 entsprechend der Anzahl ihrer Substituenten bei Reduktion Mono-, Bi- beziehungsweise Tetraradikale bilden. Die strukturelle {\"A}hnlichkeit der Molek{\"u}le {\"a}ußert sich in gleichen Reduktionspotentialen wie auch {\"a}hnlichen potentialabh{\"a}ngigen Absorptionsspektren. W{\"a}hrend nur marginale Unterschiede in den PL-Spektren der neutralen und reduzierten Spezies festgestellt werden konnte, lieferte das zeitkorrelierte Einzelphotonenz{\"a}hlen aufschlussreichere Ergebnisse: So wird die Fluoreszenzlebensdauer stark von der Polarit{\"a}t der Umgegbung beeinflusst - bereits die Zugabe des Leitsalzes f{\"u}hrt hier zu {\"A}nderungen. Die durchschnittliche Fluoreszenzlebensdauer \$\tau_{\mathrm{av}}\$ sinkt außerdem mit Reduktion und Radikalbildung; f{\"u}r h{\"o}here Emissionswellenl{\"a}ngen ist \$\tau_{\mathrm{av}}\$ außerdem h{\"o}her. Insgesamt verdeutlichten die Experimente die gute Abschirmung zwischen Pyrenkern und Naphthalimidsubstituenten der Molek{\"u}le sowie die Sensibilit{\"a}t gegen{\"u}ber dem Medium durch TICT, das Vorhandensein von Bi- und Tetraradikalen kann allerdings nicht vollst{\"a}ndig belegt werden, wof{\"u}r EPR-Messugen notwendig w{\"a}ren.}, subject = {Dotierung}, language = {de} } @phdthesis{Oberndorfer2022, author = {Oberndorfer, Florian}, title = {Photoluminescence and Raman spectroscopy of doped nanomaterials}, doi = {10.25972/OPUS-27854}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278540}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This thesis includes measurements that were recorded by cooperation partners. The EPR spec- trosa mentioned in section 5.2 were recorded by Michael Auth from the Dyakonov Group (Ex- perimental Physics VI, Julius-Maximilians-Universit{\"a}t, W{\"u}rzburg). The TREFISH experiments and transient absorption in section 5.4 spectra were performed by Jašinskas et al. from the V. Gulbi- nas group (Center for Physical Sciences and Technology, Vilnius, Lithuania). This dissertation investigated the interactions of semiconducting single-walled carbon nanotubes (SWNTs) of (6,5) chirality with their environment. Shear-mixing provided high-quality SWNT sus- pensions, which was complemented by various film preparation techniques. These techniques were in turn used to prepare heterostructures with MoS2 and hBN, which were examined with a newly constructed photoluminescence microscope specifically for this purpose. Finally, the change of spectral properties of SWNTs upon doping was investigated in more detail, as well as the behaviour of charge carriers in the tubes themselves. To optimise the SWNT sample preparation techniques that supplied the other experiments, the sample quality of shear-mixed preparations was compared with that of sonicated samples. It was found that the quantum efficiency of sheared suspensions exceeds that of sonicated suspensions as soon as the sonication time exceeds 30 min. The higher PLQY is due to the lower defect concentration in shear-mixed samples. Via transient absorption, a mean lifetime of 17.3 ps and a mean distance between defects of 192.1 nm could be determined. Furthermore, it was found that the increased efficiency of horn sonication is probably not only due to higher shear forces acting on the SWNT bundles but also that the shortening of PFO-BPy strands plays a significant role. Sonication of very long polymer strands significantly increased their effectiveness in shear mixing. While previous approaches could only achieve very low concentrations of SWNTs in suspensions, pre-sonicated polymer yielded results which were comparable with much shorter PFO-BPy batches. Reference experiments also showed that different aggregation processes are relevant during production and further processing. Initial reprocessing of carbon nanotube raw material requires 7 h sonication time and over 24 h shear mixing before no increase in carbon nano concentration is detectable. However, only a few minutes of sonication or shear mixing are required when reprocessing the residue produced during the separation of the slurry. This discrepancy indicates that different aggregates are present, with markedly different aggregation properties. To study low-dimensional heterostructures, a PL microscope was set up with the ability to