@phdthesis{Philipp2023, author = {Philipp, Marius Balthasar}, title = {Quantifying the Effects of Permafrost Degradation in Arctic Coastal Environments via Satellite Earth Observation}, doi = {10.25972/OPUS-34563}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-345634}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Permafrost degradation is observed all over the world as a consequence of climate change and the associated Arctic amplification, which has severe implications for the environment. Landslides, increased rates of surface deformation, rising likelihood of infrastructure damage, amplified coastal erosion rates, and the potential turnover of permafrost from a carbon sink to a carbon source are thereby exemplary implications linked to the thawing of frozen ground material. In this context, satellite earth observation is a potent tool for the identification and continuous monitoring of relevant processes and features on a cheap, long-term, spatially explicit, and operational basis as well as up to a circumpolar scale. A total of 325 articles published in 30 different international journals during the past two decades were investigated on the basis of studied environmental foci, remote sensing platforms, sensor combinations, applied spatio-temporal resolutions, and study locations in an extensive review on past achievements, current trends, as well as future potentials and challenges of satellite earth observation for permafrost related analyses. The development of analysed environmental subjects, utilized sensors and platforms, and the number of annually published articles over time are addressed in detail. Studies linked to atmospheric features and processes, such as the release of greenhouse gas emissions, appear to be strongly under-represented. Investigations on the spatial distribution of study locations revealed distinct study clusters across the Arctic. At the same time, large sections of the continuous permafrost domain are only poorly covered and remain to be investigated in detail. A general trend towards increasing attention in satellite earth observation of permafrost and related processes and features was observed. The overall amount of published articles hereby more than doubled since the year 2015. New sources of satellite data, such as the Sentinel satellites and the Methane Remote Sensing LiDAR Mission (Merlin), as well as novel methodological approaches, such as data fusion and deep learning, will thereby likely improve our understanding of the thermal state and distribution of permafrost, and the effects of its degradation. Furthermore, cloud-based big data processing platforms (e.g. Google Earth Engine (GEE)) will further enable sophisticated and long-term analyses on increasingly larger scales and at high spatial resolutions. In this thesis, a specific focus was put on Arctic permafrost coasts, which feature increasing vulnerability to environmental parameters, such as the thawing of frozen ground, and are therefore associated with amplified erosion rates. In particular, a novel monitoring framework for quantifying Arctic coastal erosion rates within the permafrost domain at high spatial resolution and on a circum-Arctic scale is presented within this thesis. Challenging illumination conditions and frequent cloud cover restrict the applicability of optical satellite imagery in Arctic regions. In order to overcome these limitations, Synthetic Aperture RADAR (SAR) data derived from Sentinel-1 (S1), which is largely independent from sun illumination and weather conditions, was utilized. Annual SAR composites covering the months June-September were combined with a Deep Learning (DL) framework and a Change Vector Analysis (CVA) approach to generate both a high-quality and circum-Arctic coastline product as well as a coastal change product that highlights areas of erosion and build-up. Annual composites in the form of standard deviation (sd) and median backscatter were computed and used as inputs for both the DL framework and the CVA coastal change quantification. The final DL-based coastline product covered a total of 161,600 km of Arctic coastline and featured a median accuracy of ±6.3 m to the manually digitized reference data. Annual coastal change quantification between 2017-2021 indicated erosion rates of up to 67 m per year for some areas based on 400 m coastal segments. In total, 12.24\% of the investigated coastline featured an average erosion rate of 3.8 m per year, which corresponds to 17.83 km2 of annually eroded land area. Multiple quality layers associated to both products, the generated DL-coastline and the coastal change rates, are provided on a pixel basis to further assess the accuracy and applicability of the proposed data, methods, and products. Lastly, the extracted circum-Arctic erosion rates were utilized as a basis in an experimental framework for estimating the amount of permafrost and carbon loss as a result of eroding permafrost coastlines. Information on permafrost fraction, Active Layer Thickness (ALT), soil carbon content, and surface elevation were thereby combined with the aforementioned erosion rates. While the proposed experimental framework provides a valuable outline for quantifying the volume loss of frozen ground and carbon release, extensive validation of the utilized environmental products and resulting volume loss numbers based on 200 m segments are necessary. Furthermore, data of higher spatial resolution and information of carbon content for deeper soil depths are required for more accurate estimates.}, subject = {Dauerfrostboden}, language = {en} } @article{ReinersSobrinoKuenzer2023, author = {Reiners, Philipp and Sobrino, Jos{\´e} and Kuenzer, Claudia}, title = {Satellite-derived land surface temperature dynamics in the context of global change — a review}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs15071857}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311120}, year = {2023}, abstract = {Satellite-derived Land Surface Temperature (LST) dynamics have been increasingly used to study various geophysical processes. This review provides an extensive overview of the applications of LST in the context of global change. By filtering a selection of relevant keywords, a total of 164 articles from 14 international journals published during the last two decades were analyzed based on study location, research topic, applied sensor, spatio-temporal resolution and scale and employed analysis methods. It was revealed that China and the USA were the most studied countries and those that had the most first author affiliations. The most prominent research topic was the Surface Urban Heat Island (SUHI), while the research topics related to climate change were underrepresented. MODIS was by far the most used sensor system, followed by Landsat. A relatively small number of studies analyzed LST dynamics on a global or continental scale. The extensive use of MODIS highly determined the study periods: A majority of the studies started around the year 2000 and thus had a study period shorter than 25 years. The following suggestions were made to increase the utilization of LST time series in climate research: The prolongation of the time series by, e.g., using AVHRR LST, the better representation of LST under clouds, the comparison of LST to traditional climate change measures, such as air temperature and reanalysis variables, and the extension of the validation to heterogenous sites.}, language = {en} } @article{DhillonKuebertFlockDahmsetal.2023, author = {Dhillon, Maninder Singh and K{\"u}bert-Flock, Carina and Dahms, Thorsten and Rummler, Thomas and Arnault, Joel and Steffan-Dewenter, Ingolf and Ullmann, Tobias}, title = {Evaluation of MODIS, Landsat 8 and Sentinel-2 data for accurate crop yield predictions: a case study using STARFM NDVI in Bavaria, Germany}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs15071830}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311132}, year = {2023}, abstract = {The increasing availability and variety of global satellite products and the rapid development of new algorithms has provided great potential to generate a new level of data with different spatial, temporal, and spectral resolutions. However, the ability of these synthetic spatiotemporal datasets to accurately map and monitor our planet on a field or regional scale remains underexplored. This study aimed to support future research efforts in estimating crop yields by identifying the optimal spatial (10 m, 30 m, or 250 m) and temporal (8 or 16 days) resolutions on a regional scale. The current study explored and discussed the suitability of four different synthetic (Landsat (L)-MOD13Q1 (30 m, 8 and 16 days) and Sentinel-2 (S)-MOD13Q1 (10 m, 8 and 16 days)) and two real (MOD13Q1 (250 m, 8 and 16 days)) NDVI products combined separately to two widely used crop growth models (CGMs) (World Food Studies (WOFOST), and the semi-empiric Light Use Efficiency approach (LUE)) for winter wheat (WW) and oil seed rape (OSR) yield forecasts in Bavaria (70,550 km\(^2\)) for the year 2019. For WW and OSR, the synthetic products' high spatial and temporal resolution resulted in higher yield accuracies using LUE and WOFOST. The observations of high temporal resolution (8-day) products of both S-MOD13Q1 and L-MOD13Q1 played a significant role in accurately measuring the yield of WW and OSR. For example, L- and S-MOD13Q1 resulted in an R\(^2\) = 0.82 and 0.85, RMSE = 5.46 and 5.01 dt/ha for WW, R\(^2\) = 0.89 and 0.82, and RMSE = 2.23 and 2.11 dt/ha for OSR using the LUE model, respectively. Similarly, for the 8- and 16-day products, the simple LUE model (R\(^2\) = 0.77 and relative RMSE (RRMSE) = 8.17\%) required fewer input parameters to simulate crop yield and was highly accurate, reliable, and more precise than the complex WOFOST model (R\(^2\) = 0.66 and RRMSE = 11.35\%) with higher input parameters. Conclusively, both S-MOD13Q1 and L-MOD13Q1, in combination with LUE, were more prominent for predicting crop yields on a regional scale than the 16-day products; however, L-MOD13Q1 was advantageous for generating and exploring the long-term yield time series due to the availability of Landsat data since 1982, with a maximum resolution of 30 m. In addition, this study recommended the further use of its findings for implementing and validating the long-term crop yield time series in different regions of the world.