@phdthesis{Uthe2018, author = {Uthe, Friedrich Wilhelm}, title = {Identifikation synthetisch-letaler Interaktionen mit dem Tumorsuppressor APC und Beeinflussung von MYC-Proteinmengen durch Translationsinhibition im kolorektalen Karzinom}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166451}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Der Tumorsupressor APC ist in der Mehrzahl aller F{\"a}lle kolorektaler Karzinome bereits in der initialen Phase der Karzinogenese mutiert. Diese Mutationen f{\"u}hren zu einer aberranten Aktivierung des Wnt-Signalweges sowie zu weiteren die Karzinogenese vorrantreibenden Aktivit{\"a}ten, beispielsweise einem ver{\"a}nderten Migrationsverhalten. Dieser Dissertation zu Grunde liegt die Idee, dass durch die Trunkierung des APC-Proteins aber auch Abh{\"a}ngigkeiten von Genaktivit{\"a}ten entstehen, die zuvor entbehrlich waren. Solche synthetisch letalen Gene sollten in einem high-content shRNA-Screen gefunden werden. F{\"u}r die Durchf{\"u}hrung des Screens wurde ein von der SW480 Kolonkarzinomzelllinie abgeleitetes, isogenes Zellsystem generiert, welches durch Induktion mit Doxyzyklin das vollst{\"a}ndige APC-Allel (FL-APC) exprimiert. Infolge dieser Expression zeigen die Zellen einen weniger malignen Ph{\"a}notyp. Dies spiegelt sich darin wider, dass die Zellen durch FL-APC Expression in ihrer Wnt-Signalwegsaktivit{\"a}t eingeschr{\"a}nkt werden. Doxyzyklininduzierte Zellen sind schlechter in der Lage ohne Adh{\"a}sion zu proliferieren als nicht induzierte Zellen. Andererseits ist ihre F{\"a}higkeit einem FKS-gradienten entlang zu migrieren verbessert. Der shRNA-Screen wurde mit der Decipher shRNA-Bibliothek durchgef{\"u}hrt. Diese enth{\"a}lt 27.500 verschiedene shRNAs mit Interferenzaktivit{\"a}t gegen 5.000 mRNAs, die potentiell pharmakologisch inhibierbare Proteine kodieren. Die besten zwei Kandidaten f{\"u}r eine synthetisch letale Interaktion mit trunkiertem APC, BCL2L1 und EIF2B5 wurden im Verlauf einer Masterarbeit bzw. direkt in dieser Disseration validiert. EIF2B5 zeigte in vitro nach Depletion durch unterschiedliche shRNAs einen di erentiellen Proliferationse ekt bei FL-APC induzierten im Vergleich zu kontrollbehandelten Zellen. Dieser di erentielle E ekt konnte in einem weiteren Modellsystem, SW480 Zellen mit konstitutiver FL-APC Expression, ebenfalls validiert werden. Durch Expression einer shRNA mit Aktivit{\"a}t gegen EIF2B5 werden in beiden Zellsystem die unfolded protein response (UPR) Gene DDIT3 und splXBP1 aktiviert. Interessanterweise werden durch die Expression von FL-APC diese Gene reprimiert. Im Promotor der EIF2B5-mRNA be ndet sich eine Bindestelle f{\"u}r MYC. Es ist denkbar, dass durch die Expression von FL-APC eine globale Ver{\"a}nderung der Genexpression vorgenommen wird, die einerseits eine Repression von EIF2B5 nach sich zieht aber andererseits eine hierdurch ausgel{\"o}ste ER-Stress Antwort verhindert. Eine Inhibition von EIF2B5 ohne diese Adaption andererseits f{\"u}hrt nach diesem Model zu einer UPR-aktivierten Apoptose. In einem zweiten Projekt wurde das {\"u}berraschende Verhalten von Kolonkarzinomzellen untersucht, die nach Zugabe von BEZ235, einem dualen PI3K/mTOR Inhibitor, trotz gegenteiliger Erwartungen MYC-Proteinmengen erh{\"o}hen. Eine Repression wurde erwar- tet, weil die Inhibition von PI3K einerseits zu einer proteasomalen Destabiliserung und andererseits die mTOR Inhibition zu einer verringerten Synthese von MYC f{\"u}hren sollte. W{\"a}hrend bereits gezeigt werden konnte, dass durch einen FOXO-vermittelten Mechanismus MAPK-abh{\"a}ngig die MYC-Expression verst{\"a}rkt wird, wurde in dieser Dissertation die erwartete Translationsinhibition untersucht. BEZ235 inhibiert zwar CAP-abh{\"a}ngige Translation, das MYC Protein wird jedoch aufgrund einer IRES-vermittelten Translation weiterhin exprimiert. Silvestrol, ein Inhibitor der Helikase eIF4A andererseits interveniert mit CAP- und IRES-abh{\"a}ngiger Translation und kann die MYC-Proteinkonzentrationen verringern. Wir konnten zudem feststellen, dass die Applikation von Silvestrol auch in vivo m{\"o}glich und wirksam ist und zudem tolleriert wird. Dies gibt Anlass zur Ho nung, dass eine Intervention der Translation auch im Menschen eine valide Strategie zur Behandlung MYC-getriebener Tumore sein k{\"o}nnte.}, subject = {Colonkrebs}, language = {de} } @phdthesis{Bozkaya2023, author = {Bozkaya, Beg{\"u}m}, title = {Influence of Carbon Additives on the Electrochemical Performance of Modern Lead-Acid Batteries}, doi = {10.25972/OPUS-31917}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319174}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In the first part of this thesis, a validation of both short-term and long-term DCA tests on 2 V laboratory cells is focussed. The aim is to improve the laboratory cell level measurement technology for dynamic charge acceptance regarding the investigation of carbon additives. To address this issue, it is crucial to apply carbon additives generating a remarkable difference in charge acceptance. For this purpose, five different carbon additives providing a variation in the specific external surface were included as additives in the negative plates of 2 V lead-acid cells. Both short-term (charge acceptance test 2 from SBA and DCA from EN) and long-term (Run-in DCA from Ford) DCA tests were executed on the lead-acid cells. Further understanding of the mechanism was studied by applying electrochemical methods like cyclic voltammetry and electrochemical impedance spectroscopy. The second part of this thesis aims to understand the impact of carbon surface functional groups on the electrochemical activity of the negative electrodes as well as the DCA of 2 V lead-acid cells. In order to address this topic, commercially available activated carbon was modified by different chemical treatments to incorporate specific surface functional groups in the carbon structure. A series of activated carbons having a broad range of pH was prepared, which were used as additives in the negative electrodes. The corresponding lead-acid cells were subjected to cyclic voltammetry and DCA test according to EN. Further, the physical and chemical properties of the functionalized carbon additives were intensively analyzed to establish a structure-property relationship with a focus on DCA.}, subject = {Bleiakkumulator}, language = {en} } @phdthesis{Gold2023, author = {Gold, Lukas}, title = {Methods for the state estimation of lithium-ion batteries}, doi = {10.25972/OPUS-30618}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-306180}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This work introduced the reader to all relevant fields to tap into an ultrasound-based state of charge estimation and provides a blueprint for the procedure to achieve and test the fundamentals of such an approach. It spanned from an in-depth electrochemical characterization of the studied battery cells over establishing the measurement technique, digital processing of ultrasonic transmission signals, and characterization of the SoC dependent property changes of those signals to a proof of concept of an ultrasound-based state of charge estimation. The State of the art \& theoretical background chapter focused on the battery section on the mechanical property changes of lithium-ion batteries during operation. The components and the processes involved to manufacture a battery cell were described to establish the fundamentals for later interrogation. A comprehensive summary of methods for state estimation was given and an emphasis was laid on mechanical methods, including a critical review of the most recent research on ultrasound-based state estimation. Afterward, the fundamentals of ultrasonic non-destructive evaluation were introduced, starting with the sound propagation modes in isotropic boundary-free media, followed by the introduction of boundaries and non-isotropic structure to finally approach the class of fluid-saturated porous media, which batteries can be counted to. As the processing of the ultrasonic signals transmitted through lithium-ion battery cells with the aim of feature extraction was one of the main goals of this work, the fundamentals of digital signal processing and methods for the time of flight estimation were reviewed and compared in a separate section. All available information on the interrogated battery cell and the instrumentation was collected in the Experimental methods \& instrumentation chapter, including a detailed step-by-step manual of the process developed in this work to create and attach a sensor stack for ultrasonic interrogation based on low-cost off-the-shelf piezo elements. The Results \& discussion chapter opened with an in-depth electrochemical and post-mortem interrogation to reverse engineer the battery cell design and its internal structure. The combination of inductively coupled plasma-optical emission spectrometry and incremental capacity analysis applied to three-electrode lab cells, constructed from the studied battery cell's materials, allowed to identify the SoC ranges in which phase transitions and staging occur and thereby directly links changes in the ultrasonic signal properties with the state of the active materials, which makes this work stand out among other studies on ultrasound-based state estimation. Additional dilatometer experiments were able to prove that the measured effect in ultrasonic time of flight cannot originate from the thickness increase of the battery cells alone, as this thickness increase is