@phdthesis{Soliman2022, author = {Soliman, Alexander}, title = {Einfluss des Gewichtsverlusts auf den oxidativen Stress und den DNS-Schaden in adip{\"o}sen Patient*innen nach bariatrischer Chirurgie}, doi = {10.25972/OPUS-27835}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278354}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Adipositas ist eine Erkrankung, die durch ein erh{\"o}htes Krebsrisiko neben zahlreichen anderen Komorbidit{\"a}ten mit weitreichenden Folgen f{\"u}r die Gesundheit adip{\"o}ser Patient*innen einhergeht. In der Pathogenese der adipositas-assoziierten Krebsarten sind dabei ein erh{\"o}hter oxidativer Stress sowie die damit einhergehende Sch{\"a}digung der DNS maßgeblich beteiligt. Im Umkehrschluss wurde in der vorliegenden Arbeit der Einfluss eines durch bariatrische Chirurgie induzierten Gewichtsverlusts auf den oxidativen Stress und DNS-Schaden in adip{\"o}sen Patient*innen anhand von Blutproben pr{\"a}operativ sowie 6 und 12 Monate postoperativ untersucht. In einer Subpopulation der Patient*innen konnte eine tendenzielle Verringerung des DNS-Schadens anhand des Comet-Assays in peripheren Lymphozyten beobachtet werden. Im Hinblick auf den oxidativen Stress wurde im Plasma die Eisenreduktionsf{\"a}higkeit als Maß f{\"u}r die antioxidative Kapazit{\"a}t sowie Malondialdehyd als Surrogatmarker f{\"u}r das Ausmaß an Lipidperoxidation bestimmt. Weiterhin wurde in Erythrozyten das Gesamtglutathion und das oxidierte Glutathion bestimmt. Die oxidativen Stressparameter zeigten insgesamt nach einer initialen Zunahme im oxidativen Stress 6 Monate postoperativ eine r{\"u}ckl{\"a}ufige Tendenz im oxidativen Stress am Studienende. Somit geben die Beobachtungen dieser Arbeit Anlass zur Hoffnung, dass adip{\"o}se Patient*innen durch einen bariatrisch induzierten Gewichtsverlust von einer Verringerung des Krebsrisikos profitieren k{\"o}nnten.}, subject = {Magenchirurgie}, language = {de} } @article{BauerMallyLiedtke2021, author = {Bauer, Benedikt and Mally, Angela and Liedtke, Daniel}, title = {Zebrafish embryos and larvae as alternative animal models for toxicity testing}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {24}, issn = {1422-0067}, doi = {10.3390/ijms222413417}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284225}, year = {2021}, abstract = {Prerequisite to any biological laboratory assay employing living animals is consideration about its necessity, feasibility, ethics and the potential harm caused during an experiment. The imperative of these thoughts has led to the formulation of the 3R-principle, which today is a pivotal scientific standard of animal experimentation worldwide. The rising amount of laboratory investigations utilizing living animals throughout the last decades, either for regulatory concerns or for basic science, demands the development of alternative methods in accordance with 3R to help reduce experiments in mammals. This demand has resulted in investigation of additional vertebrate species displaying favourable biological properties. One prominent species among these is the zebrafish (Danio rerio), as these small laboratory ray-finned fish are well established in science today and feature outstanding biological characteristics. In this review, we highlight the advantages and general prerequisites of zebrafish embryos and larvae before free-feeding stages for toxicological testing, with a particular focus on cardio-, neuro, hepato- and nephrotoxicity. Furthermore, we discuss toxicokinetics, current advances in utilizing zebrafish for organ toxicity testing and highlight how advanced laboratory methods (such as automation, advanced imaging and genetic techniques) can refine future toxicological studies in this species.}, language = {en} } @article{BankogluSchueleStopper2021, author = {Bankoglu, Ezgi Eyluel and Schuele, Carolin and Stopper, Helga}, title = {Cell survival after DNA damage in the comet assay}, series = {Archives of Toxicology}, volume = {95}, journal = {Archives of Toxicology}, number = {12}, doi = {10.1007/s00204-021-03164-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265339}, pages = {3803-3813}, year = {2021}, abstract = {The comet assay is widely used in basic research, genotoxicity testing, and human biomonitoring. However, interpretation of the comet assay data might benefit from a better understanding of the future fate of a cell with DNA damage. DNA damage is in principle repairable, or if extensive, can lead to cell death. Here, we have correlated the maximally induced DNA damage with three test substances in TK6 cells with the survival of the cells. For this, we selected hydrogen peroxide (H\(_{2}\)O\(_{2}\)) as an oxidizing agent, methyl methanesulfonate (MMS) as an alkylating agent and etoposide as a topoisomerase II inhibitor. We measured cell viability, cell