ob- serve single SWNTs as well as monolayers of other low-dimensional systems. Furthermore, sam- ples were prepared which bring single SWNTs into contact with 2D materials such as h-BN andMoS2 layers and the changes in the photoluminescence spectrum were documented. For h-BN, it was observed whether previous methods for depositing SWNTs could be transferred for photo- luminescence spectroscopy. SWNTs were successfully deposited on monolayers via a modified drip coating, with the limitation that SWNTs aggregate more at the edges of the monolayers. Upon contact of SWNTs with MoS2, significant changes in the emission properties of the mono- layers were observed. The fluorescence, which was mainly dominated by excitons, was shifted towards trion emission. Reference experiments excluded PFO-BPy and toluene as potential causes. Based on the change in the emission behaviour of MoS2, the most plausible explanation is a photoinduced charge transfer leading to delocalised charge carriers on MoS2. In contrast, on SWNTs, the introduction of additional charges would constitute a quenching centre, which would quench their PL emission, making them undetectable in the PL image. In the last chapter, the electronic properties of doped SWNTs and the behaviour of charge carri- ers inside the tubes should be investigated. First, the change in the conductivity of SWNT films with increasing doping levels was docu- mented. The resistance of the films drops drastically at minimum doping. After the initial in- troduction of charges, the resistance drops with increasing dopant concentration according to a double logarithmic curve. The initial drop could be due to a reduction of contact resistances within the SWNT network film, but this could not be further investigated within the scope of this PhD thesis. In cooperation with Andreas Sperlich and Michael Auth, the spin concentration of SWNTs at different doping levels was determined. The obtained concentrations were compared with the carrier concentrations determined from PL and absorption spectra. At low spin densities, good agreement with previous models was found. Furthermore, the presence of isolated spins strongly suggests a localised charge carrier distribution at temperatures around 10 K. When the charge density is increased, the spin density deviates significantly from the charge carrier con- centration. This discrepancy is attributed to the increasing delocalisation of charge carriers at high charge densities and the interactions of neighbouring spins. These results strongly indicate the existence of localised charge carriers in SWNTs at low temperatures. Next, the effect of doping on the Raman spectra of SWNT suspensions was investigated. In gen- eral, doping is expected to reduce the intensity of the Raman bands, i.e. a consequence of the reduced resonance gain due to bleaching of the S2 transition. However, similar to the resistivity measurements, the oscillator strength of the G+ band drops sharply in the first doping steps. It was also found that the G+ band decreases more than would be expected due to loss of reso- nance condition. Furthermore, the G- is bleached faster than the G+ band. All these anomalies suggest that resonance enhancement is not the only relevant effect. Another much faster deac- tivation path for the excitons may be introduced by doping. This would leave less time for the scattering process to occur and reduce the oscillator strength of the Raman bands. In cooperation with Vidmantas et al., the photoinduced charge carrier behaviour of SWNT/PCBM films was investigated. The required films were prepared by drop coating. The SWNT suspen- sions required for this were obtained from sheared SWNT preparations. Using transient absorp- tion and TREFISH, a number of charge transfer effects were identified and their dynamics in- vestigated: the recombination of neutral excitons (< 50 ps), the electron transfer from carbon nanotubes to PCBM molecules (< 1 ps), the decay of charge-transfer excitons (∼200 ps), the recombination of charge carriers between charge-transfer excitons (1 ns to 4 ns) and finally the propagation through the SWNT network (∼20 ns)}, subject = {Einwandige Kohlenstoff-Nanor{\"o}hre}, language = {en} } @phdthesis{Auth2020, author = {Auth, Michael Tilman}, title = {Quantitative Electron Paramagnetic Resonance Studies of Charge Transfer in Organic Semiconductors}, doi = {10.25972/OPUS-18951}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189513}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In the present work we investigated various charge transfer processes, as they appear in the versatile world of organic semiconductors by probing the spin states of the corresponding charge carrier species via electron paramagnetic resonance (EPR) spectroscopy. All studied material systems are carbon-based compounds, either belonging to the group of polymers, fullerenes, or single-wall carbon nanotubes (SWNTs). In the first instance, we addressed the change of the open circuit voltage (Voc) with the fullerene blend stoichiometry in fullerene-based solar cells for organic photovoltaics (OPV). The voltage depends strongly on the energy separation between the lowest unoccupied molecular orbital (LUMO) of the donor and the highest occupied molecular orbital (HOMO) of the acceptor. By exploiting the Gaussian distribution of the charge carriers in a two-level system, and thus also their spins in the EPR experiment, it could be shown that the LUMOs get closer by a few to a few hundred meV when going from pure fullerene materials to a fullerene mixture. The reason for this strong energetic effect is likely the formation of a fullerene alloy. Further, we investigated the chemical doping mechanism of SWNTs with a (6,5)-chirality and their behaviour under optical excitation. In order to determine the unintentional (pre)-doping of SWNTs, EPR spectra of the raw material as well as after different purification steps were recorded. This facilitated the determination of nanotube defects and atmospheric p-doping as the causes of the measured EPR signals. In order to deliberately transfer additional charge carriers to the nanotubes, we added the redox-active substance AuCl3 where we determined an associated doping-yield of (1.5±0.2)\%. In addition, a statistical occupation model was developed which can be used to simulate the distribution of EPR active, i.e. unpaired and localised charge carriers on the nanotubes. Finally, we investigated the charge transfer behaviour of (6,5)-SWNTs together with the polymer P3HT and the fullerene PC60BM after optical excitation.}, subject = {Organische Halbleiter}, language = {en} } @phdthesis{WulfertHolzmann2022, author = {Wulfert-Holzmann, Paul}, title = {Die elektrische Leitf{\"a}higkeit des negativen Aktivmaterials moderner Blei-S{\"a}ure-Batterien}, doi = {10.25972/OPUS-29839}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298397}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Diese Doktorarbeit besch{\"a}ftigt sich mit dem Wirkmechanismus der elektrischen Leitf{\"a}higkeit in Blei-S{\"a}ure-Batterien. Obwohl ihm eine zentrale Rolle beim „Kohlenstoff-Effekt" zugeordnet wird, ist der Wirkmechanismus der elektrischen Leitf{\"a}higkeit bislang vergleichsweise wenig untersucht worden und konnte dementsprechend noch nicht vollst{\"a}ndig aufgekl{\"a}rt werden. Mit dem Anspruch, diese Forschungsl{\"u}cke zu schließen, zielt die vorliegende Doktorarbeit darauf ab, den Einfluss der elektrischen Leitf{\"a}higkeit auf die Performance der Blei-S{\"a}ure-Batterie systematisch herauszuarbeiten und so einen Beitrag zur Generierung neuer Entwicklungsans{\"a}tze zu leisten, z. B. in Form von maßgeschneiderten Additiven. Bislang ist noch unklar, ob allein die elektrische Leitf{\"a}higkeit des Aktivmaterials relevant ist oder diese auch durch Additive beeinflusst wird. Das liegt vor allem daran, dass geeignete Messmethoden fehlen und deshalb der Einfluss von Additiven auf die elektrische Leitf{\"a}higkeit des Aktivmaterials wenig untersucht wurde. Deswegen zielt diese Arbeit auch darauf ab, eine neuartige Messmethode zu entwickeln, um die elektrische Leitf{\"a}higkeit des Aktivmaterials im laufenden Betrieb bestimmen zu k{\"o}nnen. Aufgrund der Vorkenntnisse und Vorarbeiten am Fraunhofer ISC werden die Untersuchungen dabei auf die negative Elektrode limitiert. Insgesamt unterteilt sich die Doktorarbeit in die zwei Abschnitte. Im ersten Abschnitt werden elektrisch isolierende St{\"o}ber-Silica als Additive im negativen