@article{WaldherrLundtKlaasetal.2018, author = {Waldherr, Max and Lundt, Nils and Klaas, Martin and Betzold, Simon and Wurdack, Matthias and Baumann, Vasilij and Estrecho, Eliezer and Nalitov, Anton and Cherotchenko, Evgenia and Cai, Hui and Ostrovskaya, Elena A. and Kavokin, Alexey V. and Tongay, Sefaattin and Klembt, Sebastian and H{\"o}fling, Sven and Schneider, Christian}, title = {Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-05532-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233280}, year = {2018}, abstract = {Bosonic condensation belongs to the most intriguing phenomena in physics, and was mostly reserved for experiments with ultra-cold quantum gases. More recently, it became accessible in exciton-based solid-state systems at elevated temperatures. Here, we demonstrate bosonic condensation driven by excitons hosted in an atomically thin layer of MoSe2, strongly coupled to light in a solid-state resonator. The structure is operated in the regime of collective strong coupling between a Tamm-plasmon resonance, GaAs quantum well excitons, and two-dimensional excitons confined in the monolayer crystal. Polariton condensation in a monolayer crystal manifests by a superlinear increase of emission intensity from the hybrid polariton mode, its density-dependent blueshift, and a dramatic collapse of the emission linewidth, a hallmark of temporal coherence. Importantly, we observe a significant spin-polarization in the injected polariton condensate, a fingerprint for spin-valley locking in monolayer excitons. Our results pave the way towards highly nonlinear, coherent valleytronic devices and light sources.}, language = {en} } @article{OPUS4-31268, title = {Search for new phenomena in events with same-charge leptons and b-jets in pp collisions at √\(s\) = 13 TeV with the ATLAS detector}, series = {Journal of High Energy Physics}, volume = {12}, journal = {Journal of High Energy Physics}, number = {39}, organization = {The ATLAS Collaboration}, doi = {10.1007/JHEP12(2018)039}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312681}, pages = {1-55}, year = {2018}, abstract = {A search for new phenomena in events with two same- charge leptons or three leptons and jets identi fi ed as originating from b - quarks in a data sample of 36.1 fb of pp collisions at ps = 13TeV recorded by the ATLAS detector at the Large Hadron Collider is reported. No signi fi cant excess is found and limits are set on vector- like quark, fourtop- quark, and same- sign top- quark pair production. The observed ( expected) 95\% CL mass limits for a vector- like T - and B - quark singlet are mT > 0 : 98 ( 0 : 99) TeV and mB > 1 : 00 ( 1 : 01) TeV respectively. Limits on the production of the vector- like T5=3 - quark are also derived considering both pair and single production; in the former case the lower limit on the mass of the T5=3 - quark is ( expected to be) 1.19 ( 1.21) TeV. The Standard Model fourtop- quark production cross- section upper limit is ( expected to be) 69 ( 29) fb. Constraints are also set on exotic four- top- quark production models. Finally, limits are set on samesign top- quark pair production. The upper limit on uu ! tt production is ( expected to be) 89 ( 59) fb for a mediator mass of 1TeV, and a dark- matter interpretation is also derived, excluding a mediator of 3TeV with a dark- sector coupling of 1.0 and a coupling to ordinary matter above 0.31.}, language = {en} } @phdthesis{Kagerer2024, author = {Kagerer, Philipp Thomas}, title = {Two-Dimensional Ferromagnetism and Topology at the Surface of MnBi\(_2\)Te\(_4\) - Bi\(_2\)Te\(_3\) Heterostructures - MBE Growth, Magnetism and Electronic Properties}, doi = {10.25972/OPUS-36012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360121}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In this thesis, a model system of a magnetic topological heterostructure is studied, namely a heterosystem consisting of a single ferromagnetic septuple-layer (SL) of \(MnBi_2Te_4\) on the surface of the three-dimensional topological insulator \(Bi_2Te_3\). Using MBE and developing a specialized experimental setup, the first part of this thesis deals with the growth of \(Bi_2Te_3\) and thin films of \(MnBi_2Te_4\) on \(BaF_2\)-substrates by the co-evaporation of its binary constituents. The structural analysis is conducted along several suitable probes such as X-ray diffraction (XRD, XRR), AFM and scanning tunnelling electron microscopy (STEM). It is furthermore found that the growth of a single septuple-layer of \(MnBi_2Te_4\) on the surface of \(Bi_2Te_3\) can be facilitated. By using X-ray absorption and circular magnetic dichroism (XAS, XMCD), the magnetic properties of \(MnBi_2Te_4\) are explored down to the monolayer limit. The layered nature of the vdW crystal and a strong uniaxial magnetocrystalline anisotropy establish stable out-of plane magnetic order at the surface of \(MnBi_2Te_4\), which is stable even down to the 2D limit. Pushing the material system to there, i.e. a single SL \(MnBi_2Te_4\) further allows to study the phase transition of this 2D ferromagnet and extract its critical behaviour with \(T_c \, = \, 14.89~k\) and \(\beta \, = \, 0.484\). Utilizing bulk crystals of the ferromagnetic \(Fe_3GeTe_2\) as substrate allows to influence, enhance and bias the magnetism in the single SL of \(MnBi_2Te_4\). By growing heterostructures of the type \(MnBi_2Te_4\) -- n layer \(Bi_2Te_3\) -- \(Fe_3GeTe_2\)for n between 0 and 2, it is shown, that a considerable magnetic coupling can be introduced between the \(MnBi_2Te_4\) top-layer and the substrate. Finally the interplay between topology and magnetism in the ferromagnetic extension is studied directly by angle-resolved photoemission spectroscopy. The heterostructure is found to host a linearly dispersing TSS at the centre of the Brillouin zone. Using low temperature and high-resolution ARPES a large magnetic gap opening of \(\sim\) 35 meV is found at the Dirac point of the TSS. By following its temperature evolution, it is apparent that the scaling behaviour coincides with the magnetic order parameter of the modified surface.}, subject = {Molekularstrahlepitaxie}, language = {en} } @phdthesis{Baumann2024, author = {Baumann, Johannes}, title = {Induced Superconductivity in HgTe Quantum Point Contacts}, doi = {10.25972/OPUS-36940}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-369405}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In this thesis, the Josephson effect in mercury telluride based superconducting quantum point contacts (SQPCs) is studied. Implementing such confined structures into topological superconductors has been proposed as a means to detect and braid Majorana fermions. For the successful realization of such experiments though, coherent transport across the constriction is essential. By demonstrating the Josephson effect in a confined topological system, the presented experiments lay the foundation for future quantum devices that can be used for quantum computation. In addition, the experiments also provide valuable insights into the behavior of the Josephson effect in the low-channel limit (N<20). Due to the confinement of the weak link, we can also study the Josephson effect in a topological insulator, where the edge modes interact. In conclusion, this thesis discusses the fabrication of, and low-temperature measurements on mercury telluride quantum point contacts embedded within Josephson junctions. We find that the merging of the currently used fabrication methods for mercury telluride quantum point contacts and Josephson junctions does not yield a good enough device quality to resolve subbands of the quantum point contact as quantization effects in the transport properties. As we attribute this to the long dry etching time that is necessary for a top-contact, the fabrication process was adapted to reduce the defect density at the superconductor-semiconductor interface. Employing a technique that involves side contacting the mercury telluride quantum well and reducing the size of the mercury telluride mesa to sub-micrometer dimensions yields a quantized supercurrent across the junction. The observed supercurrent per mode is in good agreement with theoretical predictions for ballistic, one-dimensional modes that are longer than the Josephson penetration depth. Moreover, we find that oscillatory features superimpose the plateaus of the supercurrent and the conductance. The strength of these oscillatory features are sample-dependent and complicate the identification of plateaus. We suggest that the oscillatory features originate mainly from local defects and the short gate electrode. Additionally, resonances are promoted within the weak link if the transparency of the superconductor-HgTe interface differs from one. Furthermore, the research explores the regimes of the quantum spin Hall effect and the 0.5 anomaly. Notably, a small yet finite supercurrent is detected in the QSH regime. In samples fabricated from thick mercury telluride quantum wells, the supercurrent appears to vanish when the quantum point contact is tuned into the regime of the 0.5 anomaly. For samples fabricated from thin mercury telluride quantum wells, the conductance as well as the supercurrent vanish for strong depopulation. In these samples though, the supercurrent remains detectable even for conductance values significantly below 2 e²/h. Numerical calculation reproduce the transport behavior of the superconducting quantum point contacts. Additionally, the topological nature of the weak link is thoroughly investigated using the supercurrent diffraction pattern and the absorption of radio frequency photons. The diffraction pattern reveals a gate independent, monotonous decay of \$I_\text{sw}(B)\$, which is associated with the quantum interference of Andreev bound states funneled through the quantum point contact. Interestingly, the current distribution in the weak link appears unaffected as the quantum point contact is depleted. In the RF measurements, indications of a 4π periodic supercurrent are observed as a suppression of odd Shapiro steps. The ratio of the 4π periodic current to the 2π periodic current appears to decrease for smaller supercurrents, as odd Shapiro steps are exclusively suppressed for large supercurrents. Additionally, considering