smaller and in opposite direction to the change in time of flight. Therefore, changes in elastic modulus and density have to be responsible for the observed effect. The construction of the sensor stack from off-the-shelf piezo elements, its electromagnetic shielding, and attachment to both sides of the battery cells was treated in a subsequent section. Experiments verified the necessity of shielding and its negligible influence on the ultrasonic signals. A hypothesis describing the metal layer in the pouch foil to be the transport medium of an electrical coupling/distortion between sending and receiving sensor was formulated and tested. Impedance spectroscopy was shown to be a useful tool to characterize the resonant behavior of piezo elements and ensure the mechanical coupling of such to the surface of the battery cells. The excitation of the piezo elements by a raised cosine (RCn) waveform with varied center frequency in the range of 50 kHz to 250 kHz was studied in the frequency domain and the influence of the resonant behavior, as identified prior by impedance spectroscopy, on waveform and frequency content was evaluated to be uncritical. Therefore, the forced oscillation produced by this excitation was assumed to be mechanically coupled as ultrasonic waves into the battery cells. The ultrasonic waves transmitted through the battery cell were recorded by piezo elements on the opposing side. A first inspection of the raw, unprocessed signals identified the transmission of two main wave packages and allowed the identification of two major trends: the time of flight of ultrasonic wave packages decreases with the center frequency of the RCn waveform, and with state of charge. These trends were to be assessed further in the subsequent sections. Therefore, methods for the extraction of features (properties) from the ultrasonic signals were established, compared, and tested in a dedicated section. Several simple and advanced thresholding methods were compared with envelope-based and cross-correlation methods to estimate the time of flight (ToF). It was demonstrated that the envelope-based method yields the most robust estimate for the first and second wave package. This finding is in accordance with the literature stating that an envelope-based method is best suited for dispersive, absorptive media [204], to which lithium-ion batteries are counted. Respective trends were already suggested by the heatmap plots of the raw signals vs. RCn frequency and SoC. To enable such a robust estimate, an FIR filter had to be designed to preprocess the transmitted signals and thereby attenuate frequency components that verifiably lead to a distorted shape of the envelope. With a robust ToF estimation method selected, the characterization of the signal properties ToF and transmitted energy content (EC) was performed in-depth. A study of cycle-to-cycle variations unveiled that the signal properties are affected by a long rest period and the associated relaxation of the multi-particle system "battery cell" to equilibrium. In detail, during cycling, the signal properties don't reach the same value at a given SoC in two subsequent cycles if the first of the two cycles follows a long rest period. In accordance with the literature, a break-in period, making up for more than ten cycles post-formation, was observed. During this break-in period, the mechanical properties of the system are said to change until a steady state is reached [25]. Experiments at different C-rate showed that ultrasonic signal properties can sense the non-equilibrium state of a battery cell, characterized by an increasing area between charge and discharge curve of the respective signal property vs. SoC plot. This non-equilibrium state relaxes in the rest period following the discharge after the cut-off voltage is reached. The relaxation in the rest period following the charge is much smaller and shows little C-rate dependency as the state is prepared by constant voltage charging at the end of charge voltage. For a purely statistical SoC estimation approach, as employed in this work, where only instantaneous measurements are taken into account and the historic course of the measurement is not utilized as a source of information, the presence of hysteresis and relaxation leads to a reduced estimation accuracy. Future research should address this issue or even utilize the relaxation to improve the estimation accuracy, by incorporating historic information, e.g., by using the derivative of a signal property as an additional feature. The signal properties were then tested for their correlation with SoC as a function of RCn frequency. This allowed identifying trends in the behavior of the signal properties as a function of RCn frequency and C-rate in a condensed fashion and thereby enabled to predict the frequency range, about 50 kHz to 125 kHz, in which the course of the signal properties is best suited for SoC estimation. The final section provided a proof of concept of the ultrasound-based SoC estimation, by applying a support vector regression (SVR) to before thoroughly studied ultrasonic signal properties, as well as current and battery cell voltage. The included case study was split into different parts that assessed the ability of an SVR to estimate the SoC in a variety of scenarios. Seven battery cells, prepared with sensor stacks attached to both faces, were used to generate 14 datasets. First, a comparison of self-tests, where a portion of a dataset is used for training and another for testing, and cross-tests, which use the dataset of one cell for training and the dataset of another for testing, was performed. A root mean square error (RMSE) of 3.9\% to 4.8\% SoC and 3.6\% to 10.0\% SoC was achieved, respectively. In general, it was observed that the SVR is prone to overestimation at low SoCs and underestimation at high SoCs, which was attributed to the pronounced hysteresis and relaxation of the ultrasonic signal properties in this SoC ranges. The fact that higher accuracy is achieved, if the exact cell is known to the model, indicates that a variation between cells exists. This variation between cells can originate from differences in mechanical properties as a result of production variations or from differences in manual sensor placement, mechanical coupling, or resonant behavior of the ultrasonic sensors. To mitigate the effect of the cell-to-cell variations, a test was performed, where the datasets of six out of the seven cells were combined as training data, and the dataset of the seventh cell was used for testing. This reduced the spread of the RMSE from (3.6 - 10.0)\% SoC to (5.9 - 8.5)\% SoC, respectively, once again stating that a databased approach for state estimation becomes more reliable with a large data basis. Utilizing self-tests on seven datasets, the effect of additional features on the state estimation result was tested. The involvement of an additional feature did not necessarily improve the estimation accuracy, but it was shown that a combination of ultrasonic and electrical features is superior to the training with these features alone. To test the ability of the model to estimate the SoC in unknown cycling conditions, a test was performed where the C-rate of the test dataset was not included in the training data. The result suggests that for practical applications it might be sufficient to perform training with the boundary of the use cases in a controlled laboratory environment to handle the estimation in a broad spectrum of use cases. In comparison with literature, this study stands out by utilizing and modifying off-the-shelf piezo elements to equip state-of-the-art lithium-ion battery cells with ultrasonic sensors, employing a range of center frequencies for the waveform, transmitted through the battery cell, instead of a fixed frequency and by allowing the SVR to choose the frequency that yields the best result. The characterization of the ultrasonic signal properties as a function of RCn frequency and SoC and the assignment of characteristic changes in the signal properties to electrochemical processes, such as phase transitions and staging, makes this work unique. By studying a range of use cases, it was demonstrated that an improved SoC estimation accuracy can be achieved with the aid of ultrasonic measurements - thanks to the correlation of the mechanical properties of the battery cells with the SoC.