@phdthesis{BreuergebHemberger2015, author = {Breuer [geb. Hemberger], Kathrin R. F.}, title = {Effiziente 3D Magnetresonanzbildgebung schnell abfallender Signale}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150750}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In der vorliegenden Arbeit wird die Rotated-Cone-UTE-Sequenz (RC-UTE), eine 3D k-Raum-Auslesetechnik mit homogener Verteilung der Abtastdichte, vorgestellt. Diese 3D MR-Messtechnik erm{\"o}glicht die f{\"u}r die Detektion von schnell abfallenden Signalen notwendigen kurzen Echozeiten und weist eine h{\"o}here SNR-Effizienz als konventionelle radiale Pulssequenzen auf. Die Abtastdichte ist dabei in radialer und azimutaler Richtung angepasst. Simulationen und Messungen in vivo zeigen, dass die radiale Anpassung das T2-Blurring reduziert und die SNR-Effizienz erh{\"o}ht. Die Drehung der Trajektorie in azimutale Richtung erm{\"o}glicht die Reduzierung der Unterabtastung bei gleicher Messzeit bzw. eine Reduzierung der Messzeit ohne Aufl{\"o}sungsverlust. Die RC-UTE-Sequenz wurde erfolgreich f{\"u}r die Bildgebung des Signals des kortikalen Knochens und der Lunge in vivo angewendet. Im Vergleich mit der grundlegenden UTE-Sequenz wurden die Vorteile von RC-UTE in allen Anwendungsbeispielen aufgezeigt. Die transversalen Relaxationszeit T2* des kortikalen Knochen bei einer Feldst{\"a}rke von 3.0T und der Lunge bei 1.5T und 3.0T wurde in 3D isotroper Aufl{\"o}sung gemessen. Außerdem wurde die Kombination von RC-UTE-Sequenz mit Methoden der Magnetisierungspr{\"a}paration zur besseren Kontrasterzeugung gezeigt. Dabei wurden die Doppel-Echo-Methode, die Unterdr{\"u}ckung von Komponenten mit langer Relaxationszeit T2 durch Inversionspulse und der Magnetisierungstransfer-Kontrast angewendet. Die Verwendung der RC-UTE-Sequenz f{\"u}r die 3D funktionelle Lungenbildgebung wird ebenfalls vorgestellt. Mit dem Ziel der umfassenden Charakterisierung der Lungenfunktion in 3D wurde die simultane Messung T1-gewichteter Bilder und quantitativer T2*-Karten f{\"u}r verschiedene Atemzust{\"a}nde an sechs Probanden durchgef{\"u}hrt. Mit der hier vorgestellten Methode kann die Lungenfunktion in 3D {\"u}ber T1-Wichtung, quantitative T2*-Messung und Rekonstruktion verschiedener Atemzust{\"a}nde durch Darstellung von Ventilation, Sauerstofftransport und Volumen{\"a}nderung beurteilt werden.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Lykowsky2019, author = {Lykowsky, Gunthard}, title = {Hardware- und Methodenentwicklung f{\"u}r die 23Na- und 19F-Magnetresonanztomographie}, doi = {10.25972/OPUS-18871}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188710}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Neben dem Wasserstoffkern 1H k{\"o}nnen auch andere Kerne f{\"u}r die Magnetresonanztomographie (MRT) genutzt werden. Diese sogenannten X-Kerne k{\"o}nnen komplement{\"a}re Informationen zur klassischen 1H-MRT liefern und so das Anwendungsspektrum der MRT erweitern. Die Herausforderung bei der X-Kern-Bildgebung liegt zum großen Teil in dem intrinsisch niedrigen Signal-zu-Rauschen-Verh{\"a}ltnis (SNR), aber auch in den spezifischen Kerneigenschaften. Um X-Kern-Bildgebung optimal betreiben zu k{\"o}nnen, m{\"u}ssen daher Sende-/Empfangsspulen, Messsequenzen und -methoden auf den jeweiligen Kern angepasst werden. Im Fokus dieser Dissertation standen die beiden Kerne Natrium (23Na) und Fluor (19F), f{\"u}r die optimierte Hardware und Methoden entwickelt wurden. 23Na spielte in dieser Arbeit vor allem wegen seiner Funktion als Biomarker f{\"u}r Arthrose, einer degenerativen Gelenkserkrankung, eine Rolle. Hierbei ist insbesondere die quantitative Natriumbildgebung von Bedeutung, da sich mit ihr der Knorpelzustand auch im Zeitverlauf charakterisieren l{\"a}sst. F{\"u}r die quantitative Messung mittels MRT ist die Kenntnis des B1-Feldes der eingesetzten MR-Spule entscheidend, denn dieses kann die relative Signalintensit{\"a}t stark beeinflussen und so zu Fehlern in der Quantifizierung f{\"u}hren. Daher wurde eine Methode zur Bestimmung des B1-Feldes untersucht und entwickelt. Dies stellte aufgrund des niedrigen SNR und der kurzen sowie biexponentiellen T2-Relaxationszeit von 23Na eine Herausforderung dar. Mit einer retrospektiven Korrekturmethode konnte eine genaue und zugleich schnelle Korrekturmethode gefunden werden. F{\"u}r die 1H- und 23Na-Bildgebung am menschlichen Knieknorpel wurden zwei praxistaugliche, doppelresonante Quadratur-Birdcage-Resonatoren entwickelt, gebaut und charakterisiert. Der Vergleich der beiden Spulen bez{\"u}glich Sensitivit{\"a}t und Feldhomogenit{\"a}t zeigte, dass der Vier-Ring-Birdcage dem Alternating-Rungs-Birdcage f{\"u}r den vorliegenden Anwendungsfall {\"u}berlegen ist. Die in vivo erzielte Aufl{\"o}sung und das SNR der 23Na-Bilder waren bei beiden Spulen f{\"u}r die Quantifizierung der Natriumkonzentration im Knieknorpel ausreichend. Hochaufl{\"o}sende anatomische 1H-Bilder konnten ohne Mittelungen aufgenommen werden. In einer umfangreichen Multiparameter-MR-Tierstudie an Ziegen wurde der Verlauf einer chirurgisch induzierten Arthrose mittels 23Na- und 1H-Bildgebungsmethoden untersucht. Hierbei kamen dGEMRIC, T1ρ-Messung und quantitative Natrium-MRT zum Einsatz. Trotz des im Vergleich zum Menschen d{\"u}nneren Ziegenknorpels, der niedrigen Feldst{\"a}rke von 1,5 T und den auftretenden {\"O}demen konnten erstmals diese MR-Parameter {\"u}ber den Studienverlauf hinweg an den gleichen Versuchstieren und zu den gleichen Zeitpunkten ermittelt werden. Die Ergebnisse wurden verglichen und die ermittelten Korrelationen entsprechen den zugrundeliegenden biochemischen Mechanismen. Die im Rahmen dieser Studie entwickelten Methoden, Bildgebungsprotokolle und Auswertungen lassen sich auf zuk{\"u}nftige Humanstudien {\"u}bertragen. Die mit klinischen Bildgebungssequenzen nicht zug{\"a}ngliche kurze Komponente der biexponentiellen T2*-Relaxationszeit von 23Na konnte mittels einer radialen Ultra-Short-Echo-Time-Sequenz bestimmt werden. Hierzu wurde eine Multi-Echo-Sequenz mit einem quasizuf{\"a}lligen Abtastschema kombiniert. Hierdurch gelang es, die kurze und lange T2*-Komponente des patellaren Knorpels in vivo zu bestimmen. 