@article{HuppFoertschWippeletal.2013, author = {Hupp, Sabrina and F{\"o}rtsch, Christina and Wippel, Carolin and Ma, Jiangtao and Mitchell, Timothy J. and Iliev, Asparouh I.}, title = {Direct Transmembrane Interaction between Actin and the Pore-Competent, Cholesterol-Dependent Cytolysin Pneumolysin}, series = {Journal of Molecular Biology}, volume = {425}, journal = {Journal of Molecular Biology}, number = {3}, doi = {10.1016/j.jmb.2012.11.034}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132297}, pages = {636-646}, year = {2013}, abstract = {The eukaryotic actin cytoskeleton is an evolutionarily well-established pathogen target, as a large number of bacterial factors disturb its dynamics to alter the function of the host cells. These pathogenic factors modulate or mimic actin effector proteins or they modify actin directly, leading to an imbalance of the precisely regulated actin turnover. Here, we show that the pore-forming, cholesterol-dependent cytolysin pneumolysin (PLY), a major neurotoxin of Streptococcus pneumoniae, has the capacity to bind actin directly and to enhance actin polymerisation in vitro. In cells, the toxin co-localised with F-actin shortly after exposure, and this direct interaction was verified by F{\"o}rster resonance energy transfer. PLY was capable of exerting its effect on actin through the lipid bilayer of giant unilamellar vesicles, but only when its pore competence was preserved. The dissociation constant of G-actin binding to PLY in a biochemical environment was 170-190 nM, which is indicative of a high-affinity interaction, comparable to the affinity of other intracellular actin-binding factors. Our results demonstrate the first example of a direct interaction of a pore-forming toxin with cytoskeletal components, suggesting that the cross talk between pore-forming cytolysins and cells is more complex than previously thought.}, language = {en} } @article{WippelMaurerFortschetal.2013, author = {Wippel, Carolin and Maurer, Jana and Fortsch, Christina and Hupp, Sabrina and Bohl, Alexandra and Ma, Jiangtao and Mitchell, Timothy J. and Bunkowski, Stephanie and Br{\"u}ck, Wolfgang and Nau, Roland and Iliev, Asparouh I.}, title = {Bacterial Cytolysin during Meningitis Disrupts the Regulation of Glutamate in the Brain, Leading to Synaptic Damage}, series = {PLoS Pathogens}, volume = {9}, journal = {PLoS Pathogens}, number = {6}, doi = {10.1371/journal.ppat.1003380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130462}, pages = {e1003380}, year = {2013}, abstract = {Abstract Streptococcus pneumoniae (pneumococcal) meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage. Author Summary Bacterial meningitis is one of the most devastating brain diseases. Among the bacteria that cause meningitis, Streptococcus pneumoniae is the most common. Meningitis predominantly affects children, especially in the Third World, and most of them do not survive. Those that do survive often suffer permanent brain damage and hearing problems. The exact morphological substrates of brain damage in Streptococcus pneumoniae meningitis remain largely unknown. In our experiments, we found that the brain cortex of patients with meningitis demonstrated a loss of synapses (the contact points among neurons, responsible for the processes of learning and memory), and we identified the major pneumococcal neurotoxin pneumolysin as a sufficient cause of this loss. The effect was not direct but was mediated by the brain neurotransmitter glutamate, which was released upon toxin binding by one of the non-neuronal cell types of the brain - the astrocytes. Pneumolysin initiated calcium influx in astrocytes and subsequent glutamate release. Glutamate damaged the synapses via NMDA-receptors - a mechanism similar to the damage occurring in brain ischemia. Thus, we show that synaptic loss is present in pneumococcal meningitis, and we identify the toxic bacterial protein pneumolysin as the major factor in this process. These findings alter our understanding of bacterial meningitis and establish new therapeutic strategies for this fatal disease.