proliferation, apoptosis, and micronucleus frequency on the following day, in the same cell culture, which had been analyzed in the comet assay. After treatment, a concentration dependent increase in DNA damage and in the percentage of non-vital and apoptotic cells was found for each substance. Values greater than 20-30\% DNA in tail caused the death of more than 50\% of the cells, with etoposide causing slightly more cell death than H\(_{2}\)O\(_{2}\) or MMS. Despite that, cells seemed to repair of at least some DNA damage within few hours after substance removal. Overall, the reduction of DNA damage over time is due to both DNA repair and death of heavily damaged cells. We recommend that in experiments with induction of DNA damage of more than 20\% DNA in tail, survival data for the cells are provided.}, language = {en} } @article{JeanclosKnoblochHoffmannetal.2020, author = {Jeanclos, Elisabeth and Knobloch, Gunnar and Hoffmann, Axel and Fedorchenko, Oleg and Odersky, Andrea and Lamprecht, Anna-Karina and Schindelin, Hermann and Gohla, Antje}, title = {Ca\(^{2+}\) functions as a molecular switch that controls the mutually exclusive complex formation of pyridoxal phosphatase with CIB1 or calmodulin}, series = {FEBS Letters}, volume = {594}, journal = {FEBS Letters}, number = {13}, doi = {10.1002/1873-3468.13795}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217963}, pages = {2099 -- 2115}, year = {2020}, abstract = {Pyridoxal 5′-phosphate (PLP) is an essential cofactor for neurotransmitter metabolism. Pyridoxal phosphatase (PDXP) deficiency in mice increases PLP and γ-aminobutyric acid levels in the brain, yet how PDXP is regulated is unclear. Here, we identify the Ca\(^{2+}\)- and integrin-binding protein 1 (CIB1) as a PDXP interactor by yeast two-hybrid screening and find a calmodulin (CaM)-binding motif that overlaps with the PDXP-CIB1 interaction site. Pulldown and crosslinking assays with purified proteins demonstrate that PDXP directly binds to CIB1 or CaM. CIB1 or CaM does not alter PDXP phosphatase activity. However, elevated Ca\(^{2+}\) concentrations promote CaM binding and, thereby, diminish CIB1 binding to PDXP, as both interactors bind in a mutually exclusive way. Hence, the PDXP-CIB1 complex may functionally differ from the PDXP-Ca\(^{2+}\)-CaM complex.}, language = {en} } @article{AdakuChilakaMally2020, author = {Adaku Chilaka, Cynthia and Mally, Angela}, title = {Mycotoxin Occurrence, Exposure and Health Implications in Infants and Young Children in Sub-Saharan Africa: A Review}, series = {Foods}, volume = {9}, journal = {Foods}, number = {11}, issn = {2304-8158}, doi = {10.3390/foods9111585}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219250}, year = {2020}, abstract = {Infants and young children (IYC) remain the most vulnerable population group to environmental hazards worldwide, especially in economically developing regions such as sub-Saharan Africa (SSA). As a result, several governmental and non-governmental institutions including health, environmental and food safety networks and researchers have been proactive toward protecting this group. Mycotoxins, toxic secondary fungal metabolites, contribute largely to the health risks of this young population. In SSA, the scenario is worsened by socioeconomic status, poor agricultural and storage practices, and low level of awareness, as well as the non-establishment and lack of enforcement of regulatory limits in the region. Studies have revealed mycotoxin occurrence in breast milk and other weaning foods. Of concern is the early exposure of infants to mycotoxins through transplacental transfer and breast milk as a consequence of maternal exposure, which may result in adverse health effects. The current paper presents an overview of mycotoxin occurrence in foods intended for IYC in SSA. It discusses the imperative evidence of mycotoxin exposure of this population group in SSA, taking into account consumption data and the occurrence of mycotoxins in food, as well as biomonitoring approaches. Additionally, it discusses the health implications associated with IYC exposure to mycotoxins in SSA.