19F wird in der MRT wegen seiner hohen relativen Sensitivit{\"a}t und seines minimalen, k{\"o}rpereigenen Hintergrundsignals als Marker eingesetzt. Zur Detektion der niedrigen in-vivo-Konzentrationen der Markersubstanzen werden hochsensitive Messspulen ben{\"o}tigt. F{\"u}r die 19F-Bildgebung an M{\"a}usen wurde eine Birdcage-Volumenspule entwickelt, die sowohl f{\"u}r 19F als auch 1H in Quadratur betrieben werden kann, ohne Kompromisse in Sensitivit{\"a}t oder Feldhomogenit{\"a}t gegen{\"u}ber einer monoresonanten Spule eingehen zu m{\"u}ssen. Dies gelang durch eine verschiebbare Hochfrequenzabschirmung, mit der die Resonanzfrequenz des Birdcage ver{\"a}ndert werden kann. Es konnte weiterhin gezeigt werden, dass die Feldverteilungen bei 1H und 19F im Rahmen der Messgenauigkeit identisch sind und so der 1H-Kanal f{\"u}r die Pulskalibrierung und die Erstellung von B1-Karten f{\"u}r die 19F-Bildgebung genutzt werden kann. Hierdurch kann die Messzeit deutlich reduziert werden. Ein grunds{\"a}tzliches Problemfeld stellt die Korrelation unterschiedlicher Bildgebungsmodalit{\"a}ten dar. In der MRT betrifft das h{\"a}ufig die Korrelation von in-/ex-vivo-MR-Daten und den dazugeh{\"o}rigen Lichtbildaufnahmen an histologischen Schnitten. In dieser Arbeit wurde erstmals erfolgreich eine 1H- und 19F-MR-Messung an einem histologischen Schnitt vorgenommen. Durch die Verwendung einer optimierten 1H/19F-Oberfl{\"a}chenspule konnte die 19F-Signalverteilung in einer d{\"u}nnen Tumorscheibe in akzeptabler Messzeit aufgenommen werden. Da der gleiche Schnitt sowohl mit Fluoreszenzmikroskopie als auch mit MRT gemessen wurde, konnten Histologie und MR-Ergebnisse exakt korreliert werden. Zusammenfassend konnten in dieser Arbeit durch Hardware- und Methodenentwicklung zahlreiche neue Aspekte der 19F- und 23Na-MRT beleuchtet werden und so zuk{\"u}nftige Anwendungsfelder erschlossen werden.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Winter2018, author = {Winter, Patrick}, title = {Neue Methoden zur Quantitativen Kardiovaskul{\"a}ren MR-Bildgebung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174023}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Herzkreislauferkrankungen stellen die h{\"a}ufigsten Todesursachen in den Industrienationen dar. Die Entwicklung nichtinvasiver Bildgebungstechniken mit Hilfe der Magnetresonanz-Tomografie (MRT) ist daher von großer Bedeutung, um diese Erkrankungen fr{\"u}hzeitig zu erkennen und um die Entstehungsmechanismen zu erforschen. In den letzten Jahren erwiesen sich dabei genetisch modifzierte Mausmodelle als sehr wertvoll, da sich durch diese neue Bildgebungsmethoden entwickeln lassen und sich der Krankheitsverlauf im Zeitraffer beobachten l{\"a}sst. Ein große Herausforderung der murinen MRT-Bildgebung sind die die hohen Herzraten und die schnelle Atmung. Diese erfordern eine Synchronisation der Messung mit dem Herzschlag und der Atmung des Tieres mit Hilfe von Herz- und Atemsignalen. Konventionelle Bildgebungstechniken verwenden zur Synchronisation mit dem Herzschlag EKG Sonden, diese sind jedoch insbesondere bei hohen Feldst{\"a}rken (>3 T) sehr st{\"o}ranf{\"a}llig. In dieser Arbeit wurden daher neue Bildgebungsmethoden entwickelt, die keine externen Herz- und Atemsonden ben{\"o}tigen, sondern das MRT-Signal selbst zur Bewegungssynychronisation verwenden. Mit Hilfe dieser Technik gelang die Entwicklung neuer Methoden zur Flussbildgebung und der 3D-Bildgebung, mit denen sich das arterielle System der Maus qualitativ und quantitativ erfassen l{\"a}sst, sowie einer neuen Methode zur Quantisierung der longitudinalen Relaxationszeit T1 im murinen Herzen. Die in dieser Arbeit entwickelten Methoden erm{\"o}glichen robustere Messungen des Herzkreislaufsystems. Im letzten Kapitel konnte dar{\"u}ber hinaus gezeigt werden dass sich die entwickelten Bildgebungstechniken in der Maus auch auf die humane Bildgebung {\"u}bertragen lassen.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Gutjahr2019, author = {Gutjahr, Fabian Tobias}, title = {Neue Methoden der physiologischen Magnet-Resonanz-Tomographie: Modellbasierte T1-Messungen und Darstellung von chemischem Austausch mit positivem Kontrast}, doi = {10.25972/OPUS-16106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161061}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Ziel dieser Arbeit war es, neue quantitative Messmethoden am Kleintier, insbesondere die Perfusionsmessung am M{\"a}useherz, zu etablieren. Hierf{\"u}r wurde eine retrospektiv getriggerte T1-Messmethode entwickelt. Da bei retrospektiven Methoden keine vollst{\"a}ndige Abtastung garantiert werden kann, wurde ein Verfahren gefunden, das mit Hilfe von Vorwissen {\"u}ber das gemessene Modell sehr effizient die fehlenden Daten interpolieren kann. Mit Hilfe dieser Technik werden dynamische T1-Messungen mit hoher r{\"a}umlicher und zeitlicher Aufl{\"o}sung m{\"o}glich. Dank der hohen Genauigkeit der T1-Messmethode l{\"a}sst sich diese f{\"u}r die nichtinvasive Perfusionsmessung am M{\"a}useherz mittels der FAIR-ASL-Technik nutzen. Da auf Grund der retrospektiven Triggerung Daten an allen Positionen im Herzzyklus akquiriert werden, konnten T1- und Perfusionskarten nach der Messung zu beliebigen Punkten im Herzzyklus rekonstruiert werden. Es bietet sich an, Techniken, die f{\"u}r die myokardiale Perfusion angewandt werden, auch f{\"u}r die Nierenperfusionsmessung zu verwenden, da die Niere in ihrer Rinde (Cortex) eine {\"a}hnlich hohe Perfusion aufweist wie das Myokard. Gleichzeitig f{\"u}hren Nierenerkrankungen oftmals zu schlechter Kontrastmittelvertr{\"a}glichkeit, da diese bei Niereninsuffizienz u.U. zu lange im K{\"o}rper verweilen und die Niere weiter sch{\"a}digen. Auch deshalb sind die kontrastmittelfreien Spin-Labeling-Methoden hier interessant. Die FAIR-ASL-Technik ist jedoch an M{\"a}usen in koronaler Ansicht f{\"u}r die Niere schlecht geeignet auf Grund des geringen Unterschieds zwischen dem markierten und dem Vergleichsexperiment. Als L{\"o}sung f{\"u}r dieses Problem wurde vorgeschlagen, die Markierungsschicht senkrecht zur Messschicht zu orientieren. Hiermit konnte die Sensitivit{\"a}t gesteigert und gleichzeitig die Variabilit{\"a}t der Methode deutlich verringert werden. Mit Hilfe von kontrastmittelgest{\"u}tzten Messungen konnten auch das regionale Blutvolumen und das Extrazellularvolumen bestimmt werden. In den letzten Jahren hat das Interesse an Extrazellularvolumenmessungen zugenommen, da das Extrazellularvolumen stellvertretend f{\"u}r diffuse Fibrose gemessen werden kann, die bis dahin nichtinvasiven Methoden nicht zug{\"a}nglich war. Die bisher in der Literatur verwendeten Quantifizierungsmethoden missachten den Einfluss, den das H{\"a}matokrit auf den ECV-Wert hat. Es wurde eine neue Korrektur vorgeschlagen, die allerdings zus{\"a}tzlich zur ECV-Messung auch eine RBV-Messung ben{\"o}tigt. Durch gleichzeitige Messung beider Volumenanteile konnte auch erstmals das Extrazellulare-Extravaskul{\"a}re-Volumen bestimmt werden. Eine g{\"a}nzlich andere kontrastmittelbasierte Methode in der MRT ist die Messung des chemischen Austauschs. Hierbei wirkt das Kontrastmittel nicht direkt beschleunigend auf die Relaxation, sondern der Effekt des Kontrastmittels wird gezielt durch HF-Pulse an- und ausgeschaltet. Durch den chemischen Austausch kann die Auswirkung der HF-Pulse akkumuliert werden. Bislang wurde bei solchen Messungen ein negativer Kontrast erzeugt, der ohne zus{\"a}tzliche Vergleichsmessungen schwer detektierbar war. Im letzten Teil dieser Arbeit konnte eine neue Methode zur Messung des chemischen Austauschs gezeigt werden, die entgegen der aus der Literatur bekannten Methoden nicht S{\"a}ttigung, sondern Anregung {\"u}bertr{\"a}gt. Diese {\"A}nderung erlaubt es, einen echten positiven chemischen Austausch-Kontrast zu erzeugen, der nicht zwingend ein Vergleichsbild ben{\"o}tigt. Gleichzeitig erm{\"o}glicht die Technik, dadurch dass Anregung {\"u}bertragen wird, die Phase der Anregung zu kontrollieren und nutzen. Eine m{\"o}gliche Anwendung ist die Unterscheidung verschiedener Substanzen in einer Messung. In der Summe wurden im Rahmen dieser Arbeit verschiedene robuste Methoden eta- bliert, die die M{\"o}glichkeiten der quantitativen physiologischen MRT erweitern.