@article{ChenSchmidtSchuergeretal.2021, author = {Chen, Jeremy Tsung-Chieh and Schmidt, Lea and Sch{\"u}rger, Christina and Hankir, Mohammed K. and Krug, Susanne M. and Rittner, Heike L.}, title = {Netrin-1 as a multitarget barrier stabilizer in the peripheral nerve after injury}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {18}, issn = {1422-0067}, doi = {10.3390/ijms221810090}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261695}, year = {2021}, abstract = {The blood-nerve barrier and myelin barrier normally shield peripheral nerves from potentially harmful insults. They are broken down during nerve injury, which contributes to neuronal damage. Netrin-1 is a neuronal guidance protein with various established functions in the peripheral and central nervous systems; however, its role in regulating barrier integrity and pain processing after nerve injury is poorly understood. Here, we show that chronic constriction injury (CCI) in Wistar rats reduced netrin-1 protein and the netrin-1 receptor neogenin-1 (Neo1) in the sciatic nerve. Replacement of netrin-1 via systemic or local administration of the recombinant protein rescued injury-induced nociceptive hypersensitivity. This was prevented by siRNA-mediated knockdown of Neo1 in the sciatic nerve. Mechanistically, netrin-1 restored endothelial and myelin, but not perineural, barrier function as measured by fluorescent dye or fibrinogen penetration. Netrin-1 also reversed the decline in the tight junction proteins claudin-5 and claudin-19 in the sciatic nerve caused by CCI. Our findings emphasize the role of the endothelial and myelin barriers in pain processing after nerve damage and reveal that exogenous netrin-1 restores their function to mitigate CCI-induced hypersensitivity via Neo1. The netrin-1-neogenin-1 signaling pathway may thus represent a multi-target barrier protector for the treatment of neuropathic pain.}, language = {en} } @article{ReschkeSalvadorSchlegeletal.2022, author = {Reschke, Moritz and Salvador, Ellaine and Schlegel, Nicolas and Burek, Malgorzata and Karnati, Srikanth and Wunder, Christian and F{\"o}rster, Carola Y.}, title = {Isosteviol sodium (STVNA) reduces pro-inflammatory cytokine IL-6 and GM-CSF in an in vitro murine stroke model of the blood-brain barrier (BBB)}, series = {Pharmaceutics}, volume = {14}, journal = {Pharmaceutics}, number = {9}, issn = {1999-4923}, doi = {10.3390/pharmaceutics14091753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286275}, year = {2022}, abstract = {Early treatment with glucocorticoids could help reduce both cytotoxic and vasogenic edema, leading to improved clinical outcome after stroke. In our previous study, isosteviol sodium (STVNA) demonstrated neuroprotective effects in an in vitro stroke model, which utilizes oxygen-glucose deprivation (OGD). Herein, we tested the hypothesis that STVNA can activate glucocorticoid receptor (GR) transcriptional activity in brain microvascular endothelial cells (BMECs) as previously published for T cells. STVNA exhibited no effects on transcriptional activation of the glucocorticoid receptor, contrary to previous reports in Jurkat cells. However, similar to dexamethasone, STVNA inhibited inflammatory marker IL-6 as well as granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion. Based on these results, STVNA proves to be beneficial as a possible prevention and treatment modality for brain ischemia-reperfusion injury-induced blood-brain barrier (BBB) dysfunction.}, language = {en} } @article{BauerOpitzFilseretal.2019, author = {Bauer, Maria and Opitz, Anne and Filser, J{\"o}rg and Jansen, Hendrik and Meffert, Rainer H. and Germer, Christoph T. and Roewer, Norbert and Muellenbach, Ralf M. and Kredel, Markus}, title = {Perioperative redistribution of regional ventilation and pulmonary function: a prospective observational study in two cohorts of patients at risk for postoperative pulmonary complications}, series = {BMC Anesthesiology}, volume = {19}, journal = {BMC Anesthesiology}, doi = {10.1186/s12871-019-0805-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200730}, pages = {132}, year = {2019}, abstract = {Background Postoperative pulmonary complications (PPCs) increase morbidity and mortality of surgical patients, duration of hospital stay and costs. Postoperative atelectasis of dorsal lung regions as a common PPC has been described before, but its clinical relevance is insufficiently examined. Pulmonary electrical impedance tomography (EIT) enables the bedside visualization of regional ventilation in real-time within a transversal section of the lung. Dorsal atelectasis or effusions might cause a ventral redistribution of ventilation. We hypothesized the existence of ventral redistribution in spontaneously breathing patients during their recovery from abdominal and peripheral surgery and that vital capacity is reduced if regional ventilation shifts to ventral lung regions. Methods This prospective observational study included 69 adult patients undergoing elective surgery with an expected intermediate or high risk for PPCs. Patients undergoing abdominal and peripheral surgery were recruited to obtain groups of equal size. Patients received general anesthesia with and without additional regional anesthesia. On the preoperative, the first and the third postoperative day, EIT was performed at rest and during spirometry (forced breathing). The center of ventilation in