}, language = {en} } @phdthesis{Bertelsmann2022, author = {Bertelsmann, Dietmar}, title = {Analysis of the Frequency of Kidney Toxicity in Preclinical Safety Studies using the eTOX Database}, doi = {10.25972/OPUS-25710}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257104}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This research aimed to obtain reliable data on the frequency of different types of renal toxicity findings in 28-day oral gavage studies in Wistar rats, their consistency across species and study duration, as well as the correlation between histopathological endpoints and routinely used clinical chemistry parameters indicative of kidney injury. Analysis of renal histopathological findings was carried out through extraction of information from the IMI eTOX database. Spontaneous renal histopathological findings in 28-day oral gavage studies in control Wistar rats and beagle dogs confirmed tubular basophilia and renal dilation as the most frequent incidental findings in controls, whereas necrosis and glomerulosclerosis were not identified at all or only rarely as a background lesion. Histopathological evidence of necrosis and glomerulosclerosis was associated with changes in clinical chemistry parameters in 28-day oral gavage Wistar rat studies. Necrosis was frequently accompanied by a statistically significant rise in serum creatinine and serum urea, whereas serum albumin was frequently found to decrease statistically significantly in treatment groups in which necrosis was recorded. In contrast to necrosis, glomerulosclerosis was not associated with statistically significant changes in serum creatinine and urea in any of the 28-day oral gavage Wistar rat treatment groups, but appears to be best reflected by a pattern of statistically significantly lowered serum albumin and serum protein together with a statistically significant increase in serum cholesterol. As might have been expected based on the high background incidences of tubular basophilia and dilation, no consistent changes in any of the clinical chemistry parameters were evident in animals in which renal lesions were con� fined to renal tubular basophilia or dilation. In summary, the routinely provided clinical chemistry parameters are rather insensitive - novel kidney biomarkers such as Cystatin C, β-trace protein and Kidney injury molecule 1 should further be evaluated and integrated into routine preclinical and clinical practice. However, evaluation of clinical chemistry data was limited by the lack of individual animal data. Even though an extensive amount of preclinical studies is accessible through the eTOX database, comparison of consistency across time was limited by the limited number of shorter- and longer term studies conducted with the compounds identified as causing renal histopathological changes within a 28- day study in rats. A high consistency across time for both treatment-related tubular basophilia and treatment-related dilation cannot be confirmed for either of the two effects as these two findings were both induced only rarely in studies over a different treatment-duration other than 28 days after administration of the compounds which provoked the respective effect in a 28-day study. For the finding of necrosis consistency across time was low with the exception of "AZ_GGA_200002321", in which renal papillary necrosis was identified consist� ently throughout different treatment durations (2, 4, 26, 104 weeks). No shorter and longer-term studies were available for the compounds identified as causing glomerulosclerosis within a 28-day study in rats. No consistent findings of the selected histopathological endpoints were identified in any of the corresponding 28-day oral gavage beagle dog studies after treatment with the identical compounds, which caused the respective ef� fect after 28-day treatment in rats. However, in the overwhelming majority of cases, beagle dogs were administered lower doses in these studies in compar� ison to the corresponding 28-day Wistar rat studies. Searching the eTOX database yielded no 28-day oral gavage studies in Wistar and Wistar Han rats in which accumulation of hyaline droplets, tubular atrophy or hyperplasia was recorded. Only one 28-day oral gavage Wistar rat study was identified with the histopathological result of neutrophilic inflammation. Consequently, evaluation of these four renal findings in relation to clinical chemistry parameters and consistency across time and species cannot be made. In summary, this work contributes knowledge through mining and evaluating the eTOX database on a variety of specific renal endpoints that frequently occur after administration of trial substances in 28-day oral gavage studies in Wistar rats in the field of preclinical toxicity with specific focus on their frequency relation to background findings, as well as consistency across time and species. Targeted statistical evaluation of in vivo data within joint research ventures such as the eTOX project, presents an enormous opportunity for an innovative future way of aiding preclinical research towards a more efficient research in the preclinical stage of drug development. This could be achieved through the aug� mentation of methodological strategies and possibly novel software tools in order to predict in vivo toxicology of new molecular entities by means of information that is already available before early stages of the drug development pipeline begin.