Aktivmaterial eingesetzt, um den Einfluss der elektrischen Leitf{\"a}higkeit des Additivs auf die elektrochemischen Eigenschaften der Batterie herauszustellen. Untersucht wird dabei die u.a. die Doppelschichtkapazit{\"a}t, die Wasserstoffentwicklung und die dynamische Ladeakzeptanz. Im zweiten Abschnitt steht die elektrische Leitf{\"a}higkeit des negativen Aktivmaterials im Fokus. Es wird zun{\"a}chst eine neue Messmethodik entwickelt, die ihre in-situ- und operando-Bestimmung erm{\"o}glicht. Nach einer umfassenden Evaluierung und der Betrachtung verschiedener Betriebsparameter wird die Methodik f{\"u}r eine erste proof-of-concept-Messreihe angewendet, um den Einfluss von Additiven auf die elektrische Leitf{\"a}higkeit des negativen Aktivmaterials zu untersuchen.}, subject = {Bleiakkumulator}, language = {de} } @phdthesis{Namal2018, author = {Namal, Imge}, title = {Fabrication and Optical and Electronic Characterization of Conjugated Polymer-Stabilized Semiconducting Single-Wall Carbon Nanotubes in Dispersions and Thin Films}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162393}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In order to shrink the size of semiconductor devices and improve their efficiency at the same time, silicon-based semiconductor devices have been engineered, until the material almost reaches its performance limits. As the candidate to be used next in semiconducting devices, single-wall carbon nanotubes show a great potential due to their promise of increased device efficiency and their high charge carrier mobilities in the nanometer size active areas. However, there are material based problems to overcome in order to imply SWNTs in the semiconductor devices. SWNTs tend to aggregate in bundles and it is not trivial to obtain an electronically or chirally homogeneous SWNT dispersion and when it is done, a homogeneous thin film needs to be produced with a technique that is practical, easy and scalable. This work was aimed to solve both of these problems. In the first part of this study, six different polymers, containing fluorene or carbazole as the rigid part and bipyridine, bithiophene or biphenyl as the accompanying copolymer unit, were used to selectively disperse semiconducting SWNTs. With the data obtained from absorption and photoluminescence spectroscopy of the corresponding dispersions, it was found out that the rigid part of the copolymer plays a primary role in determining its dispersion efficiency and electronic sorting ability. Within the two tested units, carbazole has a higher π electron density. Due to increased π-π interactions, carbazole containing copolymers have higher dispersion efficiency. However, the electronic sorting ability of fluorene containing polymers is superior. Chiral selection of the polymers in the dispersion is not directly foreseeable from the selection of backbone units. At the end, obtaining a monochiral dispersion is found to be highly dependent on the used raw material in combination to the preferred polymer. Next, one of the best performing polymers due to high chirality enrichment and electronic sorting ability was chosen in order to disperse SWNTs. Thin films of varying thickness between 18 ± 5 to 755o±o5 nm were prepared using vacuum filtration wet transfer method in order to analyze them optically and electronically. The scalability and efficiency of the integrated thin film production method were shown using optical, topographical and electronic measurements. The relative photoluminescence quantum yield of the radiative decay from the SWNT thin films was found to be constant for the thickness scale. Constant roughness on the film surface and linearly increasing concentration of SWNTs were also supporting the scalability of this thin film production method. Electronic measurements on bottom gate top contact transistors have shown an increasing charge carrier mobility for linear and saturation regimes. This was caused by the missing normalization of the mobility for the thickness of the active layer. This emphasizes the importance of considering this dimension for comparison of different field effect transistor mobilities.}, subject = {Feldeffekttransistor}, language = {en} } @phdthesis{Kastner2020, author = {Kastner, Matthias J.