}, subject = {Lithium-Ionen-Akkumulator}, language = {en} } @phdthesis{FlatenAndersen2013, author = {Fl{\aa}ten Andersen, Hanne}, title = {New Materials for Lithium-Ion Batteries}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101434}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Over the last decades, lithium-ion batteries have grown more important and substituted other energy storage systems. Due to advantages such as high energy density and low self-discharge, the lithium-ion battery has taken its part in the rechargeable energy storage market, and it is now found in most laptops, cameras and mobile phones. With the increasing demands for electrical vehicles and stationary energy storage systems, there is a necessity for improved lithium-ion battery materials. In this thesis several alternative electrode materials have been examined with a main focus on the electrochemical characterisation. As an alternative to the commercial cathode LiCoO2, the LiMn2O4 cathode has been suggested due to its reduced toxicity, material abundance, reduced costs and increased specific capacity. On the anode side, several Sn-containing anodes have been investigated and steps to overcome the main challenge, the great volume expansion upon cycling, have been taken. In addition, a novel anode material group was synthesised at the University of Marburg and two substances of the lithium chalcogenidometalate networks were successfully characterised. The cathode material, LiMn2O4, was synthesised via the sol-gel technique and several coating methods such as dip-coating, electrophoretics and infiltration were investigated. The LiMn2O4 material was initially coated on a porous metal foam as a current collector, thus providing new possibilities as the porosity of the substrate increased, mechanical stability and adhesion improved and a 3-dimensional network was obtained. In order to compare the results of the LiMn2O4 cathode material on the novel current collector, the material was also coated on a standard metallic foil and characterised. The analysis followed via X-ray diffraction, electron microscopy, thermogravimetrical analysis and several electrochemical techniques. Tin containing anode materials were chosen due to the doubling of the theoretical capacity compared with the commercially used graphite. However, a great challenge lies with using tin or tin-containing anode materials. Upon lithiation of Sn, the material can expand up to 300 \%, therefore a stabilising effect is necessary to avoid a collapse of the material. This work shows several new concepts and attempts to overcome this challenge, including SnO2 nanowires deposited via chemical vapour deposition on both metallic foam and standard current collectors. A new improvement consisted of the tin - carbon nanofibers where the nanofibers form a stabilising matrix that can partially buffer the volume change of the Sn particles. The synthesis of the Sn-containing anodes took place at the University of Cologne, while characterisation, cell preparation and optimising the electrode system were features of this thesis. In addition, a lithium chalcogenidometalate network proved to be an interesting, new anode material group. Both Li4MnSn2Se7 and Li4MnGe2S7 (synthesised at Philipps-Universit{\"a}t Marburg) were electrochemically examined to better understand the lithiation processes. Both materials obtained very high specific capacities and were found to be possible alternatives to the state-of-the art anodes. All the examined electrode materials were found to have some advantage over the commercially used LiCoO2 and graphite electrodes, and a thorough characterization of the materials was performed to understand the processes that took place.}, subject = {Lithium-Ionen-Akkumulator}, language = {en} } @phdthesis{Hahn2022, author = {Hahn, Lukas}, title = {Novel Thermoresponsive Hydrogels Based on Poly(2-oxazoline)s and Poly(2-oxazine)s and their Application in Biofabrication}, doi = {10.25972/OPUS-27129}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271299}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In this work, the influence of aromatic structures on drug encapsulation, self-assembly and hydrogel formation was investigated. The physically crosslinked gelling systems were characterized and optimized for the use in biofabrication and applied in initial (bio)printing experiments. Chapter I: The cytocompatible (first in vitro and in vivo studies) amphiphile PMeOx-b-PBzOx-b- PMeOx (A-PBzOx-A) was used for the solubilization of PTX, schizandrin A (SchA), curcumin (CUR), niraparib and HS-173. Chapter II: Compared to the polymers A-PPheOx-A, A-PBzOx-A and A-PBzOzi-A, only the polymer A-PPheOzi-A showed a reversible temperature- and concentration-dependent inverse thermogelation, which is accompanied by a morphology change from long wormlike micelles in the gel to small spherical micelles in solution. The worm formation results from novel interactions between the hydrophilic and hydrophobic aromatic polymer blocks. Changes in the hydrophilic block significantly alter the gel system. Rheological properties can be optimized by concentration and temperature, which is why the hydrogel was used to significantly improve the printability and stability of Alg in a blend system. Chapter III: By extending the side chain of the aromatic hydrophobic block, the inverse thermogelling polymer A-poly(2-phenethyl-2-oxazoline)-A (A-PPhenEtOx-A) is obtained. Rapid gelation upon cooling is achieved by inter-correlating spherical micelles. Based on ideal rheological properties, first cytocompatible bioprinting experiments were performed in combination with Alg. The polymers A- poly(2-benzhydryl-2-oxazoline)-A (A-PBhOx-A) and A-poly(2-benzhydryl-2-oxazine) (A-PBhOzi-A) are characterized by two aromatic benzyl units per hydrophobic repeating unit. Only the polymer A- PBhOzi-A exhibited inverse thermogelling behavior. Merging micelles could be observed by electron microscopy. The system was rheologically characterized and discussed with respect to an application in 3D printing. Chapter IV: The thermogelling POx/POzi system, in particular the block copolymer PMeOx-b- PnPrOzi, was used in different applications in the field of biofabrication. The introduction of maleimide and furan units along the hydrophilic polymer part ensured additional stabilization by Diels-Alder crosslinking after the printing process.}, subject = {Polymer Science}, language = {en} } @phdthesis{Macher2021, author = {Macher, Sven}, title = {On the Effects of Moisture on Polymer-Based Electrochromic Devices}, doi = {10.25972/OPUS-24240}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242407}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The present work builds on a conjugated electrochromic polymer with a highly transmissive and colorless bright state and its application in electrochromic devices. The main body of this work focuses on the investigation of the influence of moisture on electrochromic devices and solutions to overcome possible degradation of these devices due to moisture ingress. Firstly, a series of EDOT derivatives with a terminal double bond in the lateral sidechain to potentially achieve a highly transmissive and fully colorless bright state was investigated. All of the EDOT derivatives were electrochemically polymerized and characterized by means of (in-situ) spectroelectrochemistry. The results highlight the dramatic influence of the terminal double bond on the improved visible light transmittance and color neutrality in the bright state. After detailed evaluation and comparison, the best performing compound, which contains a hexenyl sidechain (PEDOT-EthC6), was scaled-up by changing the deposition technique from an electrochemical to a chemical in-situ polymerization process on a R2R-pilot line in an industrially relevant environment. The R2R-processed PEDOTEthC6 half-cells were characterized in detail and provide enhanced electrochromic properties in terms of visible light transmittance and color neutrality in the bright state as well as short response times, improved contrast ratio, coloration efficiency and cycling stability (10 000 cycles).[21] In a second step, the novel PEDOT-EthC6 electrochromic polymer was combined with a Prussian Blue counter electrode and a solid polymer electrolyte to form an all-solid-sate ECDs based on complementary switching electrodes and PET-ITO as flexible substrates. The fabricated ECDs were optically and spectroelectrochemically characterized. Excellent functionality of the S2S-processed flexible ECDs was maintained throughout 10 000 switching cycles under laboratory conditions. The ECDs offer enhanced electrochromic properties in terms of visible light transmittance change and color neutrality in the bright state as well as contrast ratio, coloration efficiency, cycling stability and fast response times. Furthermore, the final device assembly was transferred from a S2S-process to a continuous R2R-lamination process.[238] In a third step, the PEDOT-EthC6/PB-based ECDs were submitted to conscious environmental aging tests. The emphasis of the research presented in this work, was mainly put at the influence of moisture and possible failure mechanisms regarding the PEDOT-EthC6/PB based ECDs. An intense brown coloration of the electrodes was observed while cycling the ECDs in humid atmospheres (90\% rH) as a major degradation phenomenon. The brown coloration and a thereby accompanied loss of conductivity of the PET-ITO substrates was related to significant degradation of the ITO layers, inserted as the conductive layers in the flexible ECDs. A dissolution of the ITO thin films and formation of metallic indium particles on the surface of the ITO layers was observed that harmed the cycling stability enormously. The conductive layers of the aged ECDs were investigated by XRD, UV-Vis, SEM and spectroelectrochemical measurements and validated the supposed irreversible reduction of the ITO layers.[279] In the absence of reasonable alternatives to PET-ITO for flexible (R2R-processed) ECDs, it is also important to investigate measures to avoid the degradation of ECDs. This is primarily associated with the avoidance of appropriate electrode potentials necessary for ITO reduction in humid atmospheres. As an intrinsic action point, the electrode potentials were investigated via electrochemical measurements in a three-electrode setup of an all-solid-state ECD. Extensive knowledge on the electrode potentials allowed the voltage-induced degradation of the ITO in flexible ECDs to be avoided through the implementation of an unbalanced electrode configuration (charge density ratio of working and counter electrode). It was possible to narrow the overall operational voltage window to an extent in which irreversible ITO reduction no longer occurs. The unbalanced electrode configuration lead to an improved cycling stability without harming other characteristics such as response time and light transmittance change and allows ECD operation in the presence of humidity.