}, language = {en} } @article{HintzscheMontagStopper2018, author = {Hintzsche, Henning and Montag, Gracia and Stopper, Helga}, title = {Induction of micronuclei by four cytostatic compounds in human hematopoietic stem cells and human lymphoblastoid TK6 cells}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {3371}, doi = {10.1038/s41598-018-21680-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176210}, year = {2018}, abstract = {For mutagenicity testing, primary lymphocytes or mammalian cell lines are employed. However, the true target for carcinogenic action of mutagenic chemicals may be stem cells. Since hematopoietic cancers induced by chemical agents originate at the hematopoietic stem cell (HSC) stage and since one of the side effects of chemotherapeutic cancer treatment is the induction of secondary tumors, often leukemias, HSC may be a suitable cell system. We compared the sensitivity of HSC with the genotoxicity testing cell line TK6 for chromosomal mutations. HSC were less sensitive than TK6 cells for the genotoxic effects of the model genotoxins and chemotherapeutic agents doxorubicin, vinblastine, methyl methanesulfonate (MMS) and equally sensitive for mitomycin C (MMC). However, loss of viability after mitomycin C treatment was higher in HSC than in TK6 cells. Among the factors that may influence sensitivity for genomic damage, the generation or response to reactive oxygen species (ROS) and the effectiveness of DNA damage response can be discussed. Here we show that HSC can be used in a standard micronucleus test protocol for chromosomal mutations and that their sensitivity was not higher than that of a classical testing cell line.}, language = {en} } @article{ChilakaObidiegwuChilakaetal.2022, author = {Chilaka, Cynthia Adaku and Obidiegwu, Jude Ejikeme and Chilaka, Augusta Chinenye and Atanda, Olusegun Oladimeji and Mally, Angela}, title = {Mycotoxin regulatory status in Africa: a decade of weak institutional efforts}, series = {Toxins}, volume = {14}, journal = {Toxins}, number = {7}, issn = {2072-6651}, doi = {10.3390/toxins14070442}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278941}, year = {2022}, abstract = {Food safety problems are a major hindrance to achieving food security, trade, and healthy living in Africa. Fungi and their secondary metabolites, known as mycotoxins, represent an important concern in this regard. Attempts such as agricultural, storage, and processing practices, and creation of awareness to tackle the menace of fungi and mycotoxins have yielded measurable outcomes especially in developed countries, where there are comprehensive mycotoxin legislations and enforcement schemes. Conversely, most African countries do not have mycotoxin regulatory limits and even when available, are only applied for international trade. Factors such as food insecurity, public ignorance, climate change, poor infrastructure, poor research funding, incorrect prioritization of resources, and nonchalant attitudes that exist among governmental organisations and other stakeholders further complicate the situation. In the present review, we discuss the status of mycotoxin regulation in Africa, with emphasis on the impact of weak mycotoxin legislations and enforcement on African trade, agriculture, and health. Furthermore, we discuss the factors limiting the establishment and control of mycotoxins in the region.}, language = {en} } @article{WinkelbeinerWandtEbertetal.2020, author = {Winkelbeiner, Nicola and Wandt, Viktoria K. and Ebert, Franziska and Lossow, Kristina and Bankoglu, Ezgi E. and Martin, Maximilian and Mangerich, Aswin and Stopper, Helga and Bornhorst, Julia and Kipp, Anna P. and Schwerdtle, Tanja}, title = {A multi-endpoint approach to base excision repair incision activity augmented by PARylation and DNA damage levels in mice: impact of sex and age}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {18}, issn = {1422-0067}, doi = {10.3390/ijms21186600}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285706}, year = {2020}, abstract = {Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2'-deoxyguanosine (8-oxodG), 5-hydroxy-2'-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery.}, language = {en} } @article{TolstikAliGuoetal.2022, author = {Tolstik, Elen and Ali, Nairveen and Guo, Shuxia and Ebersbach, Paul and M{\"o}llmann, Dorothe and Arias-Loza, Paula and Dierks, Johann and Schuler, Irina and Freier, Erik and Debus, J{\"o}rg and Baba, Hideo A. and Nordbeck, Peter and Bocklitz, Thomas and Lorenz, Kristina}, title = {CARS imaging advances early diagnosis of cardiac manifestation of Fabry disease}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {10}, issn = {1422-0067}, doi = {10.3390/ijms23105345}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284427}, year = {2022}, abstract = {Vibrational spectroscopy can detect characteristic biomolecular signatures and thus has the potential to support diagnostics. Fabry