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Gutberlet2011, author = {Gutberlet, Marcel}, title = {K-Raum-Symmetrie und dichtegewichtete Bildgebung: Optimierung der Magnet-Resonanz-Bildgebung hinsichtlich Signal-zu-Rauschverh{\"a}ltnis, Abbildungsqualit{\"a}t und Messzeit}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71834}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die Magnet-Resonanz (MR)-Bildgebung ist mit vielf{\"a}ltigen Anwendungen ein nicht mehr wegzudenkendes Instrument der klinischen Diagnostik geworden. Dennoch f{\"u}hrt die stark limitierte Messzeit h{\"a}ufig zu einer Einschr{\"a}nkung der erzielbaren r{\"a}umlichen Aufl{\"o}sung und Abdeckung, einer Beschr{\"a}nkung des Signal-zu-Rauschverh{\"a}ltnis (Signal-to-Noise Ratio) (SNR) sowie einer Signalkontamination durch benachbartes Gewebe. Bereits bestehende Methoden zur Reduktion der Akquisitionszeit sind die partielle Fourier (PF)-Bildgebung und die parallele Bildgebung (PPA). Diese unterscheiden sich zum einen im Schema zur Unterabtastung des k-Raums und zum anderen in der verwendeten Information zur Rekonstruktion der fehlenden k-Raum-Daten aufgrund der beschleunigten Akquisition. W{\"a}hrend in der PPA die unterschiedlichen Sensitivit{\"a}ten einer Mehrkanal-Empfangsspule zur Bildrekonstruktion verwendet werden, basiert die PF-Bildgebung auf der Annahme einer langsamen Variation der Bildphase. Im ersten Abschnitt dieser Arbeit wurde das Konzept der Virtuellen Spulendekonvolutions (Virtual Coil Deconvolution) (VIDE)-Technik vorgestellt, das das gleiche Schema der Unterabtastung des k-Raums wie die konventionelle PPA verwendet, aber anstelle der Spulensensitivit{\"a}t die Bildphase als zus{\"a}tzliche Information zur Herstellung der fehlenden Daten der beschleunigten Bildgebung verwendet. Zur Minimierung der Rekonstruktionsfehler und der Rauschverst{\"a}rkung in der VIDE-Technik wurde ein optimiertes Akquisitionsschema entwickelt. Die Kombination der PPA und PF-Bildgebung zur Beschleunigung der MR-Bildgebung wird durch das unterschiedliche Unterabtastschema erschwert. Wie Blaimer et al. in ihrer Arbeit gezeigt haben, kann das Prinzip der VIDE-Technik auf Mehrkanal-Spulen {\"u}bertragen werden, sodass mit dieser Methode die PPA und die PF-Bildgebung optimal vereint werden k{\"o}nnen. Dadurch kann die Rauschverst{\"a}rkung aufgrund der Spulengeometrie ohne zus{\"a}tzliche Messungen deutlich reduziert werden. Obwohl die Abtastung des k-Raums in der MR-Bildgebung sehr variabel gestaltet werden kann, wird bis heute nahezu ausschließlich die regelm{\"a}ßige k-Raum-Abtastung in der klinischen Bildgebung verwendet. Der Grund hierf{\"u}r liegt, neben der schnellen Rekonstruktion und der einfachen Gestaltung der Variation des Bild-Kontrasts, in der Robustheit gegen Artefakte. Allerdings f{\"u}hrt die regelm{\"a}ßige k-Raum-Abtastung zu einer hohen Signalkontamination. Die Optimierung der SRF durch nachtr{\"a}gliches Filtern f{\"u}hrt jedoch zu einem SNR-Verlust. Die dichtegewichtete (DW-) Bildgebung erm{\"o}glicht die Reduktion der Signal-Kontamination bei optimalem SNR, f{\"u}hrt aber zur einer Reduktion des effektiven Gesichtsfelds (FOV) oder einer Erh{\"o}hung der Messzeit. Letzteres kann durch eine Kombination der PPA und DW-Bildgebung umgangen werden. Der zweite Teil dieser Arbeit befasste sich mit neuen Aufnahme- und Rekonstruktionsstrategien f{\"u}r die DW-Bildgebung, die eine Erh{\"o}hung des FOVs auch ohne Einsatz der PPA erlauben. Durch eine Limitierung der minimalen k-Raum-Abtastdichte konnte durch eine geringf{\"u}gige Reduktion des SNR-Vorteils der DW-Bildgebung gegen{\"u}ber der kartesischen, gefilterten Bildgebung eine deutliche Verringerung der Artefakte aufgrund der Unterabtastung in der DW-Bildgebung erreicht werden. Eine asymmetrische Abtastung kann unter der Voraussetzung einer homogenen Bildphase das Aliasing zus{\"a}tzlich reduzieren. Durch die Rekonstruktion der DW-Daten mit der Virtuelle Spulendekonvolution f{\"u}r die effektive DW-Bildgebung (VIDED)-Bildgebung konnten die Artefakte aufgrund der Unterabtastung eliminiert werden. In der 3d-Bildgebung konnte durch Anwendung der modifizierten DW-Bildgebung eine Steigerung des FOVs in Schichtrichtung ohne Messzeitverl{\"a}ngerung erreicht werden. Die nicht-kartesische k-Raum-Abtastung f{\"u}hrt im Fall einer Unterabtastung zu deutlich geringeren, inkoh{\"a}renten Aliasingartefakten im Vergleich zur kartesischen Abtastung. Durch ein alternierendes DW-Abtastschema wurde eine an die in der MR-Mammografie verwendete Spulengeometrie angepasste k-Raum-Abtastung entwickelt, das bei gleicher Messzeit die r{\"a}umliche Aufl{\"o}sung, das SNR und das FOV erh{\"o}ht. Im dritten Teil dieser Arbeit wurde die Verallgemeinerung der DW-Bildgebung auf signalgewichtete Sequenzen, d.h. Sequenzen mit Magnetisierungspr{\"a}paration (Inversion Recovery (IR), Saturation Recovery (SR)) sowie Sequenzen mit einer Relaxation w{\"a}hrend der Datenaufnahme (Multi-Gradienten-Echo, Multi-Spin-Echo) vorgestellt, was eine Steigerung der Bildqualit{\"a}t bei optimalem SNR erlaubt. Die Methode wurde auf die SR-Sequenz angewendet und deren praktischer Nutzen wurde in der Herz-Perfusions-Bildgebung gezeigt. Durch die Verwendung der in dieser Arbeit vorgestellten Technik konnte eine Reduktion der Kontamination bei einem SNR-Gewinn von 16\% im Vergleich zur konventionellen, kartesischen Abtastung bei gleicher Messzeit erreicht werden.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Weber2011, author = {Weber, Daniel}, title = {Morphologische und funktionelle MRT-Infarktcharakterisierung und Entwicklung einer diffusionsgewichteten MRT-Methode}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71157}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Diffusionstensorbildgebung im Vergleich zu anderen Parametermethoden f{\"u}r die Infarktcharakterisierung Ziel dieses Teils der Arbeit war die Kl{\"a}rung der Frage, welches Potential verschiedene MR-Parametersequenzen bei der Charakterisierung eines myokardialen Infarkts sowohl im akuten als auch im chronischen Fall haben. Dazu wurde eine Studie mit akut und chronisch infarzierten Rattenherzen durchgef{\"u}hrt. Untersucht wurden die Parameter T1, T2 und T2* sowie die aus der Diffusionstensorbildgebung berechneten Parameter ADC, FA, cs, cp und cl . Es zeigte sich, dass es kein Analogon zum bei einer cerebralen Isch{\"a}mie bekannten Mismatch-Konzept gibt. Weder im akuten noch im chronischen war Fall eine ausgewiesene Differenz im diagnostizierten Infarktareal zwischen verschiedenen Sequenzen feststellbar. Alles in allem eignen sich zur detaillierten Charakterisierung der Infarktnarbe am besten eine T2*- oder eine Diffusionstensorsequenz. Die T2*-Sequenz liefert optisch das aufschlussreichere Bild, die