[279] The avoidance of the mentioned degradation phenomena is further associated with appropriate sealing methods and materials as well as appropriate electrode and device fabrication processes. Since a variety of sealing materials is commercially available, due to the commercial launch of organic photovoltaic (OPV) and light emitting diodes (OLEDs), the focus in the present work was put to water-free electrode fabrication. As an extrinsic action point, a novel preparation method of a nanoscale PEDOT-EthC6 dispersion based on organic solvents is presented here in a final step. The water-free processing method gives access to straightforward printing and coating processes on flexible PET-ITO substrates and thus represents a promising and simplified alternative to the established PEDOT:PSS. The resulting nano-PEDOT-EthC6 thin films exhibit enhanced color neutrality and transmissivity in the bright state and are comparable to the properties of the in-situ polymerized PEDOT-EthC6 thin films.[280]}, subject = {Elektrochromie}, language = {en} } @article{LehmannBaumannLambovetal.2021, author = {Lehmann, Matthias and Baumann, Maximilian and Lambov, Martin and Eremin, Alexey}, title = {Parallel polar dimers in the columnar self-assembly of umbrella-shaped subphthalocyanine mesogens}, series = {Advanced Functional Materials}, volume = {31}, journal = {Advanced Functional Materials}, number = {38}, doi = {10.1002/adfm.202104217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256343}, year = {2021}, abstract = {The self-assembly of umbrella-shaped mesogens is explored with subphthalocyanine cores and oligo(thienyl) arms with different lengths in the light of their application as light-harvesting and photoconducting materials. While the shortest arm derivatives self-assemble in a conventional columnar phase with a single mesogen as a repeating unit, the more extended derivatives generate dimers that pile up into liquid crystalline columns. In contrast to the antiparallel arrangement known from single crystals, the present mesogens align as parallel dimers in polar columnar phases as confirmed by X-ray scattering, experimental densities, dielectric spectroscopy, second harmonic generation, alignment, and conductivity studies. UV-vis and fluorescence spectroscopies reveal a broad absorption in the visible range and only weak emission of the Q-band. Thus, these light-collecting molecules forming strongly polar columnar mesophases are attractive for application in the area of photoconductive materials.}, language = {en} } @misc{Christoffel1976, type = {Master Thesis}, author = {Christoffel, Volker}, title = {Rekonstitution des Chromophors und der Funktion von Bakteriorhodopsin aus Halobacterium halobium}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144908}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {68}, year = {1976}, abstract = {Ein Modell der lichtgetriebenen Protonenpumpe Bakteriorhodopsin postulierte die direkte Beteiligung der Wasserstoffe in der 4-Stellung des Cyclohexenringes des Retinalchromophors an dem Vorgang der Protonenverschiebung. Mittels Blockaden der Retroform-Bildung von Retinal durch chemische Modifizierungen des Cyclohexenringes (4-Hydroxy-Retinal, 5,6-Epoxy-Retinal) konnten nach Einbau der modifizierten Molek{\"u}le in die isolierte Purpurmembran und nach Zugabe zu Halobakterien mit unterdr{\"u}ckter Retinalsynthese die direkte Beteiligung des Cyclohexenringes an der Protonenpumpe mit großer Wahrscheinlichkeit ausgeschlossen werden.}, subject = {Bakteriorhodopsin}, language = {de} } @phdthesis{Ramirez2024, author = {Ramirez, Yesid A.}, title = {Structural basis of ubiquitin recognition and rational design of novel covalent inhibitors targeting Cdu1 from \(Chlamydia\) \(Trachomatis\)}, doi = {10.25972/OPUS-19168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191683}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The WHO-designated neglected-disease pathogen Chlamydia trachomatis (CT) is a gram-negative bacterium responsible for the most frequently diagnosed sexually transmitted infection worldwide. CT infections can lead to infertility, blindness and reactive arthritis, among others. CT acts as an infectious agent by its ability to evade the immune response of its host, which includes the impairment of the NF-κB mediated inflammatory response and the Mcl1 pro-apoptotic pathway through its deubiquitylating, deneddylating and transacetylating enzyme ChlaDUB1 (Cdu1). Expression of Cdu1 is also connected to host cell Golgi apparatus fragmentation, a key process in CT infections. Cdu1 may this be an attractive drug target for the treatment of CT infections. However, a lead molecule for the development of novel potent inhibitors has been unknown so far. Sequence alignments and phylogenetic searches allocate Cdu1 in the CE clan of cysteine proteases. The adenovirus protease (adenain) also belongs to this clan and shares a high degree of structural similarity with Cdu1. Taking advantage of topological similarities between the active sites of Cdu1 and adenain, a target-hopping approach on a focused set of adenain inhibitors, developed at Novartis, has been pursued. The thereby identified cyano-pyrimidines represent the first active-site directed covalent reversible inhibitors for Cdu1. High-resolution crystal structures of Cdu1 in complex with the covalently bound cyano-pyrimidines as well as with its substrate ubiquitin have been elucidated. The structural data of this thesis, combined with enzymatic assays and covalent docking studies, provide valuable insights into Cdu1s activity, substrate recognition, active site pocket flexibility and potential hotspots for ligand interaction. Structure-informed drug design permitted the optimization of this cyano-pyrimidine based scaffold towards HJR108, the first molecule of its kind specifically designed to disrupt the function of Cdu1. The structures of potentially more potent and selective Cdu1 inhibitors are herein proposed. This thesis provides important insights towards our understanding of the structural basis of ubiquitin recognition by Cdu1, and the basis to design highly specific Cdu1 covalent inhibitors.}, subject = {Ubiquitin}, language = {en} } @phdthesis{Kuhlmann2015, author = {Kuhlmann, Matthias}, title = {Sulfur-functional polymers for biomedical applications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119832}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Aim of this thesis was to combine the versatility of sulfur-chemistry, regarding redox-sensitivity as well as chemo- and site-specific conjugation, with multifunctionality of poly(glycidol)s as an alternative to poly(ethylene glycol). First the homo- and copolymerizations of EEGE and AGE were performed with respect to molar-mass distribution and reaction kinetics. A detailed study was given, varying the polymerization parameters such as DP, counter ion, solvent and monomer influence. It can be concluded that in general the rates for all polymerizations are higher using K+, in contrast to Cs+, as counter ion for the active alkoxide species. Unfortunately, K+ as counter ion commonly leads to a reduced control over polymer dispersity. In this thesis it was shown that the broad molar-mass distributions might be reduced by adding the monomer in a step-wise manner. In experiments with a syringe pump, for continuously adding the monomer, a significant reduction of the dispersities could be found using K+ as counter ion. In analogy to the oxyanionic polymerization of epoxides, the polymerization of episulfides via a thioanionic mechanism with various DPs was successful with thiols/DBU as initiator. In most experiments bimodality could be observed due to the dimerization, caused by oxidation processes by introduced oxygen during synthesis. Reducing this was successful by modifying the degassing procedure, e.g. repeated degassing cycles after each step, i.e. initiation, monomer addition and quenching. Unfortunately, it was not always possible to completely avoid the dimerization due to oxidation. Thiophenol, butanethiol, mercaptoethanol and dithiothreitol were used as thiol initiators, all being capable to initiate the polymerization. With the prediction and the narrow molar-mass distributions, the living character of the polymerization is therefore indicated. Homo- and copolymers of poly(glycidol) were used to functionalize these polymers with side-chains bearing amines, thiols, carboxylic acids and cysteines. The cysteine side-chains were obtained using a newly synthesized thiol-functional thiazolidine. For this, cysteine was protected using a condensation reaction with acetone yielding a dimethyl-substituted thiazolidine. Protection of the ring-amine was obtained via a mixed-anhydride route using formic acid and acetic anhydride. The carboxylic acid of 2,2-dimethylthiazolidine-4-carboxylic acid was activated with CDI and cysteamine attached. The obtained crystalline mercaptothiazolidine was subjected to thiol-ene click chemistry with allyl-functional poly(glycidol). A systematic comparison of thermal- versus photo-initiation showed a much higher yield and reaction rate for the UV-light mediated thiol-ene synthesis with DMPA as photo-initiator. Hydrolysis of the protected thiazolidine-functionalities was obtained upon heating the samples for 5 d at 70 °C in 0.1 M HCl. Dialysis against acetic acid lead to cysteine-functional poly(glycidol)s, storable as the acetate salt even under non-inert atmosphere. An oxidative TNBSA assay was developed to quantify the cysteine-content without the influence of the thiol-functionality. A cooperation partner coupled C-terminal thioester peptides with the cysteine-functional poly(glycidol)s and showed the good accessibility and reactivity of the cysteines along the backbone. SDS-PAGE, HPLC and MALDI-ToF measurements confirmed the successful coupling.