}, title = {Spectroscopic investigation of molecular adsorption and desorption from individual single-wall carbon nanotubes}, doi = {10.25972/OPUS-21175}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211755}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Nanoelectronics is an essential technology for down-scaling beyond the limit of silicon-based electronics. Single-Wall Carbon Nanotubes (SWNT) are semiconducting components that exhibit a large variety of properties that make them usable for sensing, telecommunication, or computational tasks. Due to their high surface to volume ratio, carbon nanotubes are strongly affected by molecular adsorptions, and almost all properties depend on surface adsorption. SWNT with smaller diameters (0.7-0.9nm) show a stronger sensitivity to surface effects. An optimized synthesis route was developed to produce these nanotubes directly. They were produced with a clean surface, high quality, and large lengths of 2 μ m. The results complement previous studies on larger diameters (0.9-1.4nm). They allow performing statistically significant assumptions for a perfect nanotube, which is selected from a subset of nanotubes with good emission intensity, and high mechanical durability. The adsorption of molecules on the surface of carbon nanotubes influences the motion and binding strength of chargeseparated states in this system. To gain insight into the adsorption processes on the surface with a minimum of concurrent overlapping effects, a microscopic setup, and a measurement technique were developed. The system was estimated to exhibit excellent properties like long exciton diffusion lengths (>350nm), and big exciton sizes (8.5(5)nm), which was substantiated by a simulation. We studied the adsorption processes at the surface of Single-Wall Carbon Nanotubes for molecules in the gas phase, solvent molecules, and surfactant molecules. The experiments were all carried out on suspended individualized carbon nanotubes on a silicon wafer substrate. The experiments in the gas-phase showed that the excitonic emission energy and intensity experiences a rapid blue shift during observation. This shift was associated with the spontaneous desorption of large clusters of gaseous molecules caused by laser heat up. The measurement of this desorption was essential for creating a reference to an initially clean surface and allows us to perform a comparison with previous measurements on this topic. Furthermore, the adsorption of hydrogen on the nanotube surface at high temperatures was investigated. It was found that a new emission mode arises slightly red-shifted to the excitonic emission in these systems. The new signal is almost equally strong as the main excitonic peak and was associated with the brightening of dark excitons at sp3-defects through a K-phonon assisted pathway. The finding is useful for the direct synthesis of spintronic devices as these systems are known to act as single-photon emitters. The suspended nanotubes were further studied to estimate the effect of solvent adsorption on the excitonic states during nanotube dispersion for each nanotube individually. A significant quantum yield loss is observable for hexane and acetonitrile, while the emission intensity was found to be the strongest in toluene. The reference to a clean surface allowed us to estimate the exact influence of the dielectric environment of adsorbing solvents on the excitonic emission energy. Solvent adsorption was found to lead to an energy shift that is almost twice as high as suggested in previous studies. The amount of this energy shift, however, was comparably similar for all solvents, which suggests that the influence of the distinct dielectric constant in the outer environment less significantly influences the energy shift than previously thought. An interesting phenomenon was found when using acetonitrile as a solvent, which leads to greatly enhanced emission properties. The emission is more than twice as high as in the same air-suspended nanotubes, which suggests a process that depends on the laser intensity. In this study, it was reasonably explained how an energy down-conversion is possible through the coupling of the excitonic states with solvent vibrations. The strength of this