aufwendigere Diffusionstensorsequenz dagegen bietet aufgrund der vielfachen Darstellungsm{\"o}glichkeiten im Postprocessing ein Mehr an Information und zeigt dazu eine Ver{\"a}nderung der Narbe im Zeitverlauf. Oxygenierungsmessung am M{\"a}useherz in vivo Die Charakterisierung einer Infarktnarbe kann auch {\"u}ber die Darstellung morphologischer Strukturen hinaus erfolgen. Die Oxygenierung ist ein komplexer Parameter, der funktionelle Auskunft {\"u}ber die Vaskularisierung und Viabilit{\"a}t des Gewebes geben kann. Zugang zu diesem Parameter erh{\"a}lt man {\"u}ber T2*-Messungen, da der Parameter T2* sensitiv auf chemisch gebundenen Sauerstoff reagiert. Hier wurden der Einfluss von reiner Sauerstoffatmung im Gegensatz zu normaler Raumluftatmung auf die Oxygenierung bei gesunden und infarzierten M{\"a}usen untersucht. Die Messungen wurden trotz der Schwierigkeiten, die durch die Bewegung durch Atmung und Herzschlag entstehen, in vivo bei 17,6 Tesla implementiert und durchgef{\"u}hrt. Die Aufl{\"o}sung war ausreichend, um auch nach Infarkt extrem ausged{\"u}nnte Myokardw{\"a}nde gut aufl{\"o}sen und charakterisieren zu k{\"o}nnen. Der Effekt auf das Oxygenierungslevel ist stark unterschiedlich zwischen normalen und infarzierten Herzen, woraus auf eine noch nicht weit fortgeschrittene Revaskularisierung der Narbe eine Woche nach Infarzierung geschlossen werden kann. Die Methode wurde dar{\"u}ber hinaus an einem 7,0 Tesla-Magneten zur Verwendung an Ratten implementiert und auf das im Gegensatz zur Maus ver{\"a}nderte Atmungsverhalten der Ratte angepasst. Zum einen kann dadurch der Einfluss des hohen Magnetfeldes auf die Oxygenierungsmessung untersucht werden, zum anderen ist das Herz als zu untersuchendes Objekt bei der Ratte gr{\"o}ßer. Diffusionswichtung mittels Hole-Burning Die in dieser Arbeit zur Charakterisierung des Herzens verwendete Diffusionsmethode kann im Grenzfall von kurzen T2-Relaxationszeiten an ihre Grenzen stoßen: Bei den verwendeten starken Magnetfeldern klingt das messbare Signal aufgrund der Relaxationszeit T2 oft sehr schnell ab. Daher wurde eine Methode entwickelt, die einen v{\"o}llig neuen Ansatz zur diffusionsgewichteten Bildgebung verfolgt, bei dem die Informationen {\"u}ber die Diffusion unabh{\"a}ngig von der limitierenden T2-Zeit gewonnen werden k{\"o}nnen. Die sog. Hole-Burning-Diffusionssequenz verwendet in einem Vorexperiment lediglich die Longitudinalmagnetisierung zur Diffusionswichtung. Das Signal wird dann mit einer schnellen Auslesesequenz akquiriert. Bei der Pr{\"a}paration werden zun{\"a}chst auf Subvoxel-Niveau Streifen "gebrannt", d.h. die Magnetisierung wird dort ges{\"a}ttigt. Bis zur n{\"a}chsten S{\"a}ttigung ist das Verhalten der Magnetisierung abh{\"a}ngig von der T1-Relaxation in diesem Bereich und vom Diffusionsverhalten. Durch rasches Wiederholen des selektiven Pulszugs wird schließlich eine Gleichgewichtsmagnetisierung erreicht, die von der Diffusionskonstanten D und der T1-Relaxationszeit abh{\"a}ngt. Im Rahmen dieser Arbeit wurden die Abh{\"a}ngigkeiten verschiedener Sequenzparameter untersucht und diese mittels Simulationen optimiert. Außerdem wurde die Sequenz an einem Scanner implementiert und erste Experimente damit durchgef{\"u}hrt. Mit Hilfe von Simulationen konnten dazu Lookup-Tabellen generiert werden, mit denen in bestimmten Bereichen (insbesondere bei nicht zu kurzen T1-Relaxationszeiten) sowohl die Diffusionskonstante D als auch die T1-Relaxationszeit quantifiziert werden konnte.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Sturm2015, author = {Sturm, Volker J{\"o}rg Friedrich}, title = {\(^{19}F\) Magnetresonanztomographie zur Bildgebung von Infektionen im Zeitverlauf}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122851}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {114}, year = {2015}, abstract = {Im Rahmen dieser Arbeit sollten die M{\"o}glichkeiten der MR Tomographie erkundet werden bakterielle Infektionen im Zeitverlauf darzustellen. Genauer gesagt sollte das Potential der MR Tomographie anhand eines durch eine Infektion induzierten lokalisierten Abszesses unter Verwendung dreier unterschiedlicher MRT Methoden untersucht werden: Mittels nativem \(T_2\) Kontrast; der Verwendung von superparamagnetischen Eisenoxid Partieln (USPIO) als \(T_2^*\) Kontrastmittel; und dem Einsatz von Perfluorkarbonen (PFC) als \(^{19}F\) MRT Marker (siehe Kapitel 3). Wie erwartet f{\"u}hrte die durch die Infektion hervorgerufene Entz{\"u}ndung zu ver{\"a}nderten \(T_2\)-Zeiten, welche auf \(T_2\)-gewichteten MR Bildern eine Lokalisierung des Abszessbereiches erlauben. Jedoch eigneten sich diese Daten aufgrund der graduellen {\"A}nderung der \(T_2\)-Zeiten nicht, um eine klare Grenze zwischen Abszess und umliegendem Gewebe zu ziehen. Superparamagnetische Eisenoxidpartikel andererseit haben als MRT Kontrastmittel bereits in den letzten Jahren ihre F{\"a}higkeit unter Beweis gestellt Entz{\"u}ndungen [53, 58, 64] darzustellen. Die Anreicherung dieser Partikel am Rande des Abszesses [53], wie sie auch in unseren MR Daten zu beobachten war, erlaubte eine relativ scharfe Abgrenzung gegen{\"u}ber dem umgebenden Gewebe in der chronischen Phase der Infektion (Tag 9 p.i.). Hingegen gen{\"u}gte die nur sehr sp{\"a}rlichen Anreicherung von USPIO Partikeln in der akuten Phase der Infektion (Tag 3 p.i.) nicht f{\"u}r eine entsprechende Abgrenzung [58]. Aufgrund der sehr geringen biologischen H{\"a}ufigkeit und den sehr kurzen Relaxationszeiten von endogenem Fluor eignen sich Perfluorkarbone als Markersubstanz in der MR Tomographie von biologischen Systemen. Insbesondere da PFC Emulsionen durch phagozytierende Zellen aufgenommen werden und im Bereich von Entz{\"u}ndungen akkumulieren [30, 59]. In dieser Arbeit konnte anhand der erhaltenen MRT Daten eine Akkumulation von Perfluorkarbonen nicht nur in der chronischen Phase, sondern auch in der akuten Phase nachgewiesen werden. Diese Daten erlauben somit zu allen untersuchten Zeitpunkten eine Abgrenzung zwischen Infektion und umliegenden Gewebe. Aufgrund der besagten Vorteile wurden die Perfluorkarbone gew{\"a}hlt, um die M{\"o}glichkeiten der MR Tomographie zu testen, quantitative Informationen {\"u}ber die schwere der Infektion zu liefern. Als Referenz f{\"u}r die Bakterienbelastung wurden die Biolumineszenzbildgebung (BLI) [49, 50] und die Standardmethode zur Bestimmung der Bakterienbelastung cfu (koloniebildenden Einheiten) herangezogen. Eine Gegen{\"u}berstellung der zeitlichen Verl{\"a}ufe der durch die Biolumineszenzbildgebung und durch die cfu erhaltenen Daten liefert eine qualitative {\"U}bereinstimmung mit den durch die 19F MR Tomographie erhaltenen Daten. Dies trifft hierbei sowohl auf die {\"u}ber den gesamten Infektionsbereich hinweg summierten Signalamplituden, als auch auf das Volumen zu, in dem Fluor am Ort der Infektion akkumuliert wurde. Im Gegensatz zur Methode der cfu Bestimmung sind die MR Tomographie und die Biolumineszenzbildgebung nicht invasiv und erlauben die Verfolgung des Infektionsverlaufes an einem einzelnen Individuum. Hierzu ben{\"o}tigt, im