}, subject = {Polymer}, language = {en} } @phdthesis{Lang2021, author = {Lang, Katharina}, title = {Synthese leitf{\"a}higer elastischer Materialkomposite durch Verwendung metallischer Nanodr{\"a}hte}, doi = {10.25972/OPUS-24825}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248253}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Silbernanodr{\"a}hte (AgNW) wurden in verschiedene Hybridpolymere und in eine als Referenz dienende Silikonzusammensetzung eingebaut. Durch Spincoating konnten transparente leitf{\"a}hige Filme erhalten werden. Deren jeweilige Nanodrahtverteilung, thermische Aktivierung und visuelle Transparenz wurden charakterisiert. Die Perkolationsschwelle der Filme h{\"a}ngt dabei von der individuellen durchschnittlichen AgNW-L{\"a}nge ab. Eine betr{\"a}chtliche Leitf{\"a}higkeit wurde w{\"a}hrend des mechanischen Streckens bis zu 30 \% aufrechterhalten. Mikrostrukturierte Hybridpolymer-Verbundfilme wurden durch UV-Lithographie erhalten. ...}, subject = {Verbundwerkstoff}, language = {de} } @phdthesis{Grotz2013, author = {Grotz, Michael}, title = {Synthese und Charakterisierung abiotischer Foldamere und ihrer Bausteine f{\"u}r die Nutzung in biologischen Systemen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96486}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die vorliegende Arbeit befasst sich mit der Synthese, Charakterisierung und Untersuchung von Foldameren und ihren Untereinheiten im Rahmen des FOLDAPPI-Projekts (Foldamers against Protein-Protein Interaction). Des Weiteren wurden neuartig substituierte Chinoline dargestellt, um sie im Rahmen des SFB 630 auf ihre Hemmwirkung gegen Leishmanien und Trypanosomen zu untersuchen. Im ersten Projekt wurde ein neuartiges Monomer entwickelt, welches die Wasserl{\"o}slichkeit der Foldamere verbessern sollte. Zu diesem Zweck wurde eine zus{\"a}tzliche, hoch polare Seitenkette in den Chinolingrundk{\"o}rper eingef{\"u}hrt. Dieses modifizierte Monomer konnte erfolgreich synthetisiert werden. Um die Verbesserung der Wasserl{\"o}slichkeit gegen{\"u}ber dem zuvor verwendeten Monomer zu testen, wurde erfolgreich ein Tetramer daraus aufgebaut. Das entsch{\"u}tzte Tetramer konnte jedoch aufgrund seiner hohen Polarit{\"a}t nicht ausreichend gereinigt werden, um die abschließenden L{\"o}slichkeitsuntersuchungen durchzuf{\"u}hren. Um dieses Problem zu umgehen, wurde von der Umsetzung in L{\"o}sung auf Reaktionen an der Festphase gewechselt, was die Reinigung der Produkte wesentlich erleichtern sollte. Dabei wurde eine vom Arbeitskreis von I. Huc neu entwickelte mikrowellengest{\"u}tzte Methode verwendet. Das Referenzmolek{\"u}l mit den bisher verwendeten Seitenketten konnte so ohne Probleme synthetisiert und seine L{\"o}slichkeit in Wasser bestimmt werden. Beim neu entwickelten Monomer kam es allerdings beim Aufbau des Tetrameres zu einer Zersetzungsreaktion, weshalb das abschließende Ziel nicht erreicht werden konnte. Im zweiten Projekt wurden zwei Ziele angestrebt: Zun{\"a}chst sollte ein Weg gefunden werden, die Einf{\"u}hrung der Seitenketten an den Chinolinen erst an der festen Phase vorzunehmen, wodurch viele Syntheseschritte bei der Vorbereitung der Monomere gespart werden k{\"o}nnten. Zus{\"a}tzlich sollte eine neue Kupplungsreaktion entwickelt werden, wodurch der Entsch{\"u}tzungsschritt des zu kuppelnden Amins an der Festphase eingespart werden kann. Dadurch w{\"u}rde vor allem bei großen Foldameren das Harz geschont und die Gefahr einer Degenerierung wesentlich verringert. F{\"u}r die Kupplungsreaktion vorgesehen war ein azidfunktionalisiertes Monomer, das mittels Staudinger-Reaktion verkn{\"u}pft werden sollte. Das entsprechende Monomer konnte erfolgreich synthetisiert werden. Auch das erste Ziel, die Einf{\"u}hrung der Seitenkette an der Festphase, konnte erfolgreich durchgef{\"u}hrt werden. Leider war die Verwirklichung beider Ziele {\"u}ber die gleiche Syntheseroute nicht ohne weiteres m{\"o}glich. Da das Monomer ohne die Seitenkette deutlich hydrophiler wurde, w{\"a}re eine Trocknungsmethode bei erh{\"o}hter Temperatur von Vorteil gewesen, um gebundenes Wasser vollst{\"a}ndig zu entfernen. Da das Monomer allerdings auch eine Azidfunktion tr{\"a}gt und sich bei 130 °C explosionsartig zersetzt, war dies nicht m{\"o}glich. Allerdings gen{\"u}gen bereits geringe Spuren von Feuchtigkeit, um die Staudinger-Reaktion zu beeintr{\"a}chtigten. Deshalb konnte das zweite Projektziel nicht verwirklicht werden. Im dritten Projekt wurde die Herstellung einer großen Foldamer-Bibliothek f{\"u}r die Untersuchung der Bindungsaffinit{\"a}t gegen{\"u}ber IL-4 angestrebt. Sie sollte aus 48 Hexameren bestehen, wobei an drei Monomeren die Seitenketten variiert werden sollten, um ein breites Spektum an verschiedenen Kombinationen von Wechselwirkungen abzudecken. Dazu wurden zun{\"a}chst vier verschiedene Monomere synthetisiert, welche eine aromatisch, eine unpolare, eine anionische bzw. eine kationische Seitenkette enthielten. F{\"u}r die Kupplung der Foldamere wurde eine an die Synthese von Aminos{\"a}uresequenzen angelehnte Methode entwickelt und erfolgreich angewandt. So konnten alle 48 Foldamere erfolgreich synthetisiert und 46 von ihnen in ausreichenden Mengen f{\"u}r die Untersuchung an IL-4 gereinigt werden. Leider liegen f{\"u}r diese Bibliothek bisher keine abschließenden Ergebnisse {\"u}ber die Inhibitionseigenschaften gegen{\"u}ber IL-4 vor. Strukturell sehr {\"a}hnliche Foldamere zeigten jedoch in ersten Experimenten eine Inhibition von IL-4 was eine Wirksamkeit der neu erstellten Bibliothek vermuten l{\"a}sst. Das vierte Projekt wurde im Rahmen des SFB 630 durchgef{\"u}hrt. Hierzu wurden einige der urspr{\"u}nglich f{\"u}r andere Projekte hergestellten Foldamere ausgew{\"a}hlt, teilweise entsch{\"u}tzt bzw. an der Nitrogruppe reduziert und anschließend auf Ihre Aktivit{\"a}t gegen Leishmanien und Trypanosomen getestet. Es zeigte sich, dass das verwendete Substitutionsmuster, in den gestesteten Konzentrationen nicht gegen Leishmanien und Trypanosomen wirksam ist. Es eignet sich also nicht f{\"u}r die Erstellung einer neuen Leitstruktur gegen diese beiden Erreger. Allerdings trat im untersuchten Konzentrationsbereich auch keine Zytotoxizit{\"a}t auf, was eine interessante Information f{\"u}r die Verwendung der Foldamere und ihrer Bausteine in biologischen Systemen darstellt.}, subject = {Foldamere}, language = {de} } @phdthesis{Laskowski2014, author = {Laskowski, Nadine}, title = {Synthese und Charakterisierung neuartiger siliciumhaltiger Synthesebausteine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107481}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Die vorliegende Arbeit beschreibt die Synthese von linearen und verzweigten funktionalisierten siliciumhaltigen Synthesebausteinen unter Verwendung der 2,4,6-Trimethoxyphenyl-Schutzgruppe sowie die Synthese cyclischer siliciumhaltiger Synthese-bausteine unter Verwendung eines Donor-stabilisierten Silylens. Diese Forschungsarbeit leistet daher sowohl einen Beitrag zur Schutzgruppenchemie des Siliciums als auch zur Chemie des nieder- bzw. h{\"o}hervalenten Siliciums. Alle Zielverbindungen sowie die entsprechenden isolierten Vorstufen wurden durch NMR-Spektroskopie in L{\"o}sung (1H-, 13C- und 29Si-NMR) und Elementaranalysen (C, H, N; außer 15 und 16) charakterisiert. Die Verbindungen 34, 36, 41, 42, 45, 48, 52, 54 und 55 wurden zus{\"a}tzlich durch NMR-Spektroskopie im Festk{\"o}rper (13C-, 15N- und 29Si-VACP/MAS-NMR) untersucht, und die Verbindungen 1-6, 9, 18, 25, 29, 34, 36, 41, 42, 45, 48, 52, 54 und 55 wurden außerdem durch Einkristall-R{\"o}ntgenstrukturanalyse charakterisiert.