coupling, however, also suggests adsorptions to the inside of the tubular nanotube structure leading to a coupled vibration of linear acetonitrile molecules that are adsorbed to the inner surface. The findings are important for the field of nanofluidics and provide an excellent system for efficient energy down-conversion in the transmission window of biological tissue. Having separated the pure effect of solvent adsorption allowed us to study the undisturbed molecular adsorption of polymers in these systems. The addition of polyfluorene polymer leads to a slow but stepwise intensity increase. The intensity increase is overlapping with a concurrent process that leads to an intensity decrease. Unfortunately, observing the stepwise process has a low spacial resolution of only 100-250nm, which is in the range of the exciton diffusion length in these systems and hinders detailed analysis. The two competing and overlapping processes processes are considered to originate from slow π-stacking and fast side-chain binding. Insights into this process are essential for selecting suitably formed polymers. However, the findings also emphasize the importance of solvent selection during nanotube dispersion since solvent effects were proven to be far more critical on the quantum yield in these systems. These measurements can shed light on the ongoing debate on polymers adsorption during nanotube individualization and allow us to direct the discussion more towards the selection of suitable solvents. This work provides fundamental insights into the adsorption of various molecules on the surface of individually observed suspended Single-Wall Carbon Nanotubes. It allows observing the adsorption of individual molecules below the optical limit in the solid, liquid, and gas phases. Nanotubes are able to act as sensing material for detecting changes in their direct surrounding. These fundamental findings are also crucial for increasing the quantum yield of solvent-dispersed nanotubes. They can provide better light-harvesting systems for microscopy in biological tissue and set the base for a more efficient telecommunication infrastructure with nano-scale spintronics devices and lasing components. The newly discovered solvent alignment in the nanotube surrounding can potentially also be used for supercapacitors that are needed for caching the calculation results in computational devices that use polymer wrapped nanotubes as transistors. Although fundamental, these studies develop a strategy to enlighten this room that is barely only visible at the bottom of the nano-scale.}, subject = {Kohlenstoff-Nanor{\"o}hre}, language = {en} } @phdthesis{Grimm2023, author = {Grimm, Philipp Martin}, title = {Locally driven complex plasmonic nanoantenna systems}, doi = {10.25972/OPUS-30315}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303152}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Metallic nanostructures possess the ability to support resonances in the visible wavelength regime which are related to localized surface plasmons. These create highly enhanced electric fields in the immediate vicinity of metal surfaces. Nanoparticles with dipolar resonance also radiate efficiently into the far-field and hence serve as antennas for light. Such optical antennas have been explored during the last two decades, however, mainly as standalone units illuminated by external laser beams and more recently as electrically driven point sources, yet merely with basic antenna properties. This work advances the state of the art of locally driven optical antenna systems. As a first instance, the electric driving scheme including inelastic electron tunneling over a nanometer gap is merged with Yagi-Uda theory. The resulting antenna system consists of a suitably wired feed antenna, incorporating a tunnel junction, as well as several nearby parasitic elements whose geometry is optimized using analytical and numerical methods. Experimental evidence of unprecedented directionality of light emission from a nanoantenna is provided. Parallels in the performance between radiofrequency and optical Yagi-Uda arrays are drawn. Secondly, a pair of electrically connected antennas with dissimilar resonances is harnessed as electrodes in an organic light emitting nanodiode