}, language = {en} } @article{CalebiroMaiellaro2014, author = {Calebiro, Davide and Maiellaro, Isabella}, title = {cAMP signaling microdomains and their observation by optical methods}, series = {Frontiers in Cellular Neuroscience}, volume = {8}, journal = {Frontiers in Cellular Neuroscience}, issn = {1662-5102}, doi = {10.3389/fncel.2014.00350}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118252}, pages = {350}, year = {2014}, abstract = {The second messenger cyclic AMP (cAMP) is a major intracellular mediator of many hormones and neurotransmitters and regulates a myriad of cell functions, including synaptic plasticity in neurons. Whereas cAMP can freely diffuse in the cytosol, a growing body of evidence suggests the formation of cAMP gradients and microdomains near the sites of cAMP production, where cAMP signals remain apparently confined. The mechanisms responsible for the formation of such microdomains are subject of intensive investigation. The development of optical methods based on fluorescence resonance energy transfer (FRET), which allow a direct observation of cAMP signaling with high temporal and spatial resolution, is playing a fundamental role in elucidating the nature of such microdomains. Here, we will review the optical methods used for monitoring cAMP and protein kinase A (PKA) signaling in living cells, providing some examples of their application in neurons, and will discuss the major hypotheses on the formation of cAMP/PKA microdomains.}, language = {en} } @article{MambrettiKistnerMayeretal.2016, author = {Mambretti, Egle M. and Kistner, Katrin and Mayer, Stefanie and Massotte, Dominique and Kieffer, Brigitte L. and Hoffmann, Carsten and Reeh, Peter W. and Brack, Alexander and Asan, Esther and Rittner, Heike L.}, title = {Functional and structural characterization of axonal opioid receptors as targets for analgesia}, series = {Molecular Pain}, journal = {Molecular Pain}, number = {12}, doi = {10.1177/1744806916628734}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145917}, pages = {1-17}, year = {2016}, abstract = {Background Opioids are the gold standard for the treatment of acute pain despite serious side effects in the central and enteric nervous system. µ-opioid receptors (MOPs) are expressed and functional at the terminals of sensory axons, when activated by exogenous or endogenous ligands. However, the presence and function of MOP along nociceptive axons remains controversial particularly in na{\"i}ve animals. Here, we characterized axonal MOPs by immunofluorescence, ultrastructural, and functional analyses. Furthermore, we evaluated hypertonic saline as a possible enhancer of opioid receptor function. Results Comparative immunolabeling showed that, among several tested antibodies, which all provided specific MOP detection in the rat central nervous system (CNS), only one monoclonal MOP-antibody yielded specificity and reproducibility for MOP detection in the rat peripheral nervous system including the sciatic nerve. Double immunolabeling documented that MOP immunoreactivity was confined to calcitonin gene-related peptide (CGRP) positive fibers and fiber bundles. Almost identical labeling and double labeling patterns were found using mcherry-immunolabeling on sciatic nerves of mice producing a MOP-mcherry fusion protein (MOP-mcherry knock-in mice). Preembedding immunogold electron microscopy on MOP-mcherry knock-in sciatic nerves indicated presence of MOP in cytoplasm and at membranes of unmyelinated axons. Application of [D-Ala\(^2\), N-MePhe\(^4\), Gly-ol]-enkephalin (DAMGO) or fentanyl dose-dependently inhibited depolarization-induced CGRP release from rat sciatic nerve axons ex vivo, which was blocked by naloxone. When the lipophilic opioid fentanyl was applied perisciatically in na{\"i}ve Wistar rats, mechanical nociceptive thresholds increased. Subthreshold doses of fentanyl or the hydrophilic opioid DAMGO were only effective if injected together with hypertonic saline. In vitro, using β-arrestin-2/MOP double-transfected human embryonic kidney cells, DAMGO as well as fentanyl lead to a recruitment of β-arrestin-2 to the membrane followed by a β-arrestin-2 reappearance in the cytosol and MOP internalization. Pretreatment with hypertonic saline prevented MOP internalization. Conclusion MOPs are present and functional in the axonal membrane from na{\"i}ve animals. Hypertonic saline acutely decreases ligand-induced internalization of MOP and thereby might improve MOP function. Further studies should explore potential clinical applications of opioids together with enhancers for regional analgesia.