}, subject = {Silicium}, language = {de} } @phdthesis{Hoerl2014, author = {H{\"o}rl, Christian}, title = {Synthese und Reaktivit{\"a}t von heteroaromatisch-substituierten Borolen und Diborenen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-94391}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Im Rahmen dieser Arbeit konnten erstmals die Eigenschaften von 1-heteroaromatisch-substituierten, freien Borolen des Typs R′BC4Ph4 untersucht werden. Der Rest R′ wurde unter Verwendung von bekannten Synthesemethoden (Zinn-Bor-Austausch, Salzeliminierung) variiert und die Borolderivate 45 (R′ = Thien-2-yl), 46 (R′ = 5-Methylfuran-2-yl), 47 (R′ = 5-Trimethylsilylthien-2-yl) und 49 (R′ = N-Methylpyrrol-3-yl) erfolgreich synthetisiert und vollst{\"a}ndig charakterisiert (Multikern-NMR-Spektroskopie, Elementaranalyse, R{\"o}ntgenstrukturanalyse am Einkristall). Des Weiteren ist es gelungen, die ersten Bis(borole) mit den heteroaromatischen Br{\"u}ckeneinheiten 2,5-Thienyl (54) und 5,5′-Bithiophen (55) mittels Zinn-Bor-Austausch-Reaktion darzustellen. Die Molek{\"u}lstruktur von 54 best{\"a}tigt dabei nicht nur die erfolgreiche Synthese, sondern auch die coplanare Ausrichtung der drei Ringsysteme zueinander. Anhand von cyclovoltammetrischen Messungen konnte gezeigt werden, dass in diesem -konjugierten Akzeptor-Donor-Akzeptor-System (54) eine ausgepr{\"a}gte Kommunikation zwischen den beiden Borzentren vorliegt. Dadurch ergeben sich vier irreversible Reduktionsereignisse, die ausgehend von 54, dem Monoanion [54]•-, dem Dianion [54]2-, dem Trianion [54]3- und dem Tetraanion [54]4- zugewiesen werden k{\"o}nnen. Das Verhalten von 54 gegen{\"u}ber Reduktion wurde außerdem nicht nur elektrochemisch, sondern auch mithilfe unterschiedlicher Reduktionsmittel analysiert. Die Reduktion mit einem halben {\"A}quivalent des Zwei-Elektronen-Reduktionsmittels Magnesiumanthracen f{\"u}hrte dabei zu dem vollst{\"a}ndig delokalisierten Monoanion Mg0.5[54], welches ESR-spektroskopisch charakterisiert werden konnte. Die Reduktion mit einem {\"A}quivalent Magnesiumanthracen bzw. zwei {\"A}quivalenten des Ein-Elektronen-Reduktionsmittels CoCp*2 lieferte das Dianion [54]2-, das f{\"u}r den Fall von [CoCp*2]2[54] im Festk{\"o}rper studiert werden konnte. Die Molek{\"u}lstruktur belegt, dass es sich bei Dianion [54]2- nicht um ein diradikalisches, sondern ein diamagnetisches, chinoides System handelt, welches auch als Bipolaron beschrieben werden kann. Der Einfluss von heteroaromatischen Substituenten wurde außerdem im Hinblick auf die Synthese neuartiger Basen-stabilisierter Diborene untersucht. Durch reduktive Kupplung geeigneter NHC-stabilisierter Dihalogenborane 77 und 78 (NHC = IMe) konnten die beiden Thienyl-substituierten Diborene 81 und 82 in sehr guten Ausbeuten (81: 82\%; 82: 89\%) dargestellt werden. UV-Vis-spektroskopische Untersuchungen und quantenchemische Rechnungen belegen, dass das HOMO der Diborene durch die -Bindung der BB-Bindung repr{\"a}sentiert wird. Im Gegensatz zu den bekannten Aryl-substituierten Diborenen (73, 74) zeigt die Festk{\"o}rperstruktur von 82 eine coplanare Ausrichtung der Heterocyclen relativ zur BB-Bindungsebene. Dadurch wird die sterische Abschirmung der reaktiven BB-Doppelbindung vermindert und weitere Reaktivit{\"a}tsuntersuchungen in Analogie zur Reaktivit{\"a}t von CC-Doppelbindungen k{\"o}nnen durchgef{\"u}hrt werden.}, subject = {Borole}, language = {de} } @phdthesis{Junold2014, author = {Junold, Konstantin}, title = {Synthese, Struktur und Eigenschaften neuer h{\"o}herkoordinierter Silicium(II)- und Silicium(IV)-Komplexe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-104848}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Die vorliegende Arbeit stellt einen Beitrag zur Chemie des h{\"o}herkoordinierten Siliciums dar. Im Vordergrund standen die Synthese und Charakterisierung neuer neutraler penta- und hexakoordinierter Silicium(IV)-Komplexe sowie die Synthese, Charakterisierung und Untersuchung der Reaktivit{\"a}t eines neuartigen Donor-stabilisierten Silylens.}, subject = {Siliciumkomplexe}, language = {de} } @phdthesis{Voelker2014, author = {V{\"o}lker, Sebastian}, title = {Synthesis, Spectroscopic and Electrochemical Properties of Squaraine Polymers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101638}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this work the synthesis, the spectroscopic and electrochemical investigation as well as some applications of a broad diversity of indolenine squaraine dyes were presented. This diversity was based on two parent squaraine dyes, one standard trans-configured compound (M1) and one in which one central oxygen atom was replaced by a dicyanomethylene moiety (M2), which increased the acceptor strength and induced a cis-configuration. The variety of synthesised dyes included functionalised squaraine monomers, donor- and acceptor-substituted monomeric model squaraines, donor- and acceptor-squaraine copolymers, pure squaraine homopolymers, a squaraine-squaraine copolymer, as well as some conjugated cyclic oligomers. In order to be able to synthesise all these different kinds of dyes, several bromine and boronic ester derivatives were synthesised, which enabled the use of the Suzuki cross coupling reaction, to generate model dyes and copolymers. In addition, the bromine derivatives were used to carry out the Yamamoto homocoupling reaction to the respective homopolymers and macrocycles. The absorption maximum of unsubstituted reference dye M1 was found at ~ 15500 cm-1, while that of M2 was red-shifted to ~ 14300 cm-1 due to the increased acceptor strength of the central unit. The extinction coefficients were in the order of ~ 300000 M-1 cm-1 and ~ 200000 M-1 cm-1, respectively. It was found that the implementation of functional groups (M3-M9), additional electron donors (M10-M19) or acceptors (M20-M22) at the periphery lead to bathochromic shifts of the absorption depending on the strength of either - and/or -donating properties of the substituents. For the bis- and triarylamine substituted dyes M10-M13 and the dibrominated dyes M5 and M7 the electronic structure of the mono- and diradical (di)cations was explored using the interplay of cyclic voltammetry, spectroelectrochemistry, and DFT calculations. It was demonstrated that the monoradical cations still show a cyanine-like character and are delocalised Robin-Day class III species due to the low redox potential of the squaraine bridge between the additional amine redox centres. To the best of my knowledge, this made M13+∙, with an N-N-distance of 26 bonds between the additional redox centres to the longest bis(triarylamine) radical cation that is completely delocalised. For the diradical dications, the situation was of larger complexity. The computed most stable energetic state of the dianisylamine-substituted dyes turned out to be a broken-symmetry state with almost equal contributions of an open-shell singlet and triplet state. In addition, it was shown that the HOMO-1→HOMO transition dominated the absorption spectra of the diradical dications where the trans-/cis-configuration of the squaraines had a direct impact due to symmetry reasons. Based on the donor-squaraine model compounds M10-M19, a series of donor-squaraine copolymers was synthesised (P7-P12) in order to further red shift and broaden the low energy absorption band. However, these effects were only of marginal extent. Both the optical and the electrochemical derived band gaps were barely lowered compared to the respective monomeric model dyes. This was assigned to an increased squaraine-squaraine distance and resulting lower exciton coupling between the squaraine chromophores due to the bridging units. In addition, according to semiempirical calculations the bridges were twisted out of the squaraine plane what reduced conjugational effects between the chromophores. To sum up, the idea to insert additional electron rich bridging units in order to create copolymers with broad and red-shifted absorption did not fully work out for the presented systems. The addition of strong electron accepting NDI units at the periphery resulted in M21, the most unique monomeric model squaraine in this work. The common picture of a sharp low energy squaraine absorption completely altered due to the addition of the NDIs and a rather broad and solvent dependent low energy absorption was found. Spectroelectrochemical experiments and semiempirical calculations showed that this band is a superposition of the common squaraine HOMO→LUMO transition and a partial squaraine→NDI charge transfer transition. The latter was lost upon oxidation of the squaraine and the absorption spectrum of the monocation of M21 was found to be nearly a 1:1 image of a pure squaraine monocation. Both the monomeric model M21 and the respective copolymer P13 showed low electrochemically obtained band gaps of 1.05-1.20 eV, which were the lowest of all squaraines in this work. For both dyes, transient absorption measurements in the fs-time regime revealed the ultrafast formation of a CS state via an intermediate CT state within a few ps. Besides, charge recombination to the ground state also occured within a few ps. In the polymer, there was barely any further energy or charge transfer within the excited state lifetime and therefore the CS state was confined on adjacent squaraine-NDI pairs and did not further travel along the polymer strand. The Ni-mediated Yamamoto homocoupling reaction was applied for the synthesis of the homopolymers (P1-P5). In contrast to the donor-squaraine copolymers, those polymers revealed strongly red-shifted and broad absorption in the red to NIR region in addition to a sharp fluorescence. These features could be explained to originate mainly from the exciton coupling of localised excited states and the presence of different superstructures in solution. For the polymers P1 and P2, an elongated J-type polymer chain caused the strong lowest energy absorption band whereas a zig-zag type arrangement of the single chromophores lead to transitions into both low and high energy excited states of the excitonic manifold. For the polymers P3 and P4, several polymer fractions of different size were investigated. Here, also an elongated chain with J-type character induced the lowest energy absorption band whereas a helical H-type arrangement caused transitions to higher energies of the excitonic manifold. The fractions to which these structures were formed depended on the chain length and the solvent. In thin film measurements, it was shown that the initially in solution formed superstructures were partly retained in the thin film but could be altered by annealing procedures. A control of the superstructures