}, language = {en} } @article{BenderRothJob2017, author = {Bender, Oliver and Roth, Charlotte E. and Job, Hubert}, title = {Protected areas and population development in the alps}, series = {eco.mont : Journal on Protected Mountain Areas Research and Management}, volume = {9}, journal = {eco.mont : Journal on Protected Mountain Areas Research and Management}, number = {Special issue}, doi = {10.1553/eco.mont-9-sis5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181901}, year = {2017}, abstract = {Nearly a quarter of the Alpine area is covered by a dense network of large protected areas (LPAs) of the four categories national park(NP), biosphere reserve (BR), nature park and world natural heritage site (WNHS). From the time of early industrialization, the Alpine area has undergone a mixed and increasingly polarized demographic development between the poles of immigration and emigration. This article investigates the possible mutual impact of population development and the existence of LPAs. The research design includes a quantitative survey of all Alpine LPAs in terms of their population development and the structure of immigration in the first decade of the 21st century. This will be linked with qualitative expert interviews in four selected NPs. The overall results allow an interpretation of the statistical correlations between type of LPA and migration.}, language = {en} } @article{SenaratneMuehlbauerKiefletal.2023, author = {Senaratne, Hansi and M{\"u}hlbauer, Martin and Kiefl, Ralph and C{\´a}rdenas, Andrea and Prathapan, Lallu and Riedlinger, Torsten and Biewer, Carolin and Taubenb{\"o}ck, Hannes}, title = {The Unseen — an investigative analysis of thematic and spatial coverage of news on the ongoing refugee crisis in West Africa}, series = {ISPRS International Journal of Geo-Information}, volume = {12}, journal = {ISPRS International Journal of Geo-Information}, number = {4}, issn = {2220-9964}, doi = {10.3390/ijgi12040175}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313607}, year = {2023}, abstract = {The fastest growing regional crisis is happening in West Africa today, with over 8 million people considered persons of concern. A culmination of identity politics, climate-driven disasters, and extreme poverty has led to this humanitarian crisis in the region and is exacerbated by a lack of political will and misplaced media attention. The current state of the art does not present sufficient investigations of the thematic and spatial coverage of news media of this crisis in this region. This paper studies the spatial coverage of this crisis as reported in the media, and the themes associated with those locations, based on a curated dataset. For the time frame 12 March to 15 September 2021, 2017 news articles related to the refugee crisis in West Africa were examined and manually coded based on (1) the geographical locations mentioned in each article; (2) the themes found in the articles in reference to a location (e.g., Relocation of people in Abuja). The dataset introduces a thematic dimension, as never achieved before, to the conflict-ridden areas in West Africa. A comparative analysis with UNHCR (United Nations High Commissioner for Refugees) data showed that 96.8\% of refugee-related locations in West Africa were not covered by news during the considered time frame. Contrastingly, 80.4\% of locations mentioned in the news do not appear in the UNHCR repository. Most news articles published during this time frame reported on Development aid or Political statements. Linear multiple regression analysis showed GDP per capita and political stability to be among the most influential determinants of news coverage.}, language = {en} } @article{LatifiHolzwarthSkidmoreetal.2021, author = {Latifi, Hooman and Holzwarth, Stefanie and Skidmore, Andrew and Brůna, Josef and Červenka, Jaroslav and Darvishzadeh, Roshanak and Hais, Martin and Heiden, Uta and Homolov{\´a}, Lucie and Krzystek, Peter and Schneider, Thomas and Star{\´y}, Martin and Wang, Tiejun and M{\"u}ller, J{\"o}rg and Heurich, Marco}, title = {A laboratory for conceiving Essential Biodiversity Variables (EBVs)—The 'Data pool initiative for the Bohemian Forest Ecosystem'}, series = {Methods in Ecology and Evolution}, volume = {12}, journal = {Methods in Ecology and Evolution}, number = {11}, doi = {10.1111/2041-210X.13695}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262743}, pages = {2073-2083}, year = {2021}, abstract = {Effects of climate change-induced events on forest ecosystem dynamics of composition, function and structure call for increased long-term, interdisciplinary and integrated research on biodiversity indicators, in particular within strictly protected areas with extensive non-intervention zones. The long-established concept of forest supersites generally relies on long-term funds from national agencies and goes beyond the logistic and financial capabilities of state- or region-wide protected area administrations, universities and research institutes. We introduce the concept of data pools as a smaller-scale, user-driven and reasonable alternative to co-develop remote sensing and forest ecosystem science to validated products, biodiversity indicators and management plans. We demonstrate this concept with the Bohemian Forest Ecosystem Data Pool, which has been established as an interdisciplinary, international data pool within the strictly protected Bavarian Forest and Šumava National Parks and currently comprises 10 active partners. We demonstrate how the structure and impact of the data pool differs from comparable cases. We assessed the international influence and visibility of the data pool with the help of a systematic literature search and a brief analysis of the results. Results primarily suggest an increase in the impact and visibility of published material during the life span of the data pool, with highest visibilities achieved by research conducted on leaf traits, vegetation phenology and 3D-based forest inventory. We conclude that the data pool results in an efficient contribution to the concept of global biodiversity observatory by evolving towards a training platform, functioning as a pool of data and algorithms, directly communicating with management for implementation and providing test fields for feasibility studies on earth observation missions.}, language = {en} } @phdthesis{Fekete2018, author = {Fekete, Alexander}, title = {Urban Disaster Resilience and Critical Infrastructure}, isbn = {978-3-946573-13-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163251}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {89}, year = {2018}, abstract = {Urban areas are population, culture and infrastructure concentration points. Electricity blackouts or interruptions of water supply severely affect people when happening unexpected and at large scale. Interruptions of such infrastructure supply services alone have the potential to trigger crises. But when happening in concert with or as a secondary effect of an earthquake, for example, the crisis situation is often aggravated. This is the case for any country, but it has been observed that even highly industrialised countries face severe risks when their degree of acquired dependency on services of what is termed Critical Infrastructure results in even bigger losses when occurring unexpectedly in a setting that usually has high reliability of services.}, subject = {Risikomanagement}, language = {en} } @article{DietrichMeisterDietrichetal.2019, author = {Dietrich, Laura and Meister, Julia and Dietrich, Oliver and Notroff, Jens and Kiep, Janika and Heeb, Julia and Beuger, Andr{\´e} and Sch{\"u}tt, Brigitta}, title = {Cereal processing at Early Neolithic G{\"o}bekli Tepe, southeastern Turkey}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0215214}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201504}, pages = {e0215214}, year = {2019}, abstract = {We analyze the processing of cereals and its role at Early Neolithic G{\"o}bekli Tepe, southeastern Anatolia (10th / 9th millennium BC), a site that has aroused much debate in archaeological discourse. To date, only zooarchaeological evidence has been discussed in regard to the subsistence of its builders. G{\"o}bekli Tepe consists of monumental round to oval buildings, erected in an earlier phase, and smaller rectangular buildings, built around them in a partially contemporaneous and later phase. The monumental buildings are best known as they were in the focus of research. They are around 20 m in diameter and have stone pillars that are up to 5.5 m high and often richly decorated. The rectangular buildings are smaller and-in some cases-have up to 2 m high, mostly undecorated, pillars. Especially striking is the number of tools related to food processing, including grinding slabs/bowls, handstones, pestles, and mortars, which have not been studied before. We analyzed more