Gegensatz zur MR Tomographie, die Methode der Biolumineszenzbildgebung jedoch einen speziellen Pathogenstamm. Dar{\"u}ber hinaus ist hervorzuheben, dass die MR Tomographie zudem die M{\"o}glichkeit bietet auch morphologische Informationen {\"u}ber den Infektionsbereich und seine Umgebung zu akquirieren. Gerade weil jede dieser Methoden die mit der Infektion einhergehenden Prozesse aus einer leicht anderen Blickrichtung betrachtet, erscheint es sinnvoll diese etablierte Untersuchungsplattform bestehend aus MRT, BLI und cfu {\"u}ber die in dieser Arbeit bearbeitete Fragestellung hinaus n{\"a}her zu untersuchen. Insbesondere der Aspekt inwieweit die drei Methoden sich gegenseitig erg{\"a}nzen, k{\"o}nnte einen tieferen Einblick in die Wechselwirkung zwischen Pathogen und Wirt erlauben. Auch wenn f{\"u}r die betrachtete Fragestellung bereits der hierdurchgef{\"u}hrte semiquanitative Ansatz zur Bestimmung der relativen Fluormengen am Ort der Infektion ausreichte, so ist doch im Allgemeinen w{\"u}nschenswert probenbezogen die Sensitivit{\"a}t der Spule und damit die G{\"u}te der Spulenabstimmung zu bestimmen. Hierzu ist jedoch die Aufnahme von \(B_1\)-Karten unabdingbar und wird entsprechend im Kapitel 4 \(Bloch-Siegert B_1^+-Mapping\) n{\"a}her addressiert. Der Schwerpunkt liegt hierbei, wie der Kapitelname bereits andeutet, auf der Bloch-Siegert Methode, die insbesondere in der pr{\"a}sentierten Implementierung in einer Turbo/ Multi Spin Echo Sequenz eine effiziente Nutzung der relativ langen \(T_\)2-Zeiten der Perfluorkarbone erlaubt. Da zudem die Bloch-Siegert-Methode eine rein phasenbasierte Methode ist, kann neben der aus den Daten erzeugten \(B_1\)-Karte zugleich ein unverf{\"a}lschtes Magnitudenbild generiert werden, wodurch eine sehr effiziente Nutzung der vorhandenen Messzeit erm{\"o}glicht wird. Diese Eigenschaft ist insbesondere f{\"u}r \(^{19}F\) Bildgebung von besonderem Interesse, da hier f{\"u}r jede Messung, aufgrund der {\"u}blicherweise relativ geringen Konzentration an Fluoratomen, lange Messzeiten ben{\"o}tigt werden. Zusammenfassend konnte anhand des untersuchten Tiermodells sowohl die F{\"a}higkeit der MR Tomographie nachgewiesen werden Infektionen im Zeitverlauf darzustellen, als auch die F{\"a}higkeit der MR Tomographie quantitative Informationen {\"u}ber den Verlauf der Infektion zu liefern. Desweiteren konnte eine M{\"o}glichkeit aufgezeigt werden, welche das Potential hat in vertretbarem Zeitrahmen auch in vivo B1+-Karten auf dem Fluorkanal zu erstellen und so einen zentralen Unsicherheitsfaktor, f{\"u}r Relaxometry und absolute Quantifizierung von \(^{19}F\) Daten in vivo, zu beseitigen.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Hopfgartner2015, author = {Hopfgartner, Andreas}, title = {Magnetresonanztomographie in der Zahnheilkunde - hochaufl{\"o}sende zahnmedizinische Anwendungen in der MRT mit einer Entwicklung zur Bewegungskorrektur}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122557}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {126}, year = {2015}, abstract = {Die zahnmedizinische Behandlung von Erkrankungen der Z{\"a}hne oder im Bereich der Mundh{\"o}hle erfolgt bei Weitem nicht immer aus optischen Gr{\"u}nden. Diese Erkrankungen werden auch mit ernsthaften Erkrankungen in Zusammenhang gebracht. Studien haben gezeigt, dass einige Erkrankungen im Mund- und Zahnbereich zu Herz- und Lungenkrankheiten oder Diabetes f{\"u}hren k{\"o}nnen. Oftmals erstreckt sich die Pathologie oder Symptomatik von Mund- und Zahnerkrankungen {\"u}ber einen weiten Bereich. In der zahnmedizinischen Klinik kommen daher viele verschiedene diagnostische Apparate zum Einsatz. Allerdings z{\"a}hlt die Magnetresonanztomographie, die sich in anderen Bereichen bereits zum wichtigsten bildgebenden Diagnosetool entwickelt hat, dort noch nicht zu den Standardverfahren. Dabei liegen ihre Vorteile auf der Hand: sie ist bekannt f{\"u}r sehr gute Bildkontraste vor allem zwischen verschiedenen Weichgewebsarten und kommt ohne gef{\"a}hrliche ionisierende Strahlung aus. Wahrscheinlich ist ersteres der Grund, warum die MRT in der Zahnmedizin noch nicht sonderlich vertreten ist, kommt es dort oft auf die kontrastreiche Darstellung von Hartgeweben an. Neueste Entwicklungen und Studien belegen jedoch die vielseitigen Vorteile der MRT auch in diesem Bereich. Ziel dieser Arbeit von der applikativen Seite betrachtet, war es, das enorme Potential der MRT in den vielseitigen Bereichen der Zahnmedizin weiterhin aufzuzeigen. Viele dieser Anwendungen stellen jedoch sehr hohe Anforderungen an die Systeme. Meist sind die darzustellenden Strukturen sehr klein und erfordern eine hohe Aufl{\"o}sung. W{\"a}hrend man beim R{\"o}ntgenverfahren beispielsweise die Energie des Strahles (Dosis) steigern kann, bedeutet dies in der MRT (ohne das Ger{\"a}t zu wechseln) eine Verl{\"a}ngerung der Messzeit. Gerade im Bereich des Kopfes kommt es oft zu ungewollten Bewegungen, die das Ergebnis und die Reproduzierbarkeit der gewonnenen diagnostischen Informationen verschlechtern oder g{\"a}nzlich unbrauchbar machen. Die gr{\"o}sste Herausforderung dabei ist die dreidimensionale Abformung von Zahnoberfl{\"a}chen in der Prothetik. Dieses Verfahren kann eine aufw{\"a}ndige und unangenehme manuelle Abformung der Z{\"a}hne und die Herstellung eines Zwischengipsmodells ersetzen und ein direktes dreidimensionales Modell der Zahnoberfl{\"a}chen produzieren. Durch die moderne CAD-/CAM-Technik kann daraus vom Zahntechniker direkt eine Zahnrestauration erstellt werden. Daher war ein wichtiger Bestandteil des Projekts dentale MRT die Entwicklung einer Methode zur Erkennung und gleichzeitiger Korrektur von Bewegungen. Verschiedenste Anforderungen waren an die Methode gestellt. Zum einen muss die Methode bereits Bewegungen im Bereich von ~100 µm erkennen, um die Anforderungen an die finale Bildaufl{\"o}sung zu unterschreiten. Bei der dentalen Abformung wird eine 1-Kanal-Empf{\"a}ngerspule verwendet und je nach Messung kann der Patient dabei auf dem Bauch oder R{\"u}cken liegen. Weiterhin muss die Bewegungserkennung ohne zus{\"a}tzliche externe Ger{\"a}te wie Kameras, deren Sicht z.B. durch den Patienten verdeckt ist, durchf{\"u}hrbar sein. Die vorliegende Arbeit deckt also zwei gr{\"o}ßere Themenbl{\"o}cke ab. Zum einen wurden in der Arbeit neue Applikationen entwickelt oder weiterentwickelt, um verschiedenen Bereichen der Zahnmedizin den Zugang zu MRTUntersuchungen zu er{\"o}ffnen. Kapitel 4 beschreibt die M{\"o}glichkeit, die Bewegung des Kiefergelenks dynamisch zu erfassen. Es stellte sich in der Arbeit heraus, dass sowohl die Bewegung von Weichgewebeanteilen darstellbar waren, als auch der intraartikul{\"a}re Abstand im Kiefergelenk unter Kaubelastung in Echtzeit vermessen werden konnte. Dabei wurde die Bildgebungssequenz und der zugeh{\"o}rige Rekonstruktionsalgorithmus so entwickelt, dass die Daten flexibel und ohne Vorwissen akquiriert und aufbereitet werden k{\"o}nnen. Hierbei konnten verschiedenen Pathologien anhand der dynamischen Bilder sichtbar gemacht werden und die dynamische