should enable the controlled tuning of the optical properties. Despite the strong interaction of the chromophores in the excited state, the redox potentials of the homopolymers barely differed to those of the respective reference dyes, indicating negligible electronic interaction in the ground state. In addition squaraine-squaraine copolymer P6, consisting of alternating parent dyes M1 and M2, was synthesised. Likewise to the homopolymers, a broad and red-shifted absorption was observed. This was explained by exciton coupling theory, which was extended to also suit alternating copolymers. In toluene, an extraordinary narrow and intense lowest energy absorption band was observed. This exchange narrowing might be a result of a highly ordered J-type structure of the polymer especially in this solvent because it was not found in others. The features of the polymer may be compared to typical J-aggregates formed from monomeric cyanine molecules for example and the polymer used as model for excitonic interactions in an alternating copolymer. Transient absorption measurements revealed a strong energy dependence of the decay traces of the copolymer, most strikingly at early decay times. This was assigned to the occurrence of multiple excitations of one polymer strand (due to the large extinction coefficients of the polymer) and resulting exciton-exciton annihilation. Due to the large exciton diffusion constants that were estimated, the static exciton-exciton annihilation was the rate limiting process of the decay, in contrast to other conjugated polymers, where in thin film measurements the decay was diffusion controlled. To sum up, for the polymers consisting of exclusively squaraine chromophores, it was shown that the exciton coupling of single chromophores with strong transition dipole moments was a fruitful way to tune the absorption spectra. As a side product of some of the polycondensation reactions, unprecedented cyclic conjugated oligomers such as the triarylamine-bridged dimer Dim1, the cyclic homotrimers Tri1-Tri3, and the tetramer Tet1 were obtained by recycling GPC in low yields. Especially the cyclic trimers showed unusual absorption and even more extraordinary fluorescence properties. They showed multiple fluorescence bands in the NIR that covered a range from ~ 8000-12500 cm-1 (800-1250 nm). First hints from theoretical calculations indicated that the trimer was not fully planar but comprised a mixture of both planar and bent single squaraine chromophores. However, final results of the calculations were still missing at the time of writing. In the last part of this work, the application of some monomeric and polymeric squaraines in binary and ternary bulk heterojunction solar cells was demonstrated. Also the utilisation as a dopant in a polymer matrix in an OLED device was shown. The homopolymers P1-P4 were tested in the binary BHJ solar cells revealing poor performances and especially very low short circuit currents. The utilisation of the polymers P3 and P4 that carried the dicyanomethylene group resulted in higher open circuit voltages due to the lower LUMO energy levels but still an overall poor performance. Neither for the different alkyl chains nor for the size of the polymers was a trend observed. In the ternary BHJ solar cells, small amounts of either monomer M14 or polymers P1A, P4-1 or P13 were added to a P3HT/PCBM system in order to generate an additional pathway for charge or energy transfer that should result in a better device performance. However, for none of the tested squaraines, improved solar cells could be built. In similarity to the binary solar cells, the short circuit currents were lower compared to a P3HT/PCBM reference device. These low short circuit currents indicated that the morphology of the squaraine dyes was the major limitation in those devices. It is possible that the dimethyl groups at the indolenine hindered a favoured alignment of the compounds that would allow decent charge transport. In the squaraine doped OLED the squaraine M6 worked rather well as an NIR emitter. Already at low dye loads the fluorescence of the host polymer SY-PPV was completely quenchend and emission from the squaraine was observed. For electroluminescence measurements, a lower dye load (0.5 wt.\%) compared to the photoluminescence measurements was sufficient, indicating that apart from FRET additional quenching mechanisms were at work in the electrically driven devices such as charge carrier dynamics.}, subject = {Squaraine}, language = {en} } @phdthesis{Shan2022, author = {Shan, Junwen}, title = {Tailoring Hyaluronic Acid and Gelatin for Bioprinting}, doi = {10.25972/OPUS-29825}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298256}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In the field of biofabrication, biopolymer-based hydrogels are often used as bulk materials with defined structures or as bioinks. Despite their excellent biocompatibility, biopolymers need chemical modification to fulfill mechanical stability. In this thesis, the primary alcohol of hyaluronic acid was oxidized using TEMPO/TCC oxidation to generate aldehyde groups without ring-opening mechanism of glycol cleavage using sodium periodate. For crosslinking reaction of the aldehyde groups, adipic acid dihydrazide was used as bivalent crosslinker for Schiff Base chemistry. This hydrogel system with fast and reversible crosslinking mechanism was used successfully as bulk hydrogel for chondrogenic differentiation with human mesenchymal stem cells (hMSC). Gelatin was modified with pentenoic acid for crosslinking reaction via light controllable thiol-ene reaction, using thiolated 4-arm sPEG as multivalent crosslinker. Due to preservation of the thermo responsive property of gelatin by avoiding chain degradation during modification reaction, this gelatin-based hydrogel system was successfully processed via 3D printing with low polymer concentration. Good cell viability was achieved using hMSC in various concentrations after 3D bioprinting and chondrogenic differentiation showed promising results.}, subject = {Hydrogel}, language = {en} } @article{StaabLotterMuehleetal.2021, author = {Staab, Torsten E. M. and Lotter, Frank and M{\"u}hle, Uwe and Elsayed, Mohamed and Petschke, Danny and Schubert, Thomas and Ibrahim, Alaa M. and Krause-Rehberg, Reinhard and Kieback, Bernd}, title = {The decomposition process in high-purity Al-1.7 at.\% Cu alloys with trace elements: preservation of quenched-in vacancies by In, Sn and Pb influencing the ​θ′formation}, series = {Journal of Materials Science}, volume = {56}, journal = {Journal of Materials Science}, number = {14}, issn = {1573-4803}, doi = {10.1007/s10853-020-05742-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269103}, pages = {8717-8731}, year = {2021}, abstract = {Aluminium-copper alloys of the 2xxx type receive their excellent mechanical properties by the formation of copper-rich precipitates during hardening. Size, distribution and crystal structure of the formed precipitates determine the final strength of those alloys. Adding traces of certain elements, which bind to vacancies, significantly influences the decomposition behaviour, i.e. the diffusion of the copper atoms. For high-purity ternary alloys (Al-1.7 at.\% Cu-X), we investigate the interaction of copper and trace element atoms (X=In, Sn, and Pb) with quenched-in vacancies by Positron Annihilation Lifetime Spectroscopy (PALS). By employing Vickers microhardness, Differential Scanning Calorimetry (DSC) and Small Angle X-Ray Scattering (SAXS) we obtain a comprehensive picture of the decomposition process: opposite to predicted binding energies to vacancies by ab-initio calculations we find during ageing at room and elevated temperature a more retarded clustering of copper in the presence of In rather than for Sn additions, while Pb, having the highest predicted binding to vacancies, shows nearly no retarding effect compared to pure Al-Cu. If the latter would be due to a limited solubility of lead, it had to be below 2 ppm. Transmission Electron Microscopy (TEM) as imaging method complements our findings. Annealing the quenched Al-1.7 at.\% Cu-X-alloys containing 100 ppm In or Sn at 150∘C leads to finely distributed θ′-precipitates on the nanoscale, since due to the trace additions the formation temperature of θ′ is lowered by more than 100∘C. According to TEM small agglomerates of trace elements (In, Sn) may support the early nucleation for the θ′-precipitates.