dorso-ventral direction (COVy) was calculated. Results Both groups received intraoperative low tidal volume ventilation. Postoperative ventral redistribution of ventilation (forced breathing COVy; preoperative: 16.5 (16.0-17.3); first day: 17.8 (16.9-18.2), p < 0.004; third day: 17.4 (16.2-18.2), p = 0.020) and decreased forced vital capacity in percentage of predicted values (FVC\%predicted) (median: 93, 58, 64\%, respectively) persisted after abdominal surgery. In addition, dorsal to ventral shift was associated with a decrease of the FVC\%predicted on the third postoperative day (r = - 0.66; p < 0.001). A redistribution of pulmonary ventilation was not observed after peripheral surgery. FVC\%predicted was only decreased on the first postoperative day (median FVC\%predicted on the preoperative, first and third day: 85, 81 and 88\%, respectively). In ten patients occurred pulmonary complications after abdominal surgery also in two patients after peripheral surgery. Conclusions After abdominal surgery ventral redistribution of ventilation persisted up to the third postoperative day and was associated with decreased vital capacity. The peripheral surgery group showed only minor changes in vital capacity, suggesting a role of the location of surgery for postoperative redistribution of pulmonary ventilation.}, language = {en} } @article{KippnichSchorscherKredeletal.2020, author = {Kippnich, Maximilian and Schorscher, Nora and Kredel, Markus and Markus, Christian and Eden, Lars and Gassenmaier, Tobias and Lock, Johann and Wurmb, Thomas}, title = {Dual‑room twin‑CT scanner in multiple trauma care: first results after implementation in a level one trauma centre}, series = {European Journal of Trauma and Emergency Surgery}, journal = {European Journal of Trauma and Emergency Surgery}, issn = {1863-9933}, doi = {10.1007/s00068-020-01374-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232390}, year = {2020}, abstract = {Purpose The trauma centre of the Wuerzburg University Hospital has integrated a pioneering dual-room twin-CT scanner in a multiple trauma pathway. For concurrent treatment of two trauma patients, two carbon CT examination and intervention tables are positioned head to head with one sliding CT-Gantry in the middle. The focus of this study is the process of trauma care with the time to CT (tCT) and the time to operation (tOR) as quality indicator. Methods All patients with suspected multiple trauma, who required emergency surgery and who were initially diagnosed by the CT trauma protocol between 05/2018 and 12/2018 were included. Data relating to time spans (tCT and tOR), severity of injury and outcome was obtained. Results 110 of the 589 screened trauma patients had surgery immediately after finishing primary assessment in the ER. The ISS was 17 (9-34) (median and interquartile range, IQR). tCT was 15 (11-19) minutes (median and IQR) and tOR was 96.5 (75-119) minutes (median and IQR). In the first 30 days, seven patients died (6.4\%) including two within the first 24 h (2\%). There were two ICU days (1-6) (median and IQR) and one (0-1) (median and IQR) ventilator day. Conclusion The twin-CT technology is a fascinating tool to organize high-quality trauma care for two multiple trauma patients simultaneously}, language = {en} } @article{WollbornWunderStixetal.2015, author = {Wollborn, Jakob and Wunder, Christian and Stix, Jana and Neuhaus, Winfried and Bruno, Rapahel R. and Baar, Wolfgang and Flemming, Sven and Roewer, Norbert and Schlegel, Nicolas and Schick, Martin A.}, title = {Phosphodiesterase-4 inhibition with rolipram attenuates hepatocellular injury in hyperinflammation in vivo and in vitro without influencing inflammation and HO-1 expression}, series = {Journal of Pharmacology and Pharmacotherapeutics}, volume = {6}, journal = {Journal of Pharmacology and Pharmacotherapeutics}, number = {1}, doi = {10.4103/0976-500X.149138}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149336}, pages = {13-23}, year = {2015}, abstract = {Objective: To investigate the impact of the phophodiesterase-4 inhibition (PD-4-I) with rolipram on hepatic integrity in lipopolysaccharide (LPS) induced hyperinflammation. Materials and Methods: Liver microcirculation in rats was obtained using intravital microscopy. Macrohemodynamic parameters, blood assays, and organs were harvested to determine organ function and injury. Hyperinflammation was induced by LPS and PD-4-I rolipram was administered intravenously one hour after LPS application. Cell viability of HepG2 cells was measured by EZ4U-kit based on the dye XTT. Experiments were carried out assessing the influence of different concentrations of tumor necrosis factor alpha (TNF-α) and LPS with or without PD-4-I. Results: Untreated LPS-induced rats showed significantly decreased liver microcirculation and increased hepatic cell death, whereas LPS + PD-4-I treatment could improve hepatic volumetric flow and cell death to control level whithout influencing the inflammatory impact. In HepG2 cells TNF-α and LPS significantly reduced cell viability. Coincubation with PD-4-I increased HepG2 viability to control levels. The heme oxygenase 1 (HO-1) pathway did not induce the protective effect of PD-4-I. Conclusion: Intravenous PD-4-I treatment was effective in improving hepatic microcirculation and hepatic integrity, while it had a direct protective effect on HepG2 viability during inflammation.}, language = {en} }