disease (FD) is a lipid disorder disease that leads to accumulations of globotriaosylceramide in different organs, including the heart, which is particularly critical for the patient's prognosis. Effective treatment options are available if initiated at early disease stages, but many patients are late- or under-diagnosed. Since Coherent anti-Stokes Raman (CARS) imaging has a high sensitivity for lipid/protein shifts, we applied CARS as a diagnostic tool to assess cardiac FD manifestation in an FD mouse model. CARS measurements combined with multivariate data analysis, including image preprocessing followed by image clustering and data-driven modeling, allowed for differentiation between FD and control groups. Indeed, CARS identified shifts of lipid/protein content between the two groups in cardiac tissue visually and by subsequent automated bioinformatic discrimination with a mean sensitivity of 90-96\%. Of note, this genotype differentiation was successful at a very early time point during disease development when only kidneys are visibly affected by globotriaosylceramide depositions. Altogether, the sensitivity of CARS combined with multivariate analysis allows reliable diagnostic support of early FD organ manifestation and may thus improve diagnosis, prognosis, and possibly therapeutic monitoring of FD.}, language = {en} } @phdthesis{Kodandaraman2021, author = {Kodandaraman, Geema}, title = {Influence of insulin-induced oxidative stress in genotoxicity and disease}, doi = {10.25972/OPUS-24200}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Hormones are essential components in the body and their imbalance leads to pathological consequences. T2DM, insulin resistance and obesity are the most commonly occurring lifestyle diseases in the past decade. Also, an increased cancer incidence has been strongly associated with obese and T2DM patients. Therefore, our aim was to study the influence of high insulin levels in accumulating DNA damage in in vitro models and patients, through the induction of oxidative stress. The primary goal of this study was to analyze the genotoxicity induced by the combined action of two endogenous hormones (insulin and adrenaline) with in vitro models, through the induction of micronuclei and to see if they cause an additive increase in genomic damage. This is important for multifactorial diseases having high levels of more than one hormone, such as metabolic syndrome and conditions with multiple pathologies (e.g., T2DM along with high stress levels). Furthermore, the combination of insulin and the pharmacological inhibition of the tumor suppressor gene: PTEN, was to be tested in in vitro models for their genotoxic effect and oxidative stress inducing potential. As the tumor suppressor gene: PTEN is downregulated in PTEN associated syndromes and when presented along with T2DM and insulin resistance, this may increase the potential to accumulate genomic damage. The consequences of insulin action were to be further elucidated by following GFP-expressing cells in live cell-imaging to observe the ability of insulin, to induce micronuclei and replicative stress. Finally, the detrimental potential of high insulin levels in obese patients with hyperinsulinemia and pre-diabetes was to be studied by analyzing markers of oxidative stress and genomic damage. In summary, the intention of this work was to understand the effects of high insulin levels in in vitro and in patients to understand its relevance for the development of genomic instability and thus an elevated cancer risk.}, subject = {Insulin}, language = {en} } @article{BankogluArnoldHeringetal.2018, author = {Bankoglu, Ezgi Eyluel and Arnold, Charlotte and Hering, Ilona and Hankir, Mohammed and Seyfried, Florian and Stopper, Helga}, title = {Decreased chromosomal damage in lymphocytes of obese patients after bariatric surgery}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {11195}, doi = {10.1038/s41598-018-29581-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177090}, year = {2018}, abstract = {The number of bariatric surgeries being performed worldwide has markedly risen. While the improvement in obesity-associated comorbidities after bariatric surgery is well-established, very little is known about its impact on cancer risk. The peripheral lymphocyte micronucleus test is a widely used method for the monitoring of chromosomal damage levels in vivo, and micronucleus frequency positively correlates with cancer risk. Therefore, the aim of this study was to compare the micronucleus frequency before and after bariatric surgery in obese subjects. Peripheral blood mononuclear cells were collected from 45 obese subjects before and at two time-points after bariatric surgery (6 and 12 months) to assess spontaneous micronucleus frequency. Consistent with the increased cancer risk previously shown, bariatric surgery-induced weight loss led to a significant reduction in lymphocyte micronucleus frequency after 12 months. Interestingly, comorbidities such as type 2 diabetes mellitus and metabolic syndrome further seemed to have an impact on the lymphocyte micronucleus frequency. Our findings may indicate a successful reduction of cancer risk in patients following weight loss caused by bariatric surgery.