than 7000 artifacts for the present contribution. The high frequency of artifacts is unusual for contemporary sites in the region. Using an integrated approach of formal, experimental, and macro- / microscopical use-wear analyses we show that Neolithic people at G{\"o}bekli Tepe have produced standardized and efficient grinding tools, most of which have been used for the processing of cereals. Additional phytolith analysis confirms the massive presence of cereals at the site, filling the gap left by the weakly preserved charred macro-rests. The organization of work and food supply has always been a central question of research into G{\"o}bekli Tepe, as the construction and maintenance of the monumental architecture would have necessitated a considerable work force. Contextual analyses of the distribution of the elements of the grinding kit on site highlight a clear link between plant food preparation and the rectangular buildings and indicate clear delimitations of working areas for food production on the terraces the structures lie on, surrounding the circular buildings. There is evidence for extensive plant food processing and archaeozoological data hint at large-scale hunting of gazelle between midsummer and autumn. As no large storage facilities have been identified, we argue for a production of food for immediate use and interpret these seasonal peaks in activity at the site as evidence for the organization of large work feasts.}, language = {en} } @article{MeyerPetersThieletal.2021, author = {Meyer, Constantin and Peters, Jan Christoph and Thiel, Michael and Rathmann, Joachim and Job, Hubert}, title = {Monitoring von Freifl{\"a}cheninanspruchnahme und -versiegelung f{\"u}r eine nachhaltige Raumentwicklung in Bayern}, series = {Raumforschung und Raumordnung}, volume = {79}, journal = {Raumforschung und Raumordnung}, number = {2}, doi = {10.14512/rur.40}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261622}, pages = {172-189}, year = {2021}, abstract = {Im Freistaat Bayern wird intensiv diskutiert, wie die nach wie vor hohe Freifl{\"a}cheninanspruchnahme f{\"u}r Siedlungs- und Verkehrszwecke reduziert werden kann. Wissenschaftliche Grundlage f{\"u}r Steuerungsans{\"a}tze in der Stadt- und Regionalentwicklung sollte ein verbessertes staatliches Fl{\"a}chenmonitoring sein, welches {\"u}ber die amtliche Statistik und deren Hauptindikator "Siedlungs- und Verkehrsfl{\"a}che" hinaus auch die qualitative Dimension der Fl{\"a}cheninanspruchnahme einbezieht. Daf{\"u}r stellt dieser Beitrag methodische Erweiterungsans{\"a}tze f{\"u}r das Fl{\"a}chenmonitoring vor, welche kleinr{\"a}umige Analysen der Zersiedelung, Freiraumstruktur, Fl{\"a}chenversiegelung und {\"O}kosystemleistungen am Beispiel des Landkreises Rh{\"o}n-Grabfeld aufzeigen. Diese werden im Kontext der Debatte zu Ursachen und Steuerung der Freifl{\"a}cheninanspruchnahme sowie zu aktuellen Anforderungen an das Fl{\"a}chenmonitoring diskutiert. Betont wird deren Bedeutung f{\"u}r das Monitoring rechtlicher Vorgaben und politischer Ziele zur nachhaltigen Fl{\"a}chennutzung.}, language = {de} } @article{RoeschBiesterBogenriederetal.2017, author = {R{\"o}sch, Manfred and Biester, Harald and Bogenrieder, Arno and Eckmeier, Eileen and Ehrmann, Otto and Gerlach, Renate and Hall, Mathias and Hartkopf-Fr{\"o}der, Christoph and Herrmann, Ludger and Kury, Birgit and Lechterbeck, Jutta and Schier, Wolfram and Schulz, Erhard}, title = {Late neolithic agriculture in temperate Europe—a long-term experimental approach}, series = {Land}, volume = {6}, journal = {Land}, number = {1}, issn = {2073-445X}, doi = {10.3390/land6010011}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198103}, pages = {11}, year = {2017}, abstract = {Long-term slash-and-burn experiments, when compared with intensive tillage without manuring, resulted in a huge data set relating to potential crop yields, depending on soil quality, crop type, and agricultural measures. Cultivation without manuring or fallow phases did not produce satisfying yields, and mono-season cropping on freshly cleared and burned plots resulted in rather high yields, comparable to those produced during modern industrial agriculture - at least ten-fold the ones estimated for the medieval period. Continuous cultivation on the same plot, using imported wood from adjacent areas as fuel, causes decreasing yields over several years. The high yield of the first harvest of a slash-and-burn agriculture is caused by nutrient input through the ash produced and mobilization from the organic matter of the topsoil, due to high soil temperatures during the burning process and higher topsoil temperatures due to the soil's black surface. The harvested crops are pure, without contamination of any weeds. Considering the amount of work required to fight weeds without burning, the slash-and-burn technique yields much better results than any other tested agricultural approach. Therefore, in dense woodland, without optimal soils and climate, slash-and-burn agriculture seems to be the best, if not the only, feasible method to start agriculture, for example, during the Late Neolithic, when agriculture expanded from the loess belt into landscapes less suitable for agriculture. Extensive and cultivation with manuring is more practical in an already-open landscape and with a denser population, but its efficiency in terms of the ratio of the manpower input to food output, is worse. Slash-and-burn agriculture is not only a phenomenon of temperate European agriculture during the Neolithic, but played a major role in land-use in forested regions worldwide, creating anthromes on a huge spatial scale.}, language = {en} } @article{UllmannMoellerBaumhaueretal.2022, author = {Ullmann, Tobias and M{\"o}ller, Eric and Baumhauer, Roland and Lange-Athinodorou, Eva and Meister, Julia}, title = {A new Google Earth Engine tool for spaceborne detection of buried palaeogeographical features - examples from the Nile Delta (Egypt)}, series = {E\&G Quaternary Science Journal}, volume = {71}, journal = {E\&G Quaternary Science Journal}, number = {2}, doi = {10.5194/egqsj-71-243-2022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300164}, pages = {243-247}, year = {2022}, abstract = {No abstract available.}, language = {en} } @article{UllmannNillSchiestletal.2020, author = {Ullmann, Tobias and Nill, Leon and Schiestl, Robert and Trappe, Julian and Lange-Athinodorou, Eva and Baumhauer, Roland and Meister, Julia}, title = {Mapping buried paleogeographical features of the Nile Delta (Egypt) using the Landsat archive}, series = {E\&G Quartnerny Science Journal}, volume = {69}, journal = {E\&G Quartnerny Science Journal}, number = {2}, doi = {10.5194/egqsj-69-225-2020}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230349}, pages = {225-245}, year = {2020}, abstract = {The contribution highlights the use of Landsat spectral-temporal metrics (STMs) for the detection of surface anomalies that are potentially related to buried near-surface paleogeomorphological deposits in the Nile Delta (Egypt), in particular for a buried river branch close to Buto. The processing was completed in the Google Earth Engine (GEE) for the entire Nile Delta and for selected seasons of the year (summer/winter) using Landsat data from 1985 to 2019. We derived the STMs of the tasseled cap transformation (TC), the Normalized Difference Wetness Index (NDWI), and the Normalized Difference Vegetation Index (NDVI). These features were compared to historical topographic maps of the Survey of Egypt, CORONA imagery, the digital elevation model of the TanDEM-X mission, and modern high-resolution satellite imagery. The results suggest that the extent of channels is best revealed when differencing the median NDWI between summer (July/August) and winter (January/February) seasons (ΔNDWI). The observed difference is likely due to lower soil/plant moisture during summer, which is potentially caused by coarser-grained deposits and the morphology of the former levee. Similar anomalies were found in the immediate surroundings of several Pleistocene sand hills ("geziras") and settlement mounds ("tells") of the eastern delta, which allowed some mapping of the potential near-surface continuation. Such anomalies were not observed for the surroundings of tells of the western Nile Delta. Additional linear and meandering ΔNDWI anomalies were found in the eastern Nile Delta in the immediate surroundings of the ancient site of Bubastis (Tell Basta), as well as several kilometers north of Zagazig. These anomalies might indicate former courses of Nile river branches. However, the ΔNDWI does not provide an unambiguous delineation.}, language = {en} } @article{KunzKneisel2021, author = {Kunz, Julius and Kneisel, Christof}, title = {Three-dimensional investigation of an open- and a closed-system Pingo in northwestern Canada}, series = {Permafrost and Periglacial Processes}, volume = {32}, journal = {Permafrost and Periglacial Processes}, number = {4}, doi = {10.1002/ppp.2115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257678}, pages = {541-557}, year = {2021}, abstract = {The present study presents three-dimensional investigations of a hydrostatic pingo in the Mackenzie Delta region and a hydraulic pingo in the Ogilvie Mountains and contributes to a better understanding about the internal structures of the two pingo types. A combined approach using quasi-three-dimensional electrical resistivity tomography, ground-penetrating radar and frost probing allowed a clear delineation of frozen and unfrozen areas in the subsurface. At the hydrostatic pingo a massive ice core as well as a surrounding talik could be detected, but the location of the ice core and the talik differs from previous published assumptions. In contrast to acknowledged theory, at our site the massive ice core is not located in the center of the pingo but at the western edge, whereas the eastern flank is underlain by a talik, which surrounds the massive ice core. At the hydraulic pingo, the expected internal structure could be confirmed and the pathway of upwelling water could also be detected. The combined approach of the applied methods represents the first known three-dimensional geoelectrical investigation of pingos and provides new insights into the internal structure and architecture of the two different pingo types. The chosen approach allows further conclusions on the formation of these permafrost-affected landforms.