prototype. The organic material zinc phthalocyanine, exhibiting asymmetric injection barriers for electrons and holes, in conjunction with the electrode resonances, allows switching and controlling the emitted peak wavelength and directionality as the polarity of the applied voltage is inverted. In a final study, the near-field based transmission-line driving of rod antenna systems is thoroughly explored. Perfect impedance matching, corresponding to zero back-reflection, is achieved when the antenna acts as a generalized coherent perfect absorber at a specific frequency. It thus collects all guided, surface-plasmon mediated input power and transduces it to other nonradiative and radiative dissipation channels. The coherent interplay of losses and interference effects turns out to be of paramount importance for this delicate scenario, which is systematically obtained for various antenna resonances. By means of the here developed semi-analytical toolbox, even more complex nanorod chains, supporting topologically nontrivial localized edge states, are studied. The results presented in this work facilitate the design of complex locally driven antenna systems for optical wireless on-chip communication, subwavelength pixels, and loss-compensated integrated plasmonic nanocircuitry which extends to the realm of topological plasmonics.}, subject = {Plasmonik}, language = {en} } @phdthesis{Fuhl2024, author = {Fuhl, Lucas}, title = {Photolumineszenzmikroskopie und -spektroskopie endohedraler Farbstoffe in Bornitridnanor{\"o}hren}, doi = {10.25972/OPUS-37115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-371150}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Im Rahmen der vorliegenden Dissertation wurde untersucht, wie die Einkapselung organischer Farbstoffmolek{\"u}le in Bornitridnanor{\"o}hren (BNNTs) die photophysikalischen Eigenschaften der Fluorophore beeinflusst. Als Farbstoffe wurden hierbei alpha-Quaterthiophen (4T), alpha-Sexithiophen (6T), alpha-Octithiophen (8T) sowie Nilrot (NR) ausgew{\"a}hlt. Die eingesetzten BNNTs besitzen einen nominellen Durchmesser von \(5 \pm 2\)nm. F{\"u}r die Charakterisierung der reinen Farbstoffe und der hybriden Systeme aus Farbstoff und Nanor{\"o}hre kam ein Laboraufbau zum Einsatz, der neben Absorptions- und Photolumineszenz (PL)-Spektroskopie auch PL-Mikroskopie erm{\"o}glicht. Zus{\"a}tzlich l{\"a}sst sich damit auch eine zeitaufgel{\"o}ste Untersuchung der PL (engl. time correlated single photon counting, TCSPC) im Ensemble und an einzelnen, separierten Nano-Objekten (mit Farbstoff gef{\"u}llte BNNTs) umsetzen. In Kapitel 5 wurden zun{\"a}chst die freien Farbstoffe in L{\"o}sung charakterisiert. Es hat sich gezeigt, dass sowohl 4T als auch NR im verwendeten L{\"o}semittel Dimethylformamid (DMF) l{\"o}slich sind, wohingegen 6T und 8T hier eine geringere L{\"o}slichkeit zeigen. Die unterschiedlichen Verl{\"a}ufe der konzentrationsabh{\"a}ngigen PL-Spektren f{\"u}r 4T und 6T in DMF lassen sich vermutlich auf diesen L{\"o}slichkeitsunterschied zur{\"u}ckf{\"u}hren. Zudem wurden Extinktionskoeffizienten f{\"u}r 4T und NR mittels konzentrationsabh{\"a}ngiger Absorptionsspektren bestimmt und es zeigte sich eine gute {\"U}bereinstimmung mit der Literatur. F{\"u}r 6T und 8T war eine Bestimmung aufgrund der geringen L{\"o}slichkeit nicht m{\"o}glich, weshalb auf Literaturwerte zur{\"u}ckgegriffen wurde oder diese extrapoliert wurden (8T). In Kapitel 6 erfolgte die detaillierte Charakterisierung der mit Oligothiophenen gef{\"u}llten BNNTs. Die Bef{\"u}llung wurde dabei im Wesentlichen nach einem von C. Allard publizierten Verfahren durchgef{\"u}hrt und auf die zus{\"a}tzlichen Fluorophore 4T, 8T und NR {\"u}bertragen. F{\"u}r Messungen mittels UV-Vis-Spektroskopie in L{\"o}sung bzw. Dispersion hat sich beim Farbstoff 6T gezeigt, dass sich das Absorptionsmaximum von 407nm (freies 6T) hin zu 506nm (6T@BNNT) verschiebt. Ursache hierf{\"u}r ist vermutlich die Bildung von J-Aggregaten im Inneren der R{\"o}hren. Die entsprechenden PL-Spektren von freiem 6T und dem Hybridsystem zeigen dabei keine signifikanten Unterschiede. F{\"u}r konzentrationsabh{\"a}ngige PL-Spektren von 6T@BNNT ergibt sich (anders als bei freiem 6T in DMF) keine {\"A}nderung des Verlaufs der Kurven, was