}, language = {en} } @article{MaiellaroLohseKitteetal.2016, author = {Maiellaro, Isabella and Lohse, Martin J. and Kitte, Robert J. and Calebiro, Davide}, title = {cAMP Signals in Drosophila Motor Neurons Are Confined to Single Synaptic Boutons}, series = {Cell Reports}, volume = {17}, journal = {Cell Reports}, number = {5}, doi = {10.1016/j.celrep.2016.09.090}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162324}, pages = {1238-1246}, year = {2016}, abstract = {The second messenger cyclic AMP (cAMP) plays an important role in synaptic plasticity. Although there is evidence for local control of synaptic transmission and plasticity, it is less clear whether a similar spatial confinement of cAMP signaling exists. Here, we suggest a possible biophysical basis for the site-specific regulation of synaptic plasticity by cAMP, a highly diffusible small molecule that transforms the physiology of synapses in a local and specific manner. By exploiting the octopaminergic system of Drosophila, which mediates structural synaptic plasticity via a cAMP-dependent pathway, we demonstrate the existence of local cAMP signaling compartments of micrometer dimensions within single motor neurons. In addition, we provide evidence that heterogeneous octopamine receptor localization, coupled with local differences in phosphodiesterase activity, underlies the observed differences in cAMP signaling in the axon, cell body, and boutons.}, language = {en} } @article{SegererHadamekZundleretal.2016, author = {Segerer, Gabriela and Hadamek, Kerstin and Zundler, Matthias and Fekete, Agnes and Seifried, Annegrit and Mueller, Martin J. and Koentgen, Frank and Gessler, Manfred and Jeanclos, Elisabeth and Gohla, Antje}, title = {An essential developmental function for murine phosphoglycolate phosphatase in safeguarding cell proliferation}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep35160}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181094}, year = {2016}, abstract = {Mammalian phosphoglycolate phosphatase (PGP) is thought to target phosphoglycolate, a 2-deoxyribose fragment derived from the repair of oxidative DNA lesions. However, the physiological role of this activity and the biological function of the DNA damage product phosphoglycolate is unknown. We now show that knockin replacement of murine Pgp with its phosphatase-inactive Pgp\(^{D34N}\) mutant is embryonically lethal due to intrauterine growth arrest and developmental delay in midgestation. PGP inactivation attenuated triosephosphate isomerase activity, increased triglyceride levels at the expense of the cellular phosphatidylcholine content, and inhibited cell proliferation. These effects were prevented under hypoxic conditions or by blocking phosphoglycolate release from damaged DNA. Thus, PGP is essential to sustain cell proliferation in the presence of oxygen. Collectively, our findings reveal a previously unknown mechanism coupling a DNA damage repair product to the control of intermediary metabolism and cell proliferation.}, language = {en} } @article{ScholzGuanNieberleretal.2017, author = {Scholz, Nicole and Guan, Chonglin and Nieberler, Matthias and Grotmeyer, Alexander and Maiellaro, Isabella and Gao, Shiqiang and Beck, Sebastian and Pawlak, Matthias and Sauer, Markus and Asan, Esther and Rothemund, Sven and Winkler, Jana and Pr{\"o}mel, Simone and Nagel, Georg and Langenhan, Tobias and Kittel, Robert J}, title = {Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons}, series = {eLife}, volume = {6}, journal = {eLife}, number = {e28360}, doi = {10.7554/eLife.28360}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170520}, year = {2017}, abstract = {Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response.