}, language = {en} } @article{TanBabakVenkatesanetal.2019, author = {Tan, Aaron and Babak, Maria V. and Venkatesan, Gopalakrishnan and Lim, Clarissa and Klotz, Karl-Norbert and Herr, Deron Raymond and Cheong, Siew Lee and Federico, Stephanie and Spalluto, Giampiero and Ong, Wei-Yi and Chen, Yu Zong and Loo, Jason Siau Ee and Pastorin, Giorgia}, title = {Design, Synthesis and Evaluation of New Indolylpyrimidylpiperazines for Gastrointestinal Cancer Therapy}, series = {Molecules}, volume = {24}, journal = {Molecules}, number = {20}, issn = {1420-3049}, doi = {10.3390/molecules24203661}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193271}, pages = {3661}, year = {2019}, abstract = {Human A3 adenosine receptor hA3AR has been implicated in gastrointestinal cancer, where its cellular expression has been found increased, thus suggesting its potential as a molecular target for novel anticancer compounds. Observation made in our previous work indicated the importance of the carbonyl group of amide in the indolylpyrimidylpiperazine (IPP) for its human A2A adenosine receptor (hA2AAR) subtype binding selectivity over the other AR subtypes. Taking this observation into account, we structurally modified an indolylpyrimidylpiperazine (IPP) scaffold, 1 (a non-selective adenosine receptors' ligand) into a modified IPP (mIPP) scaffold by switching the position of the carbonyl group, resulting in the formation of both ketone and tertiary amine groups in the new scaffold. Results showed that such modification diminished the A2A activity and instead conferred hA3AR agonistic activity. Among the new mIPP derivatives (3-6), compound 4 showed potential as a hA3AR partial agonist, with an Emax of 30\% and EC50 of 2.89 ± 0.55 μM. In the cytotoxicity assays, compound 4 also exhibited higher cytotoxicity against both colorectal and liver cancer cells as compared to normal cells. Overall, this new series of compounds provide a promising starting point for further development of potent and selective hA3AR partial agonists for the treatment of gastrointestinal cancers.}, language = {en} } @article{BankogluStippGerberetal.2021, author = {Bankoglu, Ezgi Eyluel and Stipp, Franzisca and Gerber, Johanna and Seyfried, Florian and Heidland, August and Bahner, Udo and Stopper, Helga}, title = {Effect of cryopreservation on DNA damage and DNA repair activity in human blood samples in the comet assay}, series = {Archives of Toxicology}, volume = {95}, journal = {Archives of Toxicology}, number = {5}, doi = {10.1007/s00204-021-03012-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265326}, pages = {1831-1841}, year = {2021}, abstract = {The comet assay is a commonly used method to determine DNA damage and repair activity in many types of samples. In recent years, the use of the comet assay in human biomonitoring became highly attractive due to its various modified versions, which may be useful to determine individual susceptibility in blood samples. However, in human biomonitoring studies, working with large sample numbers that are acquired over an extended time period requires some additional considerations. One of the most important issues is the storage of samples and its effect on the outcome of the comet assay. Another important question is the suitability of different blood preparations. In this study, we analysed the effect of cryopreservation on DNA damage and repair activity in human blood samples. In addition, we investigated the suitability of different blood preparations. The alkaline and FPG as well as two different types of repair comet assay and an in vitro hydrogen peroxide challenge were applied. Our results confirmed that cryopreserved blood preparations are suitable for investigating DNA damage in the alkaline and FPG comet assay in whole blood, buffy coat and PBMCs. Ex vivo hydrogen peroxide challenge yielded its optimal effect in isolated PBMCs. The utilised repair comet assay with either UVC or hydrogen peroxide-induced lesions and an aphidicolin block worked well in fresh PBMCs. Cryopreserved PBMCs could not be used immediately after thawing. However, a 16-h recovery with or without mitotic stimulation enabled the application of the repair comet assay, albeit only in a surviving cell fraction.