}, language = {en} } @phdthesis{Boehm2023, author = {B{\"o}hm, Christoph}, title = {Thermal Stability of the Polyesters PCL and PLGA during Melt Electrowriting}, doi = {10.25972/OPUS-30613}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-306139}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The focus of this thesis was to investigate how PCL and PLGA react to the heat exposure that comes with the MEW process over a defined timespan. To assess the thermal stability of PCL during MEW over 25 d, an automated collection of fibers has been used to determine the CTS on each day of heating for three different temperatures. PCL is exceptionally stable over 25 d at 75 °C, whereas for 85 °C and 95 °C a slight upward trend during the last 10 d could be observed, which is an indication for thermal degradation. Same trend could be observed for diameter of fibers produced at a fixed collector speed. For all temperatures, CTS during the first 5 d decreased due to inhomogeneities of the melt. Physical analysis of the fibers by XRD and mechanical testing showed no significant changes. To investigate the chemical details of the thermal durability, PCL was artificially aged over 25 d at 75 °C, 85 °C and 95 °C. Data from GPC analysis and rheology revealed that PCL is degrading steadily at all three temperatures. Combined with GC-MS analysis, two different mechanisms for degradation could be observed: random chain scission and unzipping. Additional GPC experiment using a mixture of PCL and a fluorescence labelled PCL showed that PCL was undergoing ester interchange reactions, which could explain its thermal stability. PLGA was established successfully as material for MEW. GPC results revealed that PLGA degraded heavily in the one-hour preheating period. To reduce the processing temperature, ATEC was blended with PLGA in three mixtures. This slowed down degradation and a processing window of 6 h could be established. Mechanical testing with fibers produced with PLGA and all three blends was performed. PLGA was very brittle, whereas the blends showed an elastic behavior. This could be explained by ester interchange reactions that formed a loosely crosslinked network with ATEC.}, subject = {Degradation}, language = {en} } @phdthesis{Feineis2018, author = {Feineis, Susanne}, title = {Thioether-poly(glycidol) as multifunctional coating system for gold nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172902}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The aim of this thesis was the development of a multifunctional coating system for AuNPs based on thioether polymers, providing both excellent colloidal stability and a variable possibility to introduce functionalities for biological applications. First, two thioether-polymer systems were synthesised as a systematic investigation into colloidal stabilisation efficacy. Besides commonly used monovalent poly(ethylene glycol) (PEG-SR), its structural analogue linear poly(glycidol) (PG-SR) bearing multiple statistically distributed thioether moieties along the backbone was synthesised. Additionally, respective thiol analogues (PEG-SH and PG-SH) were produced and applied as reference. Successive modification of varyingly large AuNPs with aforementioned thiol- and thioether-polymers was performed via ligand exchange reaction on citrate stabilised AuNPs. An increased stabilisation efficacy of both thioether-polymers against biological and physiological conditions, as well as against freeze-drying compared to thiol analogues was determined. Based on the excellent colloidal stabilisation efficacy and multi-functionalisability of thioether-PG, a plethora of functional groups, such as charged groups, hydrophilic/hydrophobic chains, as well as bio-active moieties namely diazirine and biotin was introduced to the AuNP surface. Moreover, the generic and covalent binding of diazirine-modified PG-SR with biomolecules including peptides and proteins was thoroughly demonstrated. Lastly, diverse applicability and bioactivity of aforementioned modified particles in various studies was displayed, once more verifying the introduction of functionalities. On the one hand the electrostatic interaction of charged AuNPs with hydrogels based on hyaluronic acid was applied to tune the release kinetics of particles from three-dimensional scaffolds. On the other hand the strong complexation of siRNA onto two positively charged AuNPs was proven. The amount of siRNA payload was tuneable by varying the surface charge, ionic strength of the surrounding medium and the N/P ratio. Moreover, the biological activity and selectivity of the biotin-streptavidin conjugation was verified with respectively functionalised particles in controlled agglomeration test and in laser-triggered cell elimination experiments. In the latter, streptavidin-functionalised AuNPs resulted in excellent depletion of biotinylated cells whereas unfunctionalised control particles failed, excluding unspecific binding of these particles to the cell surface.}, subject = {Nanopartikel}, language = {en} } @article{CzyschMedina‐MontanoZhongetal.2022, author = {Czysch, Christian and Medina-Montano, Carolina and Zhong, Zifu and Fuchs, Alexander and Stickdorn, Judith and Winterwerber, Pia and Schmitt, Sascha and Deswarte, Kim and Raabe, Marco and Scherger, Maximilian and Combes, Francis and De Vrieze, Jana and Kasmi, Sabah and Sandners, Niek N. and Lienenklaus, Stefan and Koynov, Kaloian and R{\"a}der, Hans-Joachim and Lambrecht, Bart N. and David, Sunil A. and Bros, Matthias and Schild, Hansj{\"o}rg and Grabbe, Stephan and De Geest, Bruno G. and Nuhn, Lutz}, title = {Transient Lymph Node Immune Activation by Hydrolysable Polycarbonate Nanogels}, series = {Advanced Functional Materials}, volume = {32}, journal = {Advanced Functional Materials}, number = {35}, doi = {10.1002/adfm.202203490}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287255}, year = {2022}, abstract = {The development of controlled biodegradable materials is of fundamental importance in immunodrug delivery to spatiotemporally controlled immune stimulation but avoid systemic inflammatory side effects. Based on this, polycarbonate nanogels are developed as degradable micellar carriers for transient immunoactivation of lymph nodes. An imidazoquinoline-type TLR7/8 agonist is covalently conjugated via reactive ester chemistry to these nanocarriers. The nanogels not only provide access to complete disintegration by the hydrolysable polymer backbone, but also demonstrate a gradual disintegration within several days at physiological conditions (PBS, pH 6.4-7.4, 37 °C). These intrinsic properties limit the lifetime of the carriers but their payload can still be successfully leveraged for immunological studies in vitro on primary immune cells as well as in vivo. For the latter, a spatiotemporal control of immune cell activation in the draining lymph node is found after subcutaneous injection. Overall, these features render polycarbonate nanogels a promising delivery system for transient activation of the immune system in lymph nodes and may consequently become very attractive for further development toward vaccination or cancer immunotherapy. Due to the intrinsic biodegradability combined with the high chemical control during the manufacturing process, these polycarbonate-based nanogels may also be of great importance for clinical translation.}, language = {en} } @phdthesis{Halmen2021, author = {Halmen, Norbert}, title = {Vernetzungsgrad unter der Lupe : Zerst{\"o}rungsfreie Pr{\"u}fung mit unilateraler NMR}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-160-0}, doi = {10.25972/WUP-978-3-95826-161-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233506}, school = {W{\"u}rzburg University Press}, pages = {xv, 182}, year = {2021}, abstract = {Der Vernetzungsgrad von Klebstoffen und strahlenvernetzter Kunststoffformteile beeinflusst zahlreiche Materialeigenschaften und ist von essenzieller Bedeutung f{\"u}r die Funktionalit{\"a}t von Klebeverbindungen und die Best{\"a}ndigkeit medizinischer Implantate. Die zerst{\"o}rungsfreie Pr{\"u}fung dieser Qualit{\"a}tsgr{\"o}ße ist von großem industriellem Interesse, aber noch nicht Stand der Technik. Die unilaterale Kernspinresonanz (uNMR) ist ein vielversprechendes Verfahren zur L{\"o}sung dieser Problematik. In diesem Buch wird die nicht-invasive Vernetzungsgradpr{\"u}fung von strahlenvernetztem UHMWPE und verschiedenen Klebstoffen mittels uNMR demonstriert. Auf Basis der guten Korrelation mit praxisrelevanten Referenzmethoden (thermisch, rheologisch, dielektrisch) wurden Vergleichsmodelle entwickelt, welche Anwendern von Klebstoffen und vernetzten Kunststoffformteilen den Einsatz der uNMR zur zerst{\"o}rungsfreien Qualit{\"a}tssicherung erm{\"o}glichen.}, subject = {Magnetische Kernresonanz}, language = {de} } @misc{BleasdalegebGoesswein1976, type = {Master Thesis}, author = {Bleasdale [geb. G{\"o}ßwein], Liselotte}, title = {Versuche zum Mechanismus des Protonentransports in der Purpurmembran von Halobacterium Halobium. Tritium- und Deuteriumaustausch am Protein-gebundenen Retinal}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144987}, school = {Universit{\"a}t W{\"u}rzburg}, year = {1976}, abstract = {No abstract available.}, subject = {Halobacterium halobium}, language = {de} } @phdthesis{Pinzner2021, author = {Pinzner, Florian}, title = {Vicinal and Double Chemoselective Biofunctionalization of Polyoxazolines}, doi = {10.25972/OPUS-22975}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229758}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In this work, a toolbox was provided to create three-component polymer conjugates with a defined architecture, designed to bear different biocomponents that can interact with larger biological systems in biomacromolecular recognition experiments. The target architecture is the attachment of two biomolecule 'arms' to the alpha telechelic end point of a polymer and fixating the conjugate to the gold surface of SAW and SPR sensor chips with the polymer's other omega chain end. This specific design of a conjugate will be implemented by using a strategy to yield novel double alpha as well as omega telechelic functionalized POx and the success of all cascade reaction steps leading to the final conjugation product will be proven through affinity measurements between covalently bound mannose and ConA. All reactions were performed on a low molecular model level first and then transferred to telechelic and also side chain functionalized polymer systems.}, subject = {Polyoxazoline}, language = {en} }