the observation that the supercurrent is small when the bulk modes in the quantum point contact are fully depleted, we suggest that the re-emerging of odd Shapiro steps is a consequence of the group velocity of the edge modes being significantly suppressed when the bulk modes are absent. Consequently, the topological nature of the superconducting quantum point contact is only noticeable in the transport properties when bulk modes are transmitted through the superconducting quantum point contact. The shown experiments are the first demonstration of mercury telluride superconducting quantum point contacts that exhibit signatures of quantization effects in the conductance as well as the supercurrent. Moreover, the experiments suggest that the regime of interacting topological edge channels is also accessible in mercury telluride superconducting quantum point contacts. This is potentially relevant for the realization of Majorana fermions and their application in the field of quantum computation.}, subject = {Topologischer Isolator}, language = {en} } @article{OPUS4-31269, title = {Measurement of prompt photon production in √ s(NN) = 8.16 TeV \(p\) Pb collisions with ATLAS}, series = {Physics letters B}, volume = {796}, journal = {Physics letters B}, organization = {The ATLAS Collaboration}, doi = {10.1016/j.physletb.2019.07.031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312697}, pages = {230-252}, year = {2019}, abstract = {The inclusive production rates of isolated, prompt photons in p Pb collisions at root s(NN) = 8.16 TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb(-1) recorded in 2016. The cross-section and nuclear modification factor R-p pb are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon-nucleon centre-of-mass pseudorapidity regions, (-2.83, -2.02), (-1.84, 0.91), and (1.09, 1.90). The cross-section and R-p pb values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei. (C) 2019 The Author. Published by Elsevier B.V.}, language = {en} } @phdthesis{Wagner2024, author = {Wagner, Tim Matthias}, title = {Characterization of 2D antimony lattices}, doi = {10.25972/OPUS-36329}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363292}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Two-dimensional lattices are in the focus of research in modern solid state physics due to their novel and exotic electronic properties with tremendous potential for seminal future applications. Of particular interest within this research field are quantum spin Hall insulators which are characterized by an insulating bulk with symmetry-protected metallic edge states. For electrons within these one-dimensional conducting channels, spin-momentum locking enables dissipationless transport - a property which promises nothing short of a revolution for electronic devices. So far, however, quantum spin Hall materials require enormous efforts to be realized such as cryogenic temperatures or ultra-high vacuum. A potential candidate to overcome these shortcomings are two-dimensional lattices of the topological semi-metal antimony due to their potential to host the quantum spin Hall effect while offering improved resilience against oxidation. In this work, two-dimensional lattices of antimony on different substrates, namely Ag(111), InSb(111) and SiC(0001), are investigated regarding their atomic structure and electronic properties with complimentary surface sensitive techniques. In addition, a systematic oxidation study compares the stability of Sb-SiC(0001) with that of the two-dimensional topological insulators bismuthene-SiC(0001) and indenene-SiC(0001). A comprehensive experimental analysis of the \((\sqrt{3}\times\sqrt{3})R30^\circ\) Sb-Ag(111) surface, including X-ray standing wave measurements, disproves the proclaimed formation of a buckled antimonene lattice in literature. The surface lattice can instead be identified as a metallic Ag\(_2\)Sb surface alloy. Antimony on InSb(111) shows an unstrained Volmer-Weber island growth due to its large lattice mismatch to the substrate. The concomitant moir\'{e} situation at the interface imprints mainly in a periodic height corrugation of the antimony islands which as observed with scanning tunneling microscopy. On islands with various thicknesses, quasiparticle interference patterns allow to trace the topological surface state of antimony down to the few-layer limit. On SiC(0001), two different two-dimensional antimony surface reconstructions are identified. Firstly, a metallic triangular \$1\times1\$ lattice which constitutes the antimony analogue to the topological insulator indenene. Secondly, an insulating asymmetric kagome lattice which represents the very first realized atomic surface kagome lattice. A comparative, systematic oxidation study of elemental (sub-)monolayer materials on SiC(0001) reveals a high sensitivity of indenene and bismuthene to small dosages of oxygen. An improved resilience is found for Sb-SiC(0001) which, however, oxidizes nevertheless if exposed to oxygen. These surface lattices are therefore not suitable for future applications without additional protective measures.}, subject = {Antimon}, language = {en} }