}, language = {en} } @article{GodboleLygaLohseetal.2017, author = {Godbole, Amod and Lyga, Sandra and Lohse, Martin J. and Calebiro, Davide}, title = {Internalized TSH receptors en route to the TGN induce local G\(_{S}\)-protein signaling and gene transcription}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {443}, doi = {10.1038/s41467-017-00357-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170375}, year = {2017}, abstract = {A new paradigm of G-protein-coupled receptor (GPCR) signaling at intracellular sites has recently emerged, but the underlying mechanisms and functional consequences are insufficiently understood. Here, we show that upon internalization in thyroid cells, endogenous TSH receptors traffic retrogradely to the trans-Golgi network (TGN) and activate endogenous Gs-proteins in the retromer-coated compartment that brings them to the TGN. Receptor internalization is associated with a late cAMP/protein kinase A (PKA) response at the Golgi/TGN. Blocking receptor internalization, inhibiting PKA II/interfering with its Golgi/TGN localization, silencing retromer or disrupting Golgi/TGN organization all impair efficient TSH-dependent cAMP response element binding protein (CREB) phosphorylation. These results suggest that retrograde trafficking to the TGN induces local G\(_{S}\)-protein activation and cAMP/PKA signaling at a critical position near the nucleus, which appears required for efficient CREB phosphorylation and gene transcription. This provides a new mechanism to explain the functional consequences of GPCR signaling at intracellular sites and reveals a critical role for the TGN in GPCR signaling.}, language = {en} } @article{MaurerHuppBischoffetal.2017, author = {Maurer, Jana and Hupp, Sabrina and Bischoff, Carolin and Foertsch, Christina and Mitchell, Timothy J. and Chakraborty, Trinad and Iliev, Asparouh I.}, title = {Distinct neurotoxicity profile of listeriolysin O from \(Listeria\) \(monocytogenes\)}, series = {Toxins}, volume = {9}, journal = {Toxins}, number = {1}, doi = {10.3390/toxins9010034}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172130}, year = {2017}, abstract = {Cholesterol-dependent cytolysins (CDCs) are protein toxins that originate from Gram-positive bacteria and contribute substantially to their pathogenicity. CDCs bind membrane cholesterol and build prepores and lytic pores. Some effects of the toxins are observed in non-lytic concentrations. Two pathogens, \(Streptococcus\) \(pneumoniae\) and \(Listeria\) \(monocytogenes\), cause fatal bacterial meningitis, and both produce toxins of the CDC family—pneumolysin and listeriolysin O, respectively. It has been demonstrated that pneumolysin produces dendritic varicosities (dendrite swellings) and dendritic spine collapse in the mouse neocortex, followed by synaptic loss and astrocyte cell shape remodeling without elevated cell death. We utilized primary glial cultures and acute mouse brain slices to examine the neuropathological effects of listeriolysin O and to compare it to pneumolysin with identical hemolytic activity. In cultures, listeriolysin O permeabilized cells slower than pneumolysin did but still initiated non-lytic astrocytic cell shape changes, just as pneumolysin did. In an acute brain slice culture system, listeriolysin O produced dendritic varicosities in an NMDA-dependent manner but failed to cause dendritic spine collapse and cortical astrocyte reorganization. Thus, listeriolysin O demonstrated slower cell permeabilization and milder glial cell remodeling ability than did pneumolysin and lacked dendritic spine collapse capacity but exhibited equivalent dendritic pathology.}, language = {en} } @article{SchihadaVandenabeeleZabeletal.2018, author = {Schihada, Hannes and Vandenabeele, Sylvie and Zabel, Ulrike and Frank, Monika and Lohse, Martin J. and Maiellaro, Isabella}, title = {A universal bioluminescence resonance energy transfer sensor design enables high-sensitivity screening of GPCR activation dynamics}, series = {Communications Biology}, volume = {1}, journal = {Communications Biology}, number = {105}, doi = {10.1038/s42003-018-0072-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228592}, pages = {1-8}, year = {2018}, abstract = {G-protein-coupled receptors (GPCRs) represent one of the most important classes of drug targets. The discovery of new GCPR therapeutics would greatly benefit from the development of a generalizable high-throughput assay to directly monitor their activation or de-activation. Here we screened a variety