}, language = {en} } @article{Schwalb‐WillmannRemelgadoSafietal.2020, author = {Schwalb-Willmann, Jakob and Remelgado, Ruben and Safi, Kamran and Wegmann, Martin}, title = {moveVis: Animating movement trajectories in synchronicity with static or temporally dynamic environmental data in R}, series = {Methods in Ecology and Evolution}, volume = {11}, journal = {Methods in Ecology and Evolution}, number = {5}, doi = {10.1111/2041-210X.13374}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214856}, pages = {664 -- 669}, year = {2020}, abstract = {Visualizing movement data is challenging: While traditional spatial data can be sufficiently displayed as two-dimensional plots or maps, movement trajectories require the representation of time in a third dimension. To address this, we present moveVis, an R package, which provides tools to animate movement trajectories, overlaying simultaneous uni- or multi-temporal raster imagery or vector data. moveVis automates the processing of movement and environmental data to turn such into an animation. This includes (a) the regularization of movement trajectories enforcing uniform time instances and intervals across all trajectories, (b) the frame-wise mapping of movement trajectories onto temporally static or dynamic environmental layers, (c) the addition of customizations, for example, map elements or colour scales and (d) the rendering of frames into an animation encoded as GIF or video file. moveVis is designed to display interactions and concurrencies of animal movement and environmental data. We present examples and use cases, ranging from data exploration to visualizing scientific findings. Static spatial plots of movement data disregard the temporal dimension that distinguishes movement from other spatial data. In contrast, animations allow to display relocation in both time and space. We deem animations a powerful way to visually explore movement data, frame analytical findings and display potential interactions with spatially continuous and temporally dynamic environmental covariates.}, language = {en} } @article{StanleyUllmannLangeAthinodorou2021, author = {Stanley, Jean-Daniel and Ullmann, Tobias and Lange-Athinodorou, Eva}, title = {Holocene aridity-induced interruptions of human activity along a fluvial channel in Egypt's northern delta}, series = {Quaternary}, volume = {4}, journal = {Quaternary}, number = {4}, issn = {2571-550X}, doi = {10.3390/quat4040039}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250285}, year = {2021}, abstract = {Geoarchaeological information presented here pertains to a subsidiary Nile channel that once flowed west of the main Sebennitic distributary and discharged its water and sediments at Egypt's then north-central deltaic coast. Periodical paleoclimatic episodes during the later Middle and Upper Holocene included decreased rainfall and increased aridity that reduced the Nile's flow levels and thus likely disrupted nautical transport and anthropogenic activity along this channel. Such changes in this deltaic sector, positioned adjacent to the Levantine Basin in the Eastern Mediterranean, can be attributed to climatic shifts triggered as far as the North Atlantic to the west, and African highland source areas of the Egyptian Nile to the south. Of special interest in a study core recovered along the channel are several sediment sequences without anthropogenic material that are interbedded between strata comprising numerous potsherds. The former are interpreted here as markers of increased regional aridity and reduced Nile flow which could have periodically disrupted the regional distribution of goods and nautical activities. Such times occurred ~5000 years B.P., ~4200-4000 years B.P., ~3200-2800 years B.P., ~2300-2200 years B.P., and more recently. Periods comparable to these are also identified by altered proportions of pollen, isotopic and compositional components in different radiocarbon-dated Holocene cores recovered elsewhere in the Nile delta, the Levantine region to the east and north of Egypt, and in the Faiyum depression south of the delta.}, language = {en} } @article{RemelgadoLeutnerSafietal.2018, author = {Remelgado, Ruben and Leutner, Benjamin and Safi, Kamran and Sonnenschein, Ruth and Kuebert, Carina and Wegmann, Martin}, title = {Linking animal movement and remote sensing - mapping resource suitability from a remote sensing perspective}, series = {Remote Sensing in Ecology and Conservation}, volume = {4}, journal = {Remote Sensing in Ecology and Conservation}, number = {3}, doi = {10.1002/rse2.70}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225199}, pages = {211-224}, year = {2018}, abstract = {Optical remote sensing is an important tool in the study of animal behavior providing ecologists with the means to understand species-environment interactions in combination with animal movement data. However, differences in spatial and temporal resolution between movement and remote sensing data limit their direct assimilation. In this context, we built a data-driven framework to map resource suitability that addresses these differences as well as the limitations of satellite imagery. It combines seasonal composites of multiyear surface reflectances and optimized presence and absence samples acquired with animal movement data within a cross-validation modeling scheme. Moreover, it responds to dynamic, site-specific environmental conditions making it applicable to contrasting landscapes. We tested this framework using five populations of White Storks (Ciconia ciconia) to model resource suitability related to foraging achieving accuracies from 0.40 to 0.94 for presences and 0.66 to 0.93 for absences. These results were influenced by the temporal composition of the seasonal reflectances indicated by the lower accuracies associated with higher day differences in relation to the target dates. Additionally, population differences in resource selection influenced our results marked by the negative relationship between the model accuracies and the variability of the surface reflectances associated with the presence samples. Our modeling approach spatially splits presences between training and validation. As a result, when these represent different and unique resources, we face a negative bias during validation. Despite these inaccuracies, our framework offers an important basis to analyze species-environment interactions. As it standardizes site-dependent behavioral and environmental characteristics, it can be used in the comparison of intra- and interspecies environmental requirements and improves the analysis of resource selection along migratory paths. Moreover, due to its sensitivity to differences in resource selection, our approach can contribute toward a better understanding of species requirements.}, language = {en} } @article{PaethPollinger2019, author = {Paeth, Heiko and Pollinger, Felix}, title = {Changes in mean flow and atmospheric wave activity in the North Atlantic sector}, series = {Quarterly Journal of the Royal Meteorological Society}, volume = {145}, journal = {Quarterly Journal of the Royal Meteorological Society}, number = {725}, doi = {10.1002/qj.3660}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208079}, pages = {3801-3818}, year = {2019}, abstract = {In recent years, the midlatitudes are characterized by more intense heatwaves in summer and sometimes severe cold spells in winter that might emanate from changes in atmospheric circulation, including synoptic-scale and planetary wave activity in the midlatitudes. In this study, we investigate the heat and momentum exchange between the mean flow and atmospheric waves in the North Atlantic sector and adjacent continents by means of the physically consistent Eliassen-Palm flux diagnostics applied to reanalysis and forced climate model data. In the long-term mean, momentum is transferred from the mean flow to atmospheric waves in the northwest Atlantic region, where cyclogenesis prevails. Further downstream over Europe, eddy fluxes return momentum to the mean flow, sustaining the jet stream against friction. A global climate model is able to reproduce this pattern with high accuracy. Atmospheric variability related to atmospheric wave activity is much more expressed at the intraseasonal rather than the interannual time-scale. Over the last 40 years, reanalyses reveal a northward shift of the jet stream and a weakening of intraseasonal weather variability related to synoptic-scale and planetary wave activity. This pertains to the winter and summer seasons, especially over central Europe, and correlates with changes in the North Atlantic Oscillation as well as regional temperature and precipitation. A very similar phenomenon is found in a climate model simulation with business-as-usual scenario, suggesting an anthropogenic trigger in the weakening of intraseasonal weather variability in the midlatitudes.