@article{DietlSchwinnDietletal.2016, author = {Dietl, Sebastian and Schwinn, Stefanie and Dietl, Susanne and Riedl, Simone and Deinlein, Frank and Rutkowski, Stefan and von Bueren, Andre O. and Krauss, J{\"u}rgen and Schweitzer, Tilmann and Vince, Giles H. and Picard, Daniel and Eyrich, Matthias and Rosenwald, Andreas and Ramaswamy, Vijay and Taylor, Michael D. and Remke, Marc and Monoranu, Camelia M. and Beilhack, Andreas and Schlegel, Paul G. and W{\"o}lfl, Matthias}, title = {MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties}, series = {BMC Cancer}, volume = {16}, journal = {BMC Cancer}, number = {115}, doi = {10.1186/s12885-016-2170-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145877}, year = {2016}, abstract = {Background Medulloblastoma is the most common malignant brain tumor in children and can be divided in different molecular subgroups. Patients whose tumor is classified as a Group 3 tumor have a dismal prognosis. However only very few tumor models are available for this subgroup. Methods We established a robust orthotopic xenograft model with a cell line derived from the malignant pleural effusions of a child suffering from a Group 3 medulloblastoma. Results Besides classical characteristics of this tumor subgroup, the cells display cancer stem cell characteristics including neurosphere formation, multilineage differentiation, CD133/CD15 expression, high ALDH-activity and high tumorigenicity in immunocompromised mice with xenografts exactly recapitulating the original tumor architecture. Conclusions This model using unmanipulated, human medulloblastoma cells will enable translational research, specifically focused on Group 3 medulloblastoma.}, language = {en} } @article{NicklEckGoedertetal.2023, author = {Nickl, Vera and Eck, Juliana and Goedert, Nicolas and H{\"u}bner, Julian and Nerreter, Thomas and Hagemann, Carsten and Ernestus, Ralf-Ingo and Schulz, Tim and Nickl, Robert Carl and Keßler, Almuth Friederike and L{\"o}hr, Mario and Rosenwald, Andreas and Breun, Maria and Monoranu, Camelia Maria}, title = {Characterization and optimization of the tumor microenvironment in patient-derived organotypic slices and organoid models of glioblastoma}, series = {Cancers}, volume = {15}, journal = {Cancers}, number = {10}, issn = {2072-6694}, doi = {10.3390/cancers15102698}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319249}, year = {2023}, abstract = {While glioblastoma (GBM) is still challenging to treat, novel immunotherapeutic approaches have shown promising effects in preclinical settings. However, their clinical breakthrough is hampered by complex interactions of GBM with the tumor microenvironment (TME). Here, we present an analysis of TME composition in a patient-derived organoid model (PDO) as well as in organotypic slice cultures (OSC). To obtain a more realistic model for immunotherapeutic testing, we introduce an enhanced PDO model. We manufactured PDOs and OSCs from fresh tissue of GBM patients and analyzed the TME. Enhanced PDOs (ePDOs) were obtained via co-culture with PBMCs (peripheral blood mononuclear cells) and compared to normal PDOs (nPDOs) and PT (primary tissue). At first, we showed that TME was not sustained in PDOs after a short time of culture. In contrast, TME was largely maintained in OSCs. Unfortunately, OSCs can only be cultured for up to 9 days. Thus, we enhanced the TME in PDOs by co-culturing PDOs and PBMCs from healthy donors. These cellular TME patterns could be preserved until day 21. The ePDO approach could mirror the interaction of GBM, TME and immunotherapeutic agents and may consequently represent a realistic model for individual immunotherapeutic drug testing in the future.}, language = {en} }