of labels inserted into the third intracellular loop and the C-terminus of the alpha(2 Lambda)-adrenergic receptor and used fluorescence (FRET) and bioluminescence resonance energy transfer (BRET) to monitor ligand-binding and activation dynamics. We then developed a universal intramolecular BRET receptor sensor design to quantify efficacy and potency of GPCR ligands in intact cells and real time. We demonstrate the transferability of the sensor design by cloning beta(2)-adrenergic and PTH1-receptor BRET sensors and monitored their efficacy and potency. For all biosensors, the Z factors were well above 0.5 showing the suitability of such design for microtiter plate assays. This technology will aid the identification of novel types of GPCR ligands.}, language = {en} } @article{HarnošCanizalJuraseketal.2019, author = {Harnoš, Jakub and Ca{\~n}izal, Maria Consuelo Alonso and Jur{\´a}sek, Miroslav and Kumar, Jitender and Holler, Cornelia and Schambony, Alexandra and Han{\´a}kov{\´a}, Kateřina and Bernat{\´i}k, Ondřej and Zdr{\´a}hal, Zbyn{\^e}k and G{\"o}m{\"o}ryov{\´a}, Krist{\´i}na and Gybeľ, Tom{\´a}š and Radaszkiewicz, Tomasz Witold and Kravec, Marek and Trant{\´i}rek, Luk{\´a}š and Ryneš, Jan and Dave, Zankruti and Fern{\´a}ndez-Llamazares, Ana Iris and V{\´a}cha, Robert and Tripsianes, Konstantinos and Hoffmann, Carsten and Bryja, V{\´i}tězslav}, title = {Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-09651-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227837}, year = {2019}, abstract = {Dishevelled (DVL) is the key component of the Wnt signaling pathway. Currently, DVL conformational dynamics under native conditions is unknown. To overcome this limitation, we develop the Fluorescein Arsenical Hairpin Binder- (FlAsH-) based FRET in vivo approach to study DVL conformation in living cells. Using this single-cell FRET approach, we demonstrate that (i) Wnt ligands induce open DVL conformation, (ii) DVL variants that are predominantly open, show more even subcellular localization and more efficient membrane recruitment by Frizzled (FZD) and (iii) Casein kinase 1 ɛ (CK1ɛ) has a key regulatory function in DVL conformational dynamics. In silico modeling and in vitro biophysical methods explain how CK1ɛ-specific phosphorylation events control DVL conformations via modulation of the PDZ domain and its interaction with DVL C-terminus. In summary, our study describes an experimental tool for DVL conformational sampling in living cells and elucidates the essential regulatory role of CK1ɛ in DVL conformational dynamics.}, language = {en} } @article{WoelfelSaetteleZechmeisteretal.2020, author = {W{\"o}lfel, Angela and S{\"a}ttele, Mathias and Zechmeister, Christina and Nikolaev, Viacheslov O. and Lohse, Martin J. and Boege, Fritz and Jahns, Roland and Boivin-Jahns, Val{\´e}rie}, title = {Unmasking features of the auto-epitope essential for β\(_1\)-adrenoceptor activation by autoantibodies in chronic heart failure}, series = {ESC Heart Failure}, volume = {7}, journal = {ESC Heart Failure}, number = {4}, doi = {10.1002/ehf2.12747}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235974}, pages = {1830-1841}, year = {2020}, abstract = {Aims Chronic heart failure (CHF) can be caused by autoantibodies stimulating the heart via binding to first and/or second extracellular loops of cardiac β1-adrenoceptors. Allosteric receptor activation depends on conformational features of the autoantibody binding site. Elucidating these features will pave the way for the development of specific diagnostics and therapeutics. Our aim was (i) to fine-map the conformational epitope within the second extracellular loop of the human β\(_1\)-adrenoceptor (β1ECII) that is targeted by stimulating β\(_1\)-receptor (auto)antibodies and (ii) to generate competitive cyclopeptide inhibitors of allosteric receptor activation, which faithfully conserve the conformational auto-epitope. Methods and results Non-conserved amino acids within the β\(_1\)EC\(_{II}\) loop (compared with the amino acids constituting the ECII loop of the β\(_2\)-adrenoceptor) were one by one replaced with alanine; potential intra-loop disulfide bridges were probed by cysteine-serine exchanges. Effects on antibody binding and allosteric