}, language = {en} } @article{TrappeBuedelMeisteretal.2022, author = {Trappe, Julian and B{\"u}del, Christian and Meister, Julia and Baumhauer, Roland}, title = {Combining geophysical and geomorphological data to reconstruct the development of relief of a medieval castle site in the Spessart low mountain range, Germany}, series = {Earth Surface Processes and Landforms}, volume = {47}, journal = {Earth Surface Processes and Landforms}, number = {1}, doi = {10.1002/esp.5242}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257433}, pages = {228-241}, year = {2022}, abstract = {Within the Spessart low mountain range in central Germany, numerous castle ruins of the 13th century ce exist. Their construction and destruction were often determined by the struggle for political and economic supremacy in the region and for control over the Spessart's natural resources. Wahlmich Castle is located in a relatively uncommon strategic and geomorphological position, characterized by a fairly remote position and atypical rough relief. In order to reconstruct the local relief development and possible human impact, a multi-method approach was applied combining two-dimensional geoelectrical measurements, geomorphological mapping and stratigraphic-sedimentological investigations. This provides new insights into the influence of landscape characteristics on choices of castle locations. The combined geoelectrical, geomorphological and stratigraphic-sedimentological data show that the rough relief is of natural origin and influenced by regional faulting, which triggered sliding and slumping as well as weathering and dissection of the surface deposits. The rough relief and the lithology permitted intensive land use and building activities. However, the location of the castle offered access to and possibly control over important medieval traffic routes and also represented certain ownership claims in the Aschaff River valley. The economic situation combined with rivalry between different elites led to the castle being built in a geomorphological challenging and strategically less valuable location. Focusing on castles located in rare and challenging geomorphological positions may therefore lead to a better understanding of castle siting in the future.}, language = {en} } @article{GeyerPaisWotte2020, author = {Geyer, Gerd and Pais, Miguel Caldeira and Wotte, Thomas}, title = {Unexpectedly curved spines in a Cambrian trilobite: considerations on the spinosity in Kingaspidoides spinirecurvatus sp. nov. from the Anti-Atlas, Morocco, and related Cambrian ellipsocephaloids}, series = {PalZ}, volume = {94}, journal = {PalZ}, issn = {0031-0220}, doi = {10.1007/s12542-020-00514-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231873}, pages = {645-660}, year = {2020}, abstract = {The new ellipsocephaloid trilobite species Kingaspidoides spinirecurvatus has a spectacular morphology because of a unique set of two long and anteriorly recurved spines on the occipital ring and the axial ring of thoracic segment 8. Together with the long genal spines this whimsical dorsally directed spine arrangement is thought to act as a non-standard protective device against predators. This is illustrated by the body posture during different stages of enrolment, contrasting with the more sophisticated spinosities seen in later trilobites, which are discussed in brief. Kingaspidoides spinirecurvatus from the lower-middle Cambrian boundary interval of the eastern Anti-Atlas in Morocco has been known for about two decades, with specimens handled as precious objects on the fossil market. Similar, but far less spectacular, spine arrangements on the thoracic axial rings are known from other ellipsocephaloid trilobites from the Anti-Atlas of Morocco and the Franconian Forest region of Germany. This suggests that an experimental phase of spine development took place within the Kingaspi-doides clade during the early-middle Cambrian boundary interval.}, language = {en} } @article{Ibebuchi2021, author = {Ibebuchi, Chibuike Chiedozie}, title = {On the Relationship between Circulation Patterns, the Southern Annular Mode, and Rainfall Variability in Western Cape}, series = {Atmosphere}, volume = {12}, journal = {Atmosphere}, number = {6}, issn = {2073-4433}, doi = {10.3390/atmos12060753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241018}, year = {2021}, abstract = {This study investigates circulation types (CTs) in Africa, south of the equator, that are related to wet and dry conditions in the Western Cape, the statistical relationship between the selected CTs and the Southern Annular Mode (SAM), and changes in the frequency of occurrence of the CTs related to the SAM under the ssp585 scenario. Obliquely rotated principal component analysis applied to sea level pressure (SLP) was used to classify CTs in Africa, south of the equator. Three CTs were found to have a high probability of being associated with wet days in the Western Cape, and four CTs were equally found to have a high probability of being associated with dry days in the Western Cape. Generally, the dry/wet CTs feature the southward/northward track of the mid-latitude cyclone, adjacent to South Africa; anti-cyclonic/cyclonic relative vorticity, and poleward/equatorward track of westerlies, south of South Africa. One of the selected wet CTs was significantly related to variations of the SAM. Years with an above-average SAM index correlated with the below-average frequency of occurrences of the wet CT. The results suggest that through the dynamics of the CT, the SAM might control the rainfall variability of the Western Cape. Under the ssp585 scenario, the analyzed climate models indicated a possible decrease in the frequency of occurrence of the aforementioned wet CT associated with cyclonic activity in the mid-latitudes, and an increase in the frequency of the occurrence of CT associated with enhanced SLP at mid-latitudes.}, language = {en} } @article{HoehnFrimmelDebailleetal.2021, author = {H{\"o}hn, Stefan and Frimmel, Hartwig E. and Debaille, Vinciane and Price, Westley}, title = {Pre-Klondikean oxidation prepared the ground for Broken Hill-type mineralization in South Africa}, series = {Terra Nova}, volume = {33}, journal = {Terra Nova}, number = {2}, doi = {10.1111/ter.12502}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218545}, pages = {168 -- 173}, year = {2021}, abstract = {New Cu isotope data obtained on chalcopyrite from the Black Mountain and the Broken Hill deposits in the medium- to high-grade metamorphic Aggeneys-Gamsberg ore district (South Africa) require a revision of our understanding of the genesis of metamorphic Broken Hill-type massive sulphide deposits. Chalcopyrite from both deposits revealed unusually wide ranges in δ\(^{65}\)Cu (-2.41 to 2.84 per mille NIST 976 standard) in combination with distinctly positive mean values (0.27 and 0.94 per mille, respectively). This is interpreted to reflect derivation from various silicate and oxide precursor minerals in which Cu occurred in higher oxidation states. Together with the observation of a typical supergene base metal distribution within the deposits and their spatial association with an unconformity only meters above the ore horizon, our new data are best explained by supergene oxidation of originally possibly SEDEX deposits prior to metamorphic sulphide formation, between the Okiepian (1,210-1,180 Ma) and Klondikean (1,040-1,020 Ma) orogenic events.}, language = {en} } @article{JobBittlingmaierMayeretal.2021, author = {Job, Hubert and Bittlingmaier, Sarah and Mayer, Marius and von Ruschkowski, Eick and Woltering, Manuel}, title = {Park-People Relationships: The Socioeconomic Monitoring of National Parks in Bavaria, Germany}, series = {Sustainability}, volume = {13}, journal = {Sustainability}, number = {16}, issn = {2071-1050}, doi = {10.3390/su13168984}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245061}, year = {2021}, abstract = {Questions about park-people relationships and the understanding and handling of the conflicts that may result from the creation and management of national parks in the surrounding area are prerequisites for both successful park management and sustainable rural tourism development. This paper analyzes the roles that research may play in relation to park-people relationships in the context of the two oldest German national parks located in Bavaria. The different fields of action of national parks are used to identify the potential for conflict, using detailed case studies from the Bavarian Forest and Berchtesgaden National Parks using quantitative population surveys carried out in 2018. The overall attitude towards both national parks is overwhelmingly positive, with trust towards park administrations and the perceived economic benefits from rural tourism being the attitudes most strongly correlated to the overall level of park-people relationships. Nevertheless, some points of contention still exist, like the ecological integrity approach towards strict nature conservation and related landscape changes (e.g., deadwood cover). A comparison over time shows in both cases that the spatial proximity to the protected area negatively influences people's attitudes towards the parks, but less so than in the past. Recommendations for national park management include communicating proactively and with greater transparency with locals and decision-makers, to identify conflicts earlier and, where possible, to eliminate them. Furthermore, developing a standardized method to monitor park-people relationships in Germany is a must and would benefit integrated approaches in research and management based on conservation social science.