MRT konnte Erkrankungen erkennen, die mit anderen Mitteln nicht sichtbar waren. Die vielen diagnostischen M{\"o}glichkeiten, die dadurch entstehen sind bisher noch nicht untersucht und sollten durch großangelegte Studien untersucht und belegt werden. Kapitel 5 beschreibt die Ergebnisse einer großangelegten Studie im Bereich der dentomaxill{\"a}ren Bildgebung . Die diagnostischen M{\"o}glichkeiten der MRT f{\"u}r die kieferorthop{\"a}dische Anwendung liegen klar auf der Hand. Die typischen Patienten in der Kieferorthop{\"a}die sind Kinder und Jugendliche. Die Abwesenheit von gewebssch{\"a}digender Strahlung ist hier ein besonderer Vorteil der MRT. Eine Messung dauert zudem nach diversen Weiterentwicklungen der Methode nur noch 2 (bzw. 4) Minuten. Die Aufl{\"o}sung in den gerenderten Bildern betr{\"a}gt 0.25x0.25x0.5 mm. Mit der Methode konnte unter anderem die Geminisierung einer Zahnwurzel und der Abstand des Zahnmarks zur Zahnoberfl{\"a}che (Zahnschmelz) dargestellt und vermessen werden. Kapitel 6 stellt Neuentwicklungen im Bereich der dentalen Abformung von Zahnoberfl{\"a}chen dar. Hier wurde eine neue Methode entwickelt um den Patientenkomfort bei der Messung zu steigern und so Bewegungen im Vorhinein zu unterbinden. Bei der alten Methode liegt der Patient auf dem Bauch und ein großer Teil der Mundh{\"o}hle ist mit Kontrastmittel bef{\"u}llt. Durch die Verwendung einer pr{\"a}parierten Tiefziehschiene kann das Kontrastmittel nun lokal appliziert werden und eine Messung in R{\"u}ckenlage das Patienten ist somit problemlos m{\"o}glich. Die damit verbundene Reproduzierbarkeit der Abformungsergebnisse w{\"a}re durch eine großangelegte Studie zu zeigen. Die Hauptaufgabe der vorliegenden Dissertation war es, eine Methode zur Bewegungskorrektur zu entwickeln, die es ohne eine große Anzahl an Zusatzger{\"a}ten erm{\"o}glicht, die Bewegung eines Subjekts w{\"a}hrend der Messung zu erfassen und dementsprechend zu korrigieren. Diese neue Methode, gest{\"u}tzt auf einer Messung eines MRT-aktiven Markers der am Subjekt angebracht wird, beruht außer der Verwendung des Markers nur auf MRT-Hardware. Die Methode wird in Kapitel 8 vorgestellt. Da es sich bei der Methode um eine Neuentwicklung handelt, war es in erster Linie wichtig, die Einfl{\"u}sse der verschiedenen Parameter, die sich auf die Positionierungsgenauigkeit auswirken, abzusch{\"a}tzen und letzten Endes festzulegen. Dies wurde in mehreren Vorstudien, Experimenten und Computersimulationen abgehandelt. In der Arbeit konnte durch Validierungsexperimente gezeigt werden dass sich mit dem bildbasierten Navigator Bewegungen im Genauigkeitsbereich von ~50 µm (Translation) und ~0.13◦(Rotation) detektieren lassen. Mit den Positionsinformationen lassen sich MRT-Daten retrospektiv korrigieren oder idealerweise das Bildgebungsvolumen in Echtzeit anpassen um Inkonsistenzen in den Daten im Vorhinein vorzubeugen. Durch Bewegung beeintr{\"a}chtigte in-vivo Daten konnten so mit der Methode korrigiert werden und anhand eines geeigneten Phantoms konnte die Verbesserung der Erkennung von Kanten, wie sie beispielsweise bei der dentalen Abformung angewandt wird, gezeigt werden. Die kontinuierlichen Entwicklungen in den Bereichen Hard-, Software und Algorithmik erm{\"o}glichen weitere hochaufl{\"o}sende Anwendungen. In Kapitel 9 sind die Ergebnisse einer Studie gezeigt, die sich mit der Analyse der Handbewegungen w{\"a}hrend einer Messung besch{\"a}ftigt. F{\"u}r eine hochaufl{\"o}senden Darstellung der Handanatomie bei 7 T ist eine Unterbindung der Handbewegung sehr wichtig. Um ein geeignetes Design f{\"u}r eine Empf{\"a}ngerspule zu entwerfen, die Bewegungen der Hand unterbindet, wurde eine qualitative Bewegungsanalyse der Hand in mehreren verschiedenen Positionen durchgef{\"u}hrt. Durch Vergleich der Ergebnisse konnte so auf geeignete Designs zur{\"u}ckgeschlossen werden.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Weick2015, author = {Weick, Stefan}, title = {Retrospektive Bewegungskorrektur zur hochaufgel{\"o}sten Darstellung der menschlichen Lunge mittels Magnetresonanztomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124084}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Ziel dieser Arbeit war es, das gesamte Lungenvolumen in hoher dreidimensionaler Aufl{\"o}sung mittels der MRT darzustellen. Um trotz der niedrigen Protonendichte der Lunge und der geforderten hohen Aufl{\"o}sung ausreichend Signal f{\"u}r eine verl{\"a}ssliche Diagnostik zu erhalten, sind Aufnahmezeiten von einigen Minuten n{\"o}tig. Um die Untersuchung f{\"u}r den Patienten angenehmer zu gestalten oder auf Grund der eingeschr{\"a}nkten F{\"a}higkeit eines Atemstopps {\"u}berhaupt erst zu erm{\"o}glichen, war eine Anforderung, die Aufnahmen in freier Atmung durchzuf{\"u}hren. Dadurch entstehen allerdings Bewegungsartefakte, die die Diagnostik stark beeintr{\"a}chtigen und daher m{\"o}glichst vermieden werden m{\"u}ssen. F{\"u}r eine Bewegungskompensation der Daten muss die auftretende Atembewegung detektiert werden. Die Bewegungsdetektion kann durch externe Messger{\"a}te (Atemgurt oder Spirometer) oder durch eine zus{\"a}tzliche Anregungen erfolgen (konventionelle Navigatoren) erfolgen. Nachteile dieser Methoden bestehen darin, dass die Bewegung w{\"a}hrend der Atmung nicht direkt verfolgt wird, dass elektronische Messger{\"a}te in die N{\"a}he des Tomographen gebracht werden und das die Patienten zus{\"a}tzlich vorbereitet und eingeschr{\"a}nkt werden. Des Weiteren erfordert eine zus{\"a}tzliche Anregung extra Messzeit und kann unter Umst{\"a}nden die Magnetisierung auf unterw{\"u}nschte Weise beeinflussen. Um die angesprochenen Schwierigkeiten der Bewegungsdetektion zu umgehen, wurden in dieser Arbeit innerhalb einer Anregung einer 3d FLASH-Sequenz sowohl Bilddaten- als auch Navigatordaten aufgenommen. Als Navigator diente dabei das nach der Rephasierung aller bildgebenden Gradienten entstehende Signal (DC Signal). Das DC Signal entspricht dabei der Summe aller Signale, die mit einem bestimmten Spulenelement detektiert werden k{\"o}nnen. Bewegt sich beispielsweise die Leber bedingt durch die Atmung in den Sensitivit{\"a}tsbereich eines Spulenelementes, wird ein st{\"a}rkeres DC Signal detektiert werden. Je nach Positionierung auf dem K{\"o}rper kann so die Atembewegung mit einzelnen r{\"a}umlich lokalisierten Spulenelementen nachverfolgt werden. Am DC Signalverlauf des f{\"u}r die Bewegungskorrektur ausgew{\"a}hlten Spulenelementes sind dann periodische Signalschwankungen zu erkennen. Zus{\"a}tzlich k{\"o}nnen aus dem Verlauf Expirations- von Inspirationszust{\"a}nden unterschieden werden, da sich Endexpirationszust{\"a}nde im Regelfall durch eine l{\"a}ngere Verweildauer auszeichnen. Grunds{\"a}tzlich kann das DC Signal vor oder nach der eigentlichen Datenaufnahme innerhalb einer Anregung aufgenommen werden. Auf Grund der kurzen Relaxationszeit T∗2 des Lungengewebes f{\"a}llt das Signal nach der RF Anregung sehr schnell ab. Um m{\"o}glichst viel Signal zu erhalten sollten, wie in dieser Arbeit gezeigt wurde, innerhalb einer Anregung