receptor activation were assessed (i) by (auto)antibody neutralization using cyclopeptides mimicking β1ECII ± the above replacements, and (ii) by (auto)antibody stimulation of human β\(_1\)-adrenoceptors bearing corresponding point mutations. With the use of stimulating β\(_1\)-receptor (auto)antibodies raised in mice, rats, or rabbits and isolated from exemplary dilated cardiomyopathy patients, our series of experiments unmasked two features of the β\(_1\)EC\(_{II}\) loop essential for (auto)antibody binding and allosteric receptor activation: (i) the NDPK\(^{211-214}\) motif and (ii) the intra-loop disulfide bond C\(^{209}\)↔C\(^{215}\). Of note, aberrant intra-loop disulfide bond C\(^{209}\)↔C\(^{216}\) almost fully disrupted the functional auto-epitope in cyclopeptides. Conclusions The conformational auto-epitope targeted by cardio-pathogenic β\(_1\)-receptor autoantibodies is faithfully conserved in cyclopeptide homologues of the β\(_1\)EC\(_{II}\) loop bearing the NDPK\(^{211-214}\) motif and the C\(^{209}\)↔C\(^{215}\) bridge while lacking cysteine C216. Such molecules provide promising tools for novel diagnostic and therapeutic approaches in β\(_1\)-autoantibodypositive CHF.}, language = {en} } @article{JeanclosKnoblochHoffmannetal.2020, author = {Jeanclos, Elisabeth and Knobloch, Gunnar and Hoffmann, Axel and Fedorchenko, Oleg and Odersky, Andrea and Lamprecht, Anna-Karina and Schindelin, Hermann and Gohla, Antje}, title = {Ca\(^{2+}\) functions as a molecular switch that controls the mutually exclusive complex formation of pyridoxal phosphatase with CIB1 or calmodulin}, series = {FEBS Letters}, volume = {594}, journal = {FEBS Letters}, number = {13}, doi = {10.1002/1873-3468.13795}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217963}, pages = {2099 -- 2115}, year = {2020}, abstract = {Pyridoxal 5′-phosphate (PLP) is an essential cofactor for neurotransmitter metabolism. Pyridoxal phosphatase (PDXP) deficiency in mice increases PLP and γ-aminobutyric acid levels in the brain, yet how PDXP is regulated is unclear. Here, we identify the Ca\(^{2+}\)- and integrin-binding protein 1 (CIB1) as a PDXP interactor by yeast two-hybrid screening and find a calmodulin (CaM)-binding motif that overlaps with the PDXP-CIB1 interaction site. Pulldown and crosslinking assays with purified proteins demonstrate that PDXP directly binds to CIB1 or CaM. CIB1 or CaM does not alter PDXP phosphatase activity. However, elevated Ca\(^{2+}\) concentrations promote CaM binding and, thereby, diminish CIB1 binding to PDXP, as both interactors bind in a mutually exclusive way. Hence, the PDXP-CIB1 complex may functionally differ from the PDXP-Ca\(^{2+}\)-CaM complex.}, language = {en} } @article{WeigandRonchiVanselowetal.2021, author = {Weigand, Isabel and Ronchi, Cristina L. and Vanselow, Jens T. and Bathon, Kerstin and Lenz, Kerstin and Herterich, Sabine and Schlosser, Andreas and Kroiss, Matthias and Fassnacht, Martin and Calebiro, Davide and Sbiera, Silviu}, title = {PKA Cα subunit mutation triggers caspase-dependent RIIβ subunit degradation via Ser\(^{114}\) phosphorylation}, series = {Science Advances}, volume = {7}, journal = {Science Advances}, number = {8}, doi = {10.1126/sciadv.abd4176}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270445}, year = {2021}, abstract = {Mutations in the PRKACA gene are the most frequent cause of cortisol-producing adrenocortical adenomas leading to Cushing's syndrome. PRKACA encodes for the catalytic subunit α of protein kinase A (PKA). We already showed that PRKACA mutations lead to impairment of regulatory (R) subunit binding. Furthermore, PRKACA mutations are associated with reduced RIIβ protein levels; however, the mechanisms leading to reduced RIIβ levels are presently unknown. Here, we investigate the effects of the most frequent PRKACA mutation, L206R, on regulatory subunit stability. We find that Ser\(^{114}\) phosphorylation of RIIβ is required for its degradation, mediated by caspase 16. Last, we show that the resulting reduction in RIIβ protein levels leads to increased cortisol secretion in adrenocortical cells. These findings reveal the molecular mechanisms and pathophysiological relevance of the R subunit degradation caused by PRKACA mutations, adding another dimension to the deregulation of PKA signaling caused by PRKACA mutations in adrenal Cushing's syndrome.}, language = {en} } @article{JeanclosSchloetzerHadameketal.2022, author = {Jeanclos, Elisabeth and Schl{\"o}tzer, Jan and Hadamek, Kerstin and Yuan-Chen, Natalia and Alwahsh, Mohammad and Hollmann, Robert and Fratz, Stefanie and Yesilyurt-Gerhards, Dilan and Frankenbach, Tina and Engelmann, Daria and Keller, Angelika and Kaestner, Alexandra and Schmitz, Werner and Neuenschwander, Martin and Hergenr{\"o}der, Roland and Sotriffer, Christoph and von Kries, Jens Peter and Schindelin, Hermann and Gohla, Antje}, title = {Glycolytic flux control by drugging phosphoglycolate phosphatase}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-022-34228-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300928}, year = {2022}, abstract = {Targeting the intrinsic metabolism of immune or tumor cells is a therapeutic strategy in autoimmunity, chronic inflammation or cancer. Metabolite repair enzymes may represent an alternative target class for selective metabolic inhibition, but pharmacological tools to test this concept are needed. Here, we demonstrate that phosphoglycolate phosphatase (PGP), a prototypical metabolite repair enzyme in glycolysis, is a pharmacologically actionable target. Using a combination of small molecule screening, protein crystallography, molecular dynamics simulations and NMR metabolomics, we discover and analyze a compound (CP1) that inhibits PGP with high selectivity and submicromolar potency. CP1 locks the phosphatase in a catalytically inactive conformation, dampens glycolytic flux, and phenocopies effects of cellular PGP-deficiency. This study provides key insights into effective and precise PGP targeting, at the same time validating an allosteric approach to control glycolysis that could advance discoveries of innovative therapeutic candidates.}, language = {en} } @article{SchanbacherBieberReindersetal.2022, author = {Schanbacher, Constanze and Bieber, Michael and Reinders, Yvonne and Cherpokova, Deya and Teichert, Christina and Nieswandt, Bernhard and Sickmann, Albert and Kleinschnitz, Christoph and Langhauser, Friederike and Lorenz, Kristina}, title = {ERK1/2 activity is critical for the outcome of ischemic stroke}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms23020706}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283991}, year = {2022}, abstract = {Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2\(^{wt}\)) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood-brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIP\(^{wt}\)) and its phosphorylation-deficient mutant RKIP\(^{S153A}\), known inhibitors of the ERK1/2 signaling cascade. RKIP\(^{wt}\) and RKIP\(^{S153A}\) attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke.}, language = {en} } @article{KlenkHommersLohse2022, author = {Klenk, Christoph and Hommers, Leif and Lohse, Martin J.}, title = {Proteolytic cleavage of the extracellular domain affects signaling of parathyroid hormone 1 receptor}, series = {Frontiers in Endocrinology}, volume = {13}, journal = {Frontiers in Endocrinology}, issn = {1664-2392}, doi = {10.3389/fendo.2022.839351}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262055}, year = {2022}, abstract = {Parathyroid hormone 1 receptor (PTH1R) is a member of the class B family of G protein-coupled receptors, which are characterized by a large extracellular domain required for ligand binding. We have previously shown that the extracellular domain of PTH1R is subject to metalloproteinase cleavage in vivo that is regulated by ligand-induced receptor trafficking and leads to impaired stability of PTH1R. In this work, we localize the cleavage site in the first loop of the extracellular domain using amino-terminal protein sequencing of purified receptor and by mutagenesis studies. We further show, that a receptor mutant not susceptible to proteolytic cleavage exhibits reduced signaling to G\(_s\) and increased activation of G\(_q\) compared to wild-type PTH1R. These findings indicate that the extracellular domain modulates PTH1R signaling specificity, and that its cleavage affects receptor signaling.}, language = {en} }