}, language = {en} } @article{PhilippDietzBucheltetal.2021, author = {Philipp, Marius and Dietz, Andreas and Buchelt, Sebastian and Kuenzer, Claudia}, title = {Trends in satellite earth observation for permafrost related analyses — A review}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {6}, doi = {10.3390/rs13061217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234198}, year = {2021}, abstract = {Climate change and associated Arctic amplification cause a degradation of permafrost which in turn has major implications for the environment. The potential turnover of frozen ground from a carbon sink to a carbon source, eroding coastlines, landslides, amplified surface deformation and endangerment of human infrastructure are some of the consequences connected with thawing permafrost. Satellite remote sensing is hereby a powerful tool to identify and monitor these features and processes on a spatially explicit, cheap, operational, long-term basis and up to circum-Arctic scale. By filtering after a selection of relevant keywords, a total of 325 articles from 30 international journals published during the last two decades were analyzed based on study location, spatio- temporal resolution of applied remote sensing data, platform, sensor combination and studied environmental focus for a comprehensive overview of past achievements, current efforts, together with future challenges and opportunities. The temporal development of publication frequency, utilized platforms/sensors and the addressed environmental topic is thereby highlighted. The total number of publications more than doubled since 2015. Distinct geographical study hot spots were revealed, while at the same time large portions of the continuous permafrost zone are still only sparsely covered by satellite remote sensing investigations. Moreover, studies related to Arctic greenhouse gas emissions in the context of permafrost degradation appear heavily underrepresented. New tools (e.g., Google Earth Engine (GEE)), methodologies (e.g., deep learning or data fusion etc.)and satellite data (e.g., the Methane Remote Sensing LiDAR Mission (Merlin) and the Sentinel-fleet)will thereby enable future studies to further investigate the distribution of permafrost, its thermal state and its implications on the environment such as thermokarst features and greenhouse gas emission rates on increasingly larger spatial and temporal scales.}, language = {en} } @article{Hardaker2022, author = {Hardaker, Sina}, title = {More Than Infrastructure Providers - Digital Platforms' Role and Power in Retail Digitalisation in Germany}, series = {Tijdschrift voor Economische en Sociale Geografie}, volume = {113}, journal = {Tijdschrift voor Economische en Sociale Geografie}, number = {3}, doi = {10.1111/tesg.12511}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287297}, pages = {310 -- 328}, year = {2022}, abstract = {Digital platforms, such as Amazon, represent the major beneficiaries of the Covid-19 crisis. This study examines the role of digital platforms and their engagement in digitalisation initiatives targeting (small) brick-and-mortar retailers in Germany, thereby contributing to a better understanding of how digital platforms augment, substitute or reorganise physical retail spaces. This study applies a mixed-method approach based on qualitative interviews, participant observation as well as media analysis. First, the study illustrates the controversial role of digital platforms by positioning themselves as supporting partners of the (offline) retailers, while simultaneously shifting power towards the platforms themselves. Second, digital platforms have established themselves not only as infrastructure providers but also as actors within these infrastructures, framing digital as well as physical retail spaces, inter alia due to their role as publicly legitimised retail advisers. Third, while institutions want to help retailers to survive, they simultaneously enhance retailers' dependency on digital platforms.}, language = {en} } @phdthesis{Keupp2024, author = {Keupp, Luzia Esther}, title = {Hochaufgel{\"o}ste Erfassung zuk{\"u}nftiger Klimarisiken f{\"u}r Land- und Forstwirtschaft in Unterfranken}, doi = {10.25972/OPUS-34735}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-347350}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Das Klima und seine Ver{\"a}nderungen wirken sich direkt auf die Land- und Forstwirtschaft aus. Daher ist die Untersuchung der zuk{\"u}nftigen Klimarisiken f{\"u}r diese Sektoren von hoher Relevanz. Dies ist auch und vor allem f{\"u}r den schon heute weitr{\"a}umig trockheitsgepr{\"a}gten und vom Klimawandel besonders betroffenen nordwestbayerischen Regierungsbezirk Unterfranken der Fall, dessen Gebiet zu {\"u}ber 80 \% land- oder forstwirtschaftlich genutzt wird. Zur Untersuchung der Zukunft in hoher r{\"a}umlicher Aufl{\"o}sung werden Projektionen von regionalen Klimamodellen genutzt. Da diese jedoch Defizite in der Repr{\"a}sentation des beobachteten Klimas der Vergangenheit aufweisen, sollte vor der weiteren Verwendung eine Anpassung der Daten erfolgen. Dies geschieht in der vorliegenden Arbeit am Beispiel des regionalen Klimamodells REMO im Bezug auf klimatische Kennwerte f{\"u}r Trockenheit, Starkniederschlag, Hitze sowie (Sp{\"a}t-)Frost, die alle eine hohe land- und forstwirtschaftliche Bedeutung besitzen. Die Datenanpassung erfolgt durch zwei verschiedene Ans{\"a}tze. Zum Einen wird eine Biaskorrektur der aus Globalmodell-angetriebenen REMO-Daten berechneten Indizes durch additive und multiplikative Linearskalierung sowie empirische und parametrische Verteilungsanpassung durchgef{\"u}hrt. Zum Anderen wird ein exploratives Verfahren auf Basis von Model Output Statistics angewandt: Lokale und großr{\"a}umige atmosph{\"a}rische Variablen von REMO mit Reanalyseantrieb, die eine zeitliche Korrespondenz zu den Beobachtungen aufweisen, dienen als Pr{\"a}diktoren f{\"u}r die Aufstellung von Transferfunktionen zur Simulation der Indizes. Diese Transferfunktionen werden sowohl mithilfe Multipler Linearer Regression als auch mit verschiedenen Generalisierten Linearen Modellen konstruiert. Sie werden anschließend genutzt, um Analysen auf Basis von biaskorrigierten Globalmodell-angetriebenen REMO-Pr{\"a}diktoren durchzuf{\"u}hren. Sowohl f{\"u}r die Biaskorrektur als auch die Model Output Statistics wird eine Kreuzvalidierung durchgef{\"u}hrt, um die Ergebnisse unabh{\"a}ngig vom jeweiligen Trainingszeitraum zu untersuchen und die jeweils besten Varianten zu finden. Werden beide Verfahren mit ihren Unterkategorien f{\"u}r den gesamten historischen Modellzeitraum verglichen, so weist f{\"u}r alle Monat-Kennwert-Kombinationen eine der beiden Verteilungskorrekturen die besten Ergebnisse auf. Die Zukunftsprojektionen unter Verwendung der jeweils erfolgreichsten Methode zeigen im regionalen Durchschnitt f{\"u}r das 21. Jahrhundert negative Trends der (Sp{\"a}t-)Frost- und Eis- sowie positive Trends der Hitzetageh{\"a}ufigkeit. Winterliche Starkregenereignisse nehmen hinsichtlich ihrer Anzahl zu, im Sommer verst{\"a}rkt sich die Trockenheit. Die Hinzunahme zwei weiterer regionaler Klimamodelle best{\"a}tigt die allgemeinen Zukunftstrends, jedoch ergeben sich beim Sp{\"a}tfrost Widerspr{\"u}che, wenn dieser hinsichtlich der thermisch abgegrenzten Vegetationsperiode definiert wird. Zus{\"a}tzlich werden die Model Output Statistics auf gleiche Weise mit bodennahen Pr{\"a}diktoren zur Simulation von Ertr{\"a}gen aus Acker- und Weinbau wiederholt. Die G{\"u}te kann aufgrund mangelnder Beobachtungsdatenl{\"a}nge nur anhand der Reanalyse-angetriebenen REMO-Daten abgesch{\"a}tzt werden, ist hierbei jedoch deutlich besser als im Bezug auf die Kennwertsimulation. Die Zukunftsprojektionen von REMO sowie drei weiterer Regionalmodelle zeigen im Mittel {\"u}ber alle Landkreise Unterfrankens steigende Winter- sowie sinkende Sommerfeldfruchtertr{\"a}ge. Hinsichtlich der Frankenweinertr{\"a}ge widersprechen sich die Ergebnisse der drei Klassen Weiß-, Rot- und Gesamtwein insofern, als dass REMO und ein weiteres Modell negative Weiß- und Rotweinertragstrends, jedoch positive Gesamtweinertragstrends simulieren. Die zwei anderen verwendeten Modelle f{\"u}hren durch positive Trendvorzeichen f{\"u}r den Weißwein zu insgesamt koh{\"a}renten Ergebnissen. Die Resultate im Bezug auf die land- und forstwirtschaftlich relevanten klimatischen Kennwerte bedeuten, dass Anpassungsmaßnahmen gegen{\"u}ber Hitze sowie im Speziellen gegen{\"u}ber Trockenheit in Zukunft im ohnehin trockenheitsgepr{\"a}gten Unterfranken an Bedeutung gewinnen werden. Auch die unsicheren Projektionen im Bezug auf die Sp{\"a}tfrostgefahr m{\"u}ssen im Blick behalten werden. Die Trends der Feldfruchtertr{\"a}ge deuten in die gleiche Richtung, da Sommergetreide eine h{\"o}here Trockenheitsanf{\"a}lligkeit besitzen. Die unklaren Ergebnisse der Weinertr{\"a}ge hingegen lassen keine eindeutigen Schl{\"u}sse zu. Der starke anthropogene Einfluss auf die Erntemengen sowie die großen Unterschiede der Rebsorten hinsichtlich der klimatischen Eignung k{\"o}nnten ein Grund hierf{\"u}r sein.