zuerst die Bilddaten und danach die Navigatordaten aufgenommen werden. Dieser Ansatz f{\"u}hrt zu einer Verk{\"u}rzung der Echozeit TE um 0.3 ms und damit zu einem SNR Gewinn von etwa 20 \%. Gleichzeitig ist das verbleibende Signal nach der Datenakquisition und Rephasierung der bildgebenden Gradienten noch ausreichend um die Atembewegung zu erfassen und somit eine Bewegungskorrektur der Daten (Navigation) zu erm{\"o}glichen. Um eine retrospektive Bewegungskorrektur durchf{\"u}hren zu k{\"o}nnen, m{\"u}ssen Akzeptanzbedingungen (Schwellenwerte) f{\"u}r die Datenauswahl festgelegt werden. Bei der Wahl des Schwellenwertes ist darauf zu achten, dass weder zu wenige noch zu viele Daten akzeptiert werden. Akzeptiert man sehr wenige Daten, zeichnen sich die Rekonstruktionen durch einen scharfen {\"U}bergang zwischen Lunge und Diaphragma aus, da man sehr wenig Bewegung in den Rekonstruktionen erlaubt. Gleichzeitig erh{\"o}ht sich allerdings das Risiko, dass nach der Navigation Linien fehlen. Dies f{\"u}hrt zu Einfaltungsartefakten, die in Form von gest{\"o}rten Bildintensit{\"a}ten in den Rekonstruktionen zu sehen sind und die diagnostische Aussagekraft einschr{\"a}nken. Um Einfaltungsartefakte zu vermeiden sollte der Schwellenwert so gew{\"a}hlt werden, dass nach der Datenauswahl keine Linien fehlen. Aus dieser Anforderung l{\"a}sst sich ein maximaler Schwellenwert ableiten. Akzeptiert man dagegen sehr viele Daten, zeichnen sich die Rekonstruktionen durch erh{\"o}htes Signal und das vermehrte Auftreten von Bewegungsartefakten aus. In diesem Fall m{\"u}sste der Arzt entscheiden, ob Bewegungsartefakte die Diagnostik zu stark beeinflussen. W{\"a}hlt man den Schwellenwert so, dass weder Linien fehlen noch zu viel Bewegung erlaubt wird, erh{\"a}lt man Rekonstruktionen die sich durch einen scharfen Diaphragma{\"u}bergang auszeichnen und in denen noch kleinste Gef{\"a}ße auch in der N{\"a}he des Diaphragmas deutlich zu erkennen sind. Hierf{\"u}r haben sich Schwellenwerte, die zu einer Datenakzeptanz von ca. 40 \% f{\"u}hren als g{\"u}nstig erwiesen. Um Einfaltungsartefakte auf Grund der retrospektiven Datenauswahl zu verhindern, muss das Bildgebungsvolumen mehrfach abgetastet werden. Dadurch wird gew{\"a}hrleistet, dass f{\"u}r die letztendliche Rekonstruktion ausreichend Daten zur Verf{\"u}gung stehen, wobei mehrfach akzeptierte Daten gemittelt werden. Dies spielt auf Grund der niedrigen Protonendichte der Lunge eine wesentliche Rolle in der Rekonstruktion hochaufgel{\"o}ster Lungendatens{\"a}tze. Weiterhin f{\"u}hrt das Mitteln von mehrfach akzeptierten Daten zu einer Unterdr{\"u}ckung der sogenannten Ghost Artefakte, was am Beispiel der Herzbewegung in der Arbeit gezeigt wird. Da die Messungen unter freier Atmung durchgef{\"u}hrt werden und keine zus{\"a}tzlichen externen Messger{\"a}te angeschlossen werden m{\"u}ssen, stellte die Untersuchung f{\"u}r die Patienten in dieser Arbeit kein Problem dar. Im ersten Teil dieser wurde Arbeit gezeigt, dass sich mit Hilfe des DC Signales als Navigator und einer retrospektiven Datenauswahl das gesamte Lungenvolumen in hoher dreidimensionaler Aufl{\"o}sung von beispielsweise 1.6 x 1.6 x 4 mm3 innerhalb von 13 min. darstellen l{\"a}sst. Die Anwendbarkeit der vorgestellten Methode zur Bewegungskorrektur wurde neben Probanden auch an Patienten demonstriert. Da wie bereits beschrieben das Bildgebungsvolumen mehrfach abgetastet werden muss, wiederholt sich auch die Abfolge der f{\"u}r die Bildgebung verantwortlichen Gradienten periodisch. Da sich der Atemzyklus aber auch periodisch wiederholt, kann es zu Korrelationen zwischen der Atmung und den wiederholten Messungen kommen. Dies f{\"u}hrt dazu, dass auch nach vielen wiederholten Messungen immer noch gr{\"o}ßere Bereiche fehlender Linien im k-Raum bleiben, was zu Artefakten in den Rekonstruktionen f{\"u}hrt. Dies konnte im Falle der konventionellen Bewegungskorrektur in den Gatingmasken, die die Verteilung und H{\"a}ufigkeit der einzelnen akzeptierten Phasenkodierschritte im k-Raum zeigen, beobachtet werden. Da eine vors{\"a}tzliche Unterbrechung der Atemperiodizit{\"a}t (der Patient wird dazu angehalten, seine Atemfrequenz w{\"a}hrend der Messung absichtlich zu variieren) zur Vermeidung der angesprochenen Korrelationen nicht in Frage kommt, musste die Periodizit{\"a}t in der Datenaufnahme unterbrochen werden. In dieser Arbeit wurde dies durch eine quasizuf{\"a}llige Auswahl von Phasen- und Partitionskodiergradienten erreicht, da Quasizufallszahlen so generiert werden, dass sie unabh{\"a}ngig von ihrer Anzahl einen Raum m{\"o}glichst gleichf{\"o}rmig ausf{\"u}llen. Die quasizuf{\"a}llige Datenaufnahme f{\"u}hrt deshalb dazu, das sowohl akzeptierte als auch fehlende Linien nach der Bewegungskorrektur homogen im k-Raum verteilt auftreten. Vergleicht man das auftreten von Ghosting zeichnen sich die quasizuf{\"a}lligen Rekonstruktionen im Vergleich zur konventionellen Datenaufnahme durch eine verbesserte Reduktion von Ghost Artefakten aus. Dies ist auf die homogene Verteilung mehrfach akzeptierter Linien im k-Raum zur{\"u}ckzuf{\"u}hren. Die homogenere Verteilung von fehlenden Linien im k-Raum f{\"u}hrt weiterhin zu einer wesentlich stabileren Rekonstruktion fehlender Linien mit parallelen MRT-Verfahren (z.B. iterativem Grappa). Dies wird umso deutlicher je h{\"o}her der Anteil fehlender Linien im k-Raum wird. Im Falle der konventionellen Datenaufnahme werden die zusammenh{\"a}ngenden Bereiche fehlender Linien immer gr{\"o}ßer, was eine erfolgreiche Rekonstruktion mit iterativem Grappa unm{\"o}glich macht. Im Falle der quasizuf{\"a}lligen Datenaufnahme dagegen k{\"o}nnen auch Datens{\"a}tze in denen 40\% der Linien fehlen einfaltungsartefaktfrei rekonstruiert werden. Im weiteren Verlauf der Arbeit wurde gezeigt, wie die Stabilit{\"a}t der iterativen Grappa Rekonstruktion im Falle der quasizuf{\"a}lligen Datenaufnahme f{\"u}r eine erhebliche Reduktion der gesamten Messzeit genutzt werden kann. So ist in einer Messzeit von nur 74s die Rekonstruktion eines artefaktfreien und bewegungskorrigierten dreidimensionalen Datensatzes der menschlichen Lunge mit einer Aufl{\"o}sung von 2 x 2 x 5 mm3 m{\"o}glich. Des Weiteren erlaubt die quasizuf{\"a}llige Datenaufnahme in Kombination mit iterativem Grappa die Rekonstruktion von Datens{\"a}tzen unterschiedlicher Atemphasen von Inspiration bis Expiration (4D Bildgebung). Nach einer Messzeit von 15min. wurden 19 unterschiedliche Atemzust{\"a}nde rekonstruiert, wobei sich der Anteil der fehlenden Linien zwischen 0 und 20 \% lag. Im Falle der konventionellen Datenaufnahme w{\"a}re eine wesentlich l{\"a}ngere Messzeit n{\"o}tig gewesen, um {\"a}hnliche Ergebnisse zu erhalten. Zum Schluss soll noch ein Ausblick {\"u}ber m{\"o}gliche Weiterentwicklungen und Anwendungsm{\"o}glichkeiten, die sich aus den Erkenntnissen dieser Arbeit ergeben haben, gegeben werden. So k{\"o}nnte das quasizuf{\"a}llige Aufnahmeschema um eine Dichtegewichtung erweitert werden. Hierbei w{\"u}rde der zentrale k-Raum Bereich etwas h{\"a}ufiger als die peripheren Bereiche akquiriert