}, language = {en} } @article{ChristianSeierDrakopoulosetal.2020, author = {Christian, Gentzsch and Seier, Kerstin and Drakopoulos, Antonios and Jobin, Marie-Lise and Lanoisel{\´e}e, Yann and Koszegi, Zsombor and Maurel, Damien and Sounier, R{\´e}my and H{\"u}bner, Harald and Gmeiner, Peter and Granier, S{\´e}bastien and Calebiro, Davide and Decker, Michael}, title = {Selective and Wash-Resistant Fluorescent Dihydrocodeinone Derivatives Allow Single-Molecule Imaging of μ-Opioid Receptor Dimerization}, series = {Angewandte Chemie International Edition}, volume = {59}, journal = {Angewandte Chemie International Edition}, number = {15}, doi = {10.1002/anie.201912683}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212398}, pages = {5958-5964}, year = {2020}, abstract = {μ-Opioid receptors (μ-ORs) play a critical role in the modulation of pain and mediate the effects of the most powerful analgesic drugs. Despite extensive efforts, it remains insufficiently understood how μ-ORs produce specific effects in living cells. We developed new fluorescent ligands based on the μ-OR antagonist E-p-nitrocinnamoylamino-dihydrocodeinone (CACO), that display high affinity, long residence time and pronounced selectivity. Using these ligands, we achieved single-molecule imaging of μ-ORs on the surface of living cells at physiological expression levels. Our results reveal a high heterogeneity in the diffusion of μ-ORs, with a relevant immobile fraction. Using a pair of fluorescent ligands of different color, we provide evidence that μ-ORs interact with each other to form short-lived homodimers on the plasma membrane. This approach provides a new strategy to investigate μ-OR pharmacology at single-molecule level.}, language = {en} } @article{GodboleLygaLohseetal.2017, author = {Godbole, Amod and Lyga, Sandra and Lohse, Martin J. and Calebiro, Davide}, title = {Internalized TSH receptors en route to the TGN induce local G\(_{S}\)-protein signaling and gene transcription}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {443}, doi = {10.1038/s41467-017-00357-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170375}, year = {2017}, abstract = {A new paradigm of G-protein-coupled receptor (GPCR) signaling at intracellular sites has recently emerged, but the underlying mechanisms and functional consequences are insufficiently understood. Here, we show that upon internalization in thyroid cells, endogenous TSH receptors traffic retrogradely to the trans-Golgi network (TGN) and activate endogenous Gs-proteins in the retromer-coated compartment that brings them to the TGN. Receptor internalization is associated with a late cAMP/protein kinase A (PKA) response at the Golgi/TGN. Blocking receptor internalization, inhibiting PKA II/interfering with its Golgi/TGN localization, silencing retromer or disrupting Golgi/TGN organization all impair efficient TSH-dependent cAMP response element binding protein (CREB) phosphorylation. These results suggest that retrograde trafficking to the TGN induces local G\(_{S}\)-protein activation and cAMP/PKA signaling at a critical position near the nucleus, which appears required for efficient CREB phosphorylation and gene transcription. This provides a new mechanism to explain the functional consequences of GPCR signaling at intracellular sites and reveals a critical role for the TGN in GPCR signaling.}, language = {en} } @article{NaseemOthmanFathyetal.2020, author = {Naseem, Muhammad and Othman, Eman M. and Fathy, Moustafa and Iqbal, Jibran and Howari, Fares M. and AlRemeithi, Fatima A. and Kodandaraman, Geema and Stopper, Helga and Bencurova, Elena and Vlachakis, Dimitrios and Dandekar, Thomas}, title = {Integrated structural and functional analysis of the protective effects of kinetin against oxidative stress in mammalian cellular systems}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, doi = {10.1038/s41598-020-70253-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231317}, year = {2020}, abstract = {Metabolism and signaling of cytokinins was first established in plants, followed by cytokinin discoveries in all kingdoms of life. However, understanding of their role in mammalian cells is still scarce. Kinetin is a cytokinin that mitigates the effects of oxidative stress in mammalian cells. The effective concentrations of exogenously applied kinetin in invoking various cellular responses are not well standardized. Likewise, the metabolism of kinetin and its cellular targets within the mammalian cells are still not well studied. Applying vitality tests as well as comet assays under normal and hyper-oxidative states, our analysis suggests that kinetin concentrations of 500 nM and above cause cytotoxicity as well as genotoxicity in various cell types. However, concentrations below 100 nM do not cause any toxicity, rather in this range kinetin counteracts oxidative burst and cytotoxicity. We focus here on these effects. To get insights into the cellular targets of kinetin mediating these pro-survival functions and protective effects we applied structural and computational approaches on two previously testified targets for these effects. Our analysis deciphers vital residues in adenine phosphoribosyltransferase (APRT) and adenosine receptor (A2A-R) that facilitate the binding of kinetin to these two important human cellular proteins. We finally discuss how the therapeutic potential of kinetin against oxidative stress helps in various pathophysiological conditions.