als ein Indiz f{\"u}r eine erfolgreiche Einkapselung gedeutet werden kann. Durch Kombination von Rasterkraft- und PL-Mikroskopie konnten die Außendurchmesser von einzelnen 6T@BNNT Objekten ermittelt und in direkten Zusammenhang mit deren photophysikalischen Eigenschaften gebracht werden. Bei einer Analyse der Polarisation des Emissionslichtes von 6T@BNNT in Abh{\"a}ngigkeit des Außendurchmessers ließ sich jedoch keine klare Korrelation zwischen Struktur und Emissionscharakteristiken erkennen. Diese Beobachtung l{\"a}sst sich vermutlich dadurch erkl{\"a}ren, dass mit Hilfe der Rasterkraftmikroskopie lediglich der Außendurchmesser der (teils mehrwandigen) BNNTs bestimmt werden kann. Die entscheidende Gr{\"o}ße an dieser Stelle ist allerdings der innere Durchmesser der BNNTs, welcher die Ausrichtung und damit auch die Polarisation der Farbstoffmolek{\"u}le beeinflusst. Ein Vergleich des mittleren maximalen Polarisationsgrades der jeweiligen Hybridsysteme hat gezeigt, dass 4T@BNNT den geringsten und 6T@BNNT mit den h{\"o}chsten Wert aufweist. Dies best{\"a}tigt die Annahme, dass mit zunehmender Molek{\"u}ll{\"a}nge die Polarisation, aufgrund des h{\"o}heren Templat-Effektes der R{\"o}hre, zunimmt. 8T@BNNT liegt zwischen den beiden anderen Werten, was dieser Annahme widerspricht. Der mittlere Verkippungswinkel der eingekapselten Farbstoffmolek{\"u}le gegen{\"u}ber der R{\"o}hrenachse liegt f{\"u}r 4T@BNNT bei etwa 16° und ist damit etwas gr{\"o}ßer als derjenige von 6T@BNNT. Somit zeigt sich auch hier, dass k{\"u}rzere Molek{\"u}le mehr sterische Freiheitsgerade im Innern der R{\"o}hren besitzen. F{\"u}r 8T@BNNT liegt der Winkel bei ca. 28° und widerspricht abermals der Annahme. TCSPC-Messungen an freien Oligothiophen-Farbstoffen sowie an den hybriden Systemen zeigten, dass die Fluoreszenzlebensdauer \(\tau\) f{\"u}r 4T und 6T (jeweils in DMF) infolge der Einkapselung deutlich zunimmt wenn die Hybridsysteme ebenfalls in DMF dispergiert sind. Die ermittelten Werte f{\"u}r \(\tau\) der separierten Nanoobjekte lagen f{\"u}r 4T@BNNT und 6T@BNNT unterhalb der entsprechenden in DMF. F{\"u}r 8T bzw. 8T@BNNT ergab sich eine deutlich k{\"u}rzerer Lebensdauer der separierten Nanoobjekte im Vergleich zum freien Farbstoff in kolloidaler Suspension. Ein erster Ansatz, um den zugrundeliegende Mechanismus aufzukl{\"a}ren, bestand darin, die TCSPC-Spektren (f{\"u}r 6T in DMF und 6T@BNNT in DMF) hinsichtlich der einzelnen Zerfallskan{\"a}le zu analysieren. Die erhaltenen Ergebnisse deuteten darauf hin, dass bei freiem 6T in DMF andere Zerfallskan{\"a}le dominieren als beim Hybridsystem 6T@BNNT (in DMF). Eine Korrelation der Fluorezenslebensdauer von 6T@BNNT vom {\"a}ußeren Durchmesser der Nanor{\"o}hren zeigte keinen eindeutigen Zusammenhang. Die Charakterisierung von Nilrot bzw. NR@BNNT (analog zu den Oligothiophenen) erfolgte in Kapitel 4. Auch hier zeigte sich eine Verschiebung des PL-Spektrums des Fluorophores durch die Einkapselung in die BNNTs. Allerdings ist das PL-Spektrum des Hybridsystems (NR@BNNT) um etwa 20nm hypsochrom verschoben. Nilrot ist in der Literatur zudem als Nanosonde zur Ermittlung der Permittivit{\"a}t des L{\"o}semittels bzw. der Umgebung bekannt. Dies erlaubte eine Absch{\"a}tzung der relativen Permittiv{\"a}t im Inneren der BNNTs. Der ermittelte Wert von ca. 4 f{\"u}r ein isoliertes NR@BNNT Objekt deutet auf eine relativ unpolare Umgebung im R{\"o}hreninneren hin. Zum Vergleich dazu, liegt der Wert von freiem NR in DMF bei 47, was die relativ hohe Polarit{\"a}t von DMF best{\"a}tigt. Der ermittelte Wert f{\"u}r die mittlere maximale Polarisation lag leicht {\"u}ber dem der hybriden Systeme aus Oligothiophenen und Nanor{\"o}hren. F{\"u}r die Auslenkung der NR-Molek{\"u}le gegen{\"u}ber der R{\"o}hrenachse ergab sich ein Winkel von etwa 16°, was im Bereich der Werte von 4T@BNNT und 6T@BNNT liegt. Die Messung der zeitaufgel{\"o}sten Fluoreszenz von freiem und eingekapseltem Nilrot hat ergeben, dass auch in diesem Fall eine Verk{\"u}rzung der Lebensdauer (von 4091 ps auf 812 ps) erfolgte. Eine solche Verk{\"u}rzung der Lebensdauer von Chromophoren wird in der Literatur unter anderem mit der Bildung von J-Aggregaten in Zusammenhang gebracht.}, subject = {Fluoreszenzmikroskopie}, language = {de} }