werden. Dadurch sollte die iterative Grappa Rekonstruktion noch stabiler funktionieren und Ghost Artefakte besser reduziert werden. Die Verteilung der Linien sollte allerdings nicht zu inhomogen werden, um gr{\"o}ßere L{\"u}cken im k-Raum zu vermeiden. Dar{\"u}ber hinaus k{\"o}nnte die vorgestellte Methode der Bewegungskompensation auch f{\"u}r die Untersuchung anderer Organe oder K{\"o}rperteile verwendet werden. Voraussetzung w{\"a}re lediglich das Vorhandensein dezidierter Spulenanordnungen, mit denen die Bewegung nachverfolgt werden kann. So ist beispielsweise eine dynamische Bildgebung des frei und aktiv bewegten Knies m{\"o}glich, wobei zwischen Beugung und Streckung durch die erste Ableitung des zentralen k-Raum Signales unterschieden werden kann. Dies kann zus{\"a}tzliche Diagnoseinformationen liefern oder f{\"u}r Verlaufskontrollen nach Operationen benutzt werden [15]. Eine Weiterentwicklung mit hohem klinischen Potential k{\"o}nnte die Kombination der in dieser Arbeit vorgestellten retrospektiven Bewegungskorrektur mit einer Multi- Gradienten-Echo Sequenz darstellen. Hierzu musste die bestehende Sequenz lediglich um eine mehrfache Abfolge von Auslesegradienten innerhalb einer Anregung erweitert werden. Dies erm{\"o}glicht eine bewegungskorrigierte voxelweise Bestimmung der transversalen Relaxationszeit T∗2 in hoher r{\"a}umlicher Aufl{\"o}sung. Unter zus{\"a}tzlicher Sauerstoffgabe kann es zu einer Ver{\"a}nderung von T∗2 kommen, die auf den sogenannten BOLD Effekt (Blood Oxygen Level Dependent) zur{\"u}ckzuf{\"u}hren ist. Aus dieser {\"A}nderung k{\"o}nnten R{\"u}ckschl{\"u}sse auf hypoxische Tumorareale gezogen werden. Da diese eine erh{\"o}hte Strahlenresistenz aufweisen, k{\"o}nnte auf diese Bereiche innerhalb des Tumors eine erh{\"o}hte Strahlendosis appliziert und so m{\"o}glicherweise Behandlungsmisserfolge reduziert werden. Gleichzeitig kann durch die 4D Bildgebung eine m{\"o}gliche Tumorbewegung durch die Atmung erfasst und diese Information ebenfalls in der Bestrahlungsplanung benutzt werden. Die Lungen MRT k{\"o}nnte somit um eine hochaufgel{\"o}ste dreidimensionale funktionelle Bildgebung erweitert werden.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Kartaeusch2015, author = {Kart{\"a}usch, Ralf}, title = {Spektroskopische Flussmessung an Pflanzen mittels mobilem Magnetresonanztomographen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125820}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The main objective of this dissertation was the development of a flow sensor which is specialized on flow measurements of plants. Hence, an accessible mobile magnet and the receiver/transfer hardware have been developed. Additionally, software to control the MR-console has been written. The AC-method was advanced to acquire slow flow profiles. This enables acquiring flow in plants. Additionally, in cooperation with the working group "Lipid Motobolism" of the IPK-Gatersleben studies have been carried out to measure the influence of the ear of wheat on the water transport mechanism. Furthermore, a new technique based on the Bloch-Siegert-effect has been developed which reduces the influence of eddy currents. This simplifies flow measurements that suffer heavily from eddy currents. Hardware development An accessible mobile magnet with a field strength of 0.42 T has been build. The field homogeneity is 0.5 ppm in 1 cm³. In comparison to the existing closed magnet system at the chair EP5 this is an improvement of a factor 40. Those enhancements have been achieved by an adjusted design of the magnet which has been optimized by computer simulations. The implementation of ferrite pole shoes reduced the eddy currents by a factor 7 in comparison to the usually used iron pole shoes. Therefore, phase sensitive flow measurements using fast switching magnet field gradients could be carried out. A foldable coil has been refined to achieve an accessible receiver system. This coil has been used as a transmit/receiver unit. Furthermore, the SNR of measurements in thin plant stalks was enhanced by a constructed system that could be directly wrapped around the stalk. Additionally, two systems to reduce noise in plant measurements have been developed. Those systems can reduce the noise by a factor 92. This was necessary because the longish plant stems guides electric noise from outside of the case into the receiver coil. Both noise reduction systems, the electromagnetic shielding and the common mode rejection, removed the noise to the same level. Flow measurement In the present work a refinement of the AC-method [36] enabled for the first time acquiring quantitative flow profiles. Hence, it was possible to measure slow velocity in the range of 200 µm/s. The precondition was the replacement of the sinusoidal gradient profile by a trapezoid gradient shape. Those allowed increasing the slew rate of the gradients and therefore shorten the total duration of the ramp which finally allows higher encoding strengths. Additionally, due to intervals without applied gradients, more efficient RF-pulses can be used and more data points can be acquired in an echo. The measured flow profiles correlated to the simulation results. The accurate flow profiles have been achieved by a new evaluation technique and a phase correction mechanism. The newly developed extension to imaging enabled spatially encoded spectral flow measurements. Therefore, the location of xylem and phloem can be spatially separated. In the measurement of the black alder this becomes apparent. Here the shape of dicotyledonous plants, which is described in chapter 5.1, is visible. Additionally, due to the spatial separation of the flow directions (up/down) qualitative flow measurements are possible. In pixels where opposite flow directions can spatially be resolved the difference between the left and the right side of the flow spectra yields the total flow without static water. Due to the phase corrections technique in combination with the automatically frequency calibration, long term flow measurements were possible. Therefore, the response of plants on influences like changes in the illumination have been observed in measurements over a duration of nine days. Here flow changes below 200 µm/s can be detected. Bloch-Siegert phase encoding In this work a new spatial phase encoding technique (BS-SET) using a B1-gradient in combination with far off-resonant radio frequency pulses has been demonstrated. Based on the Bloch-Siegert Shift an eddy current free B1-gradient was used to encode images and apply flow encoding. The BS-gradient induces a phase shift which depends on B1² using a constant gradient. Therefore, adapted reconstructions have been developed that provide undistorted images using this nonlinear encoding. Alternatively, a B1-gradient has been developed where the profile of the B1-field follows a square root shape. This supplies a linear phase encoding removing the need for an adapted reconstruction and enables using this technique for flow encoding.}, subject = {Kernspintomografie}, language = {de} }