}, language = {en} } @article{MaiellaroLohseKitteetal.2016, author = {Maiellaro, Isabella and Lohse, Martin J. and Kitte, Robert J. and Calebiro, Davide}, title = {cAMP Signals in Drosophila Motor Neurons Are Confined to Single Synaptic Boutons}, series = {Cell Reports}, volume = {17}, journal = {Cell Reports}, number = {5}, doi = {10.1016/j.celrep.2016.09.090}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162324}, pages = {1238-1246}, year = {2016}, abstract = {The second messenger cyclic AMP (cAMP) plays an important role in synaptic plasticity. Although there is evidence for local control of synaptic transmission and plasticity, it is less clear whether a similar spatial confinement of cAMP signaling exists. Here, we suggest a possible biophysical basis for the site-specific regulation of synaptic plasticity by cAMP, a highly diffusible small molecule that transforms the physiology of synapses in a local and specific manner. By exploiting the octopaminergic system of Drosophila, which mediates structural synaptic plasticity via a cAMP-dependent pathway, we demonstrate the existence of local cAMP signaling compartments of micrometer dimensions within single motor neurons. In addition, we provide evidence that heterogeneous octopamine receptor localization, coupled with local differences in phosphodiesterase activity, underlies the observed differences in cAMP signaling in the axon, cell body, and boutons.}, language = {en} } @article{WeigandRonchiVanselowetal.2021, author = {Weigand, Isabel and Ronchi, Cristina L. and Vanselow, Jens T. and Bathon, Kerstin and Lenz, Kerstin and Herterich, Sabine and Schlosser, Andreas and Kroiss, Matthias and Fassnacht, Martin and Calebiro, Davide and Sbiera, Silviu}, title = {PKA Cα subunit mutation triggers caspase-dependent RIIβ subunit degradation via Ser\(^{114}\) phosphorylation}, series = {Science Advances}, volume = {7}, journal = {Science Advances}, number = {8}, doi = {10.1126/sciadv.abd4176}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270445}, year = {2021}, abstract = {Mutations in the PRKACA gene are the most frequent cause of cortisol-producing adrenocortical adenomas leading to Cushing's syndrome. PRKACA encodes for the catalytic subunit α of protein kinase A (PKA). We already showed that PRKACA mutations lead to impairment of regulatory (R) subunit binding. Furthermore, PRKACA mutations are associated with reduced RIIβ protein levels; however, the mechanisms leading to reduced RIIβ levels are presently unknown. Here, we investigate the effects of the most frequent PRKACA mutation, L206R, on regulatory subunit stability. We find that Ser\(^{114}\) phosphorylation of RIIβ is required for its degradation, mediated by caspase 16. Last, we show that the resulting reduction in RIIβ protein levels leads to increased cortisol secretion in adrenocortical cells. These findings reveal the molecular mechanisms and pathophysiological relevance of the R subunit degradation caused by PRKACA mutations, adding another dimension to the deregulation of PKA signaling caused by PRKACA mutations in adrenal Cushing's syndrome.}, language = {en} } @article{AwadOthmanStopper2017, author = {Awad, Eman and Othman, Eman M. and Stopper, Helga}, title = {Effects of resveratrol, lovastatin and the mTOR-inhibitor RAD-001 on insulin-induced genomic damage in vitro}, series = {Molecules}, volume = {22}, journal = {Molecules}, number = {12}, doi = {10.3390/molecules22122207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159260}, pages = {2207}, year = {2017}, abstract = {Diabetes mellitus (DM) is one of the major current health problems due to lifestyle changes. Before diagnosis and in the early years of disease, insulin blood levels are elevated. However, insulin generates low levels of reactive oxygen species (ROS) which are integral to the regulation of a variety of intracellular signaling pathways, but excess levels of insulin may also lead to DNA oxidation and DNA damage. Three pharmaceutical compounds, resveratrol, lovastatin and the mTOR-inhibitor RAD-001, were investigated due to their known beneficial effects. They showed protective properties against genotoxic damage and significantly reduced ROS after in vitro treatment of cultured cells with insulin. Therefore, the selected pharmaceuticals may be attractive candidates to be considered for support of DM therapy.}, language = {en} }