}, subject = {Klima}, language = {de} } @phdthesis{MeyerHeintze2024, author = {Meyer-Heintze, Simon}, title = {Holocene pedosedimentary sequences as archives for paleoenvironmental reconstructions}, doi = {10.25972/OPUS-34909}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349098}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Human-environment interaction has significantly altered the pedosphere since the Neolithic, if not since the early Holocene. In the course of clearance, agriculture, and (wood) pasture soils have been deeply modified or eroded. These types of land use practices but above all forms of sedentariness spread alongside floodplains and trajectories were oriented towards loess covered areas where fertile soils could develop. Besides this, also peripheral / marginal regions were settled due to population pressure or other factors. Evidence for landscape history and development can be found within archeological sites but also overbank deposits and anthropogenic slope deposits document vast transformation processes. The presented investigations took place within the natural region of the Windsheimer Bucht which is locat-ed in the district of Middle Franconia in northern Bavaria, Germany. In this area, Holocene soils predomi-nantly developed within mudstones of the Middle to Upper Triassic. The soil texture is extremely clay-rich which renders the soils problematic with regard to cultivation management. As a peculiarity, the gypsum underlying the mudstones is prone to karstification processes and resulting proceeding geomorphological processes shape the surface of the landscape. In the course of gypsum mining the karst forms are being exposed and archeological findings are being documented. The latter mainly date back to a span from the Neolithic to the Iron Age, but partly are of Younger Paleolithic origin. Especially subsidence sinkholes are capable of storing pedosediments of several meters in thickness. Despite the high clay content and connect-ed pedoturbation processes, the excavated sequences are stratigraphically and pedologically well-differentiated. The archives occur in the context of settlement structures such as pits and postholes; there-fore, they developed at the interface of natural developments and human impact on their surroundings. The main original research questions that were formulated within the general frame of a project funded by the Deutsche Forschungsgemeinschaft (DFG-projects Te295/15-1 and -2 and Fa390/9-1 and -2) focused on the attractors of the peripheral region for early settlers, the pedological conditions before land use, but also the impact of humans on soils and karst dynamics through time. In the course of the in hand study, the pedosedimentary archives have been approached with a multimethodological toolset which consisted of field analyses, soil morphological analyses from micro- to macro-scale, spectrophotometric (color), (laser) granulometric, and (iron-) pedochemical analyses. The numerical chronological frame was spanned by radiocarbon dating of different organic remains and bulk material if soil organic carbon was supposed-ly high. The result is a multi-dimensional data set that consists of analyses on different spatial scales but also on different levels of measurement. Thus, qualitative, semi-quantitative, and quantitative data consti-tute the basis for discussion. While the grain-size analyses underline the general sedimentological differen-tiation of the records and further affirm the high clay content within the pedosedimentary layers, iron-pedochemical analyses indicate an interplay between oxidation of iron and its chemical reduction. This is also manifested within the spectrophotometric record. Especially the versatile pedogenic characteristics that have been identified by field analyses are confirmed within the thin sections and, by considering all different analyses, the polygenic character of the pedosediments is emphasized. After stressing the general pedological specificities among the different investigated sites within the re-search area, for the collected data, the research further branches into the subjects of general notions on pedogenesis in clayey material and the classification of the respective pedosediments according to paleo-pedological concepts but also recent schemes. Concerning the latter, it becomes evident that established principles cannot be applied to the studied pedosediments without major adaptions. This underlines the specific characteristics of the material. The basis for further interpretations is the evaluation of the multi-level data set for the single records with regard to profile development and pedogenic processes. Hereby, the main drivers of pedogenesis could be identified, which are karst dynamics, land use, and subtle changes in parent material due to the admixture of slope deposits that contain allochthonous eolian material. The latter underlines the importance of Pleis-tocene preconditioning for understanding Holocene landscape dynamics. At the same time, a differentia-tion between the mentioned factors and Holocene climate development is difficult. The following compila-tion of record and localities within the given time frame unveils synchronous as well as asynchronous de-velopments; however, a clear connection between phases of Holocene climate and pedogenesis within the pedosediments cannot be established. Instead, it becomes evident that site specific factors or those that act on the scale of the micro-catchment of the investigated records are decisive. The aforementioned main topics of the project are also considered in the in hand study from a soil-geographic perspective: it is possible that before land use, there was an insular or thin cover by loess sedi-ments or at least upper layers (according to the concept of periglacial cover beds) which constituted the parent material for Holocene soil formation. The according soils, which were superior for agricultural purposes compared to those developed on the autochthonous mudstones, were eroded which exposed the clayey Upper to Middle Triassic beds. Erosion was aggravated due to the impermeable mudstones which enhanced overland flow and interflow within the overlying silty (loessic) material. This is further support-ed by the notions on erodibility of the clayey material that are derived from the comparison of conven-tional and laser granulometric analyses: probably, the clayey pedosediments are capable of forming micro-aggregates that can easily be eroded during heavy rainfall events despite the general consent that material with heavy texture should be rather resistant. The study presents a comprehensive view on clay-rich pedosediments and the complex effects of human-environment interaction on pedogenic as well as sedimentary processes through time that have not been investigated in such detail before. In this context, the multi-level soil morphological analyses and their necessity for a genetic interpretation with regard to the influence of natural versus anthropogenic factors need to be emphasized. Based on quantitative laboratory analytical data only, a respective differentiation would not be possible. This underlines the importance of the chosen soil-geographic multi-methodological approach for answering questions with regard to human-environment interaction but also geoarcheology in general.}, subject = {Geoarch{\"a}ologie}, language = {en} } @article{SchaeferFaethKneiseletal.2023, author = {Sch{\"a}fer, Christian and F{\"a}th, Julian and Kneisel, Christof and Baumhauer, Roland and Ullmann, Tobias}, title = {Multidimensional hydrological modeling of a forested catchment in a German low mountain range using a modular runoff and water balance model}, series = {Frontiers in Forests and Global Change}, volume = {6}, journal = {Frontiers in Forests and Global Change}, doi = {10.3389/ffgc.2023.1186304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357358}, year = {2023}, abstract = {Sufficient plant-available water is one of the most important requirements for vital, stable, and well-growing forest stands. In the face of climate change, there are various approaches to derive recommendations considering tree species selection based on plant-available water provided by measurements or simulations. Owing to the small-parcel management of Central European forests as well as small-spatial variation of soil and stand properties, in situ data collection for individual forest stands of large areas is not feasible, considering time and cost effort. This problem can be addressed using physically based modeling, aiming to numerically simulate the water balance. In this study, we parameterized, calibrated, and verified the hydrological multidimensional WaSiM-ETH model to assess the water balance at a spatial resolution of 30 m in a German forested catchment area (136.4 km2) for the period 2000-2021 using selected in situ data, remote sensing products, and total runoff. Based on the model output, drought-sensitive parameters, such as the difference between potential and effective stand transpiration (Tdiff) and the water balance, were deduced from the model, analyzed, and evaluated. Results show that the modeled evapotranspiration (ET) correlated significantly (R2 = 0.80) with the estimated ET using MODIS data (MOD16A2GFv006). Compared with observed daily, monthly, and annual runoff data, the model shows a good performance (R2: 0.70|0.77|0.73; Kling-Gupta efficiency: 0.59|0.62|0.83; volumetric efficiency: 0.52|0.60|0.83). The comparison with in situ data from a forest monitoring plot, established at the end of 2020, indicated good agreement between observed and simulated interception and soil water content. According to our results, WaSiM-ETH is a potential supplement for forest management, owing to its multidimensionality and the ability to model soil water balance for large areas at comparable high spatial resolution. The outputs offer, compared to non-distributed models (like LWF-Brook90), spatial differentiability, which is important for small-scale parceled forests, regarding stand structure and soil properties. Due to the spatial component offered, additional verification possibilities are feasible allowing a reliable and profound verification of the model and its parameterization.}, language = {en} } @article{Ibebuchi2021, author = {Ibebuchi, Chibuike Chiedozie}, title = {Revisiting the 1992 severe drought episode in South Africa: the role of El Ni{\~n}o in the anomalies of atmospheric circulation types in Africa south of the equator}, series = {Theoretical and Applied Climatology}, volume = {146}, journal = {Theoretical and Applied Climatology}, number = {1-2}, issn = {1434-4483}, doi = {10.1007/s00704-021-03741-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268569}, pages = {723-740}, year = {2021}, abstract = {During strong El Ni{\~n}o events, below-average rainfall is expected in large parts of southern Africa. The 1992 El Ni{\~n}o season was associated with one of the worst drought episodes in large parts of South Africa. Using reanalysis data set from NCEP-NCAR, this study examined circulation types (CTs) in Africa south of the equator that are statistically related to the El Ni{\~n}o signal in the southwest Indian Ocean and the implication of this relationship during the 1992 drought episode in South Africa. A statistically significant correlation was found between the above-average Nino 3.4 index and a CT that features widespread cyclonic activity in the tropical southwest Indian Ocean, coupled with a weaker state of the south Indian Ocean high-pressure. During the analysis period, it was found that the El Ni{\~n}o signal enhanced the amplitude of the aforementioned CT. The impacts of the El Ni{\~n}o signal on CTs in southern Africa, which could have contributed to the 1992 severe drought episode in South Africa, were reflected in (i) robust decrease in the frequency of occurrence of the austral summer climatology pattern of atmospheric circulation that favors southeasterly moisture fluxes, advected by the South Indian Ocean high-pressure; (ii) modulation of easterly moisture fluxes, advected by the South Atlantic Ocean high-pressure, ridging south of South Africa; (iii) and enhancement of the amplitude of CTs that both enhances subsidence over South Africa, and associated with the dominance of westerlies across the Agulhas current. Under the ssp585 scenario, the analyzed climate models suggested that the impact of radiative heating on the CT significantly related to El Ni{\~n}o might result in an anomalous increase in surface pressure at the eastern parts of South Africa.}, language = {en} } @article{KacicKuenzer2022, author = {Kacic, Patrick and Kuenzer, Claudia}, title = {Forest biodiversity monitoring based on remotely sensed spectral diversity — a review}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {21}, issn = {2072-4292}, doi = {10.3390/rs14215363}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290535}, year = {2022}, abstract = {Forests are essential for global environmental well-being because of their rich provision of ecosystem services and regulating factors. Global forests are under increasing pressure from climate change, resource extraction, and anthropologically-driven disturbances. The results are dramatic losses of habitats accompanied with the reduction of species diversity. There is the urgent need for forest biodiversity monitoring comprising analysis on α, β, and γ scale to identify hotspots of biodiversity. Remote sensing enables large-scale monitoring at multiple spatial and temporal resolutions. Concepts of remotely sensed spectral diversity have been identified as promising methodologies for the consistent and multi-temporal analysis of forest biodiversity. This review provides a first time focus on the three spectral diversity concepts "vegetation indices", "spectral information content", and "spectral species" for forest biodiversity monitoring based on airborne and spaceborne remote sensing. In addition, the reviewed articles are analyzed regarding the spatiotemporal distribution, remote sensing sensors, temporal scales and thematic foci. We identify multispectral sensors as primary data source which underlines the focus on optical diversity as a proxy for forest biodiversity. Moreover, there is a general conceptual focus on the analysis of spectral information content. In recent years, the spectral species concept has raised attention and has been applied to Sentinel-2 and MODIS data for the analysis from local spectral species to global spectral communities. Novel remote sensing processing capacities and the provision of complementary remote sensing data sets offer great potentials for large-scale biodiversity monitoring in the future.}, language = {en} } @article{DhillonDahmsKuebertFlocketal.2022, author = {Dhillon, Maninder Singh and Dahms, Thorsten and K{\"u}bert-Flock, Carina and Steffan-Dewenter, Ingolf and Zhang, Jie and Ullmann, Tobias}, title = {Spatiotemporal Fusion Modelling Using STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {3}, issn = {2072-4292}, doi = {10.3390/rs14030677}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323471}, year = {2022}, abstract = {The increasing availability and variety of global satellite products provide a new level of data with different spatial, temporal, and spectral resolutions; however, identifying the most suited resolution for a specific application consumes increasingly more time and computation effort. The region's cloud coverage additionally influences the choice of the best trade-off between spatial and temporal resolution, and different pixel sizes of remote sensing (RS) data may hinder the accurate monitoring of different land cover (LC) classes such as agriculture, forest, grassland, water, urban, and natural-seminatural. To investigate the importance of RS data for these LC classes, the present study fuses NDVIs of two high spatial resolution data (high pair) (Landsat (30 m, 16 days; L) and Sentinel-2 (10 m, 5-6 days; S), with four low spatial resolution data (low pair) (MOD13Q1 (250 m, 16 days), MCD43A4 (500 m, one day), MOD09GQ (250 m, one-day), and MOD09Q1 (250 m, eight day)) using the spatial and temporal adaptive reflectance fusion model (STARFM), which fills regions' cloud or shadow gaps without losing spatial information. These eight synthetic NDVI STARFM products (2: high pair multiply 4: low pair) offer a spatial resolution of 10 or 30 m and temporal resolution of 1, 8, or 16 days for the entire state of Bavaria (Germany) in 2019. Due to their higher revisit frequency and more cloud and shadow-free scenes (S = 13, L = 9), Sentinel-2 (overall R\(^2\) = 0.71, and RMSE = 0.11) synthetic NDVI products provide more accurate results than Landsat (overall R\(^2\) = 0.61, and RMSE = 0.13). Likewise, for the agriculture class, synthetic products obtained using Sentinel-2 resulted in higher accuracy than Landsat except for L-MOD13Q1 (R\(^2\) = 0.62, RMSE = 0.11), resulting in similar accuracy preciseness as S-MOD13Q1 (R\(^2\) = 0.68, RMSE = 0.13). Similarly, comparing L-MOD13Q1 (R\(^2\) = 0.60, RMSE = 0.05) and S-MOD13Q1 (R\(^2\) = 0.52, RMSE = 0.09) for the forest class, the former resulted in higher accuracy and precision than the latter. Conclusively, both L-MOD13Q1 and S-MOD13Q1 are suitable for agricultural and forest monitoring; however, the spatial resolution of 30 m and low storage capacity makes L-MOD13Q1 more prominent and faster than that of S-MOD13Q1 with the 10-m spatial resolution.}, language = {en} } @article{GhasemiLatifiPourhashemi2022, author = {Ghasemi, Marziye and Latifi, Hooman and Pourhashemi, Mehdi}, title = {A novel method for detecting and delineating coppice trees in UAV images to monitor tree decline}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {23}, issn = {2072-4292}, doi = {10.3390/rs14235910}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297258}, year = {2022}, abstract = {Monitoring tree decline in arid and semi-arid zones requires methods that can provide up-to-date and accurate information on the health status of the trees at single-tree and sample plot levels. Unmanned Aerial Vehicles (UAVs) are considered as cost-effective and efficient tools to study tree structure and health at small scale, on which detecting and delineating tree crowns is the first step to extracting varied subsequent information. However, one of the major challenges in broadleaved tree cover is still detecting and delineating tree crowns in images. The frequent dominance of coppice structure in degraded semi-arid vegetation exacerbates this problem. Here, we present a new method based on edge detection for delineating tree crowns based on the features of oak trees in semi-arid coppice structures. The decline severity in individual stands can be analyzed by extracting relevant information such as texture from the crown area. Although the method presented in this study is not fully automated, it returned high performances including an F-score = 0.91. Associating the texture indices calculated in the canopy area with the phenotypic decline index suggested higher correlations of the GLCM texture indices with tree decline at the tree level and hence a high potential to be used for subsequent remote-sensing-assisted tree decline studies.}, language = {en} } @article{OuedraogoHackmanThieletal.2023, author = {Ouedraogo, Valentin and Hackman, Kwame Oppong and Thiel, Michael and Dukiya, Jaiye}, title = {Intensity analysis for urban Land Use/Land Cover dynamics characterization of Ouagadougou and Bobo-Dioulasso in Burkina Faso}, series = {Land}, volume = {12}, journal = {Land}, number = {5}, issn = {2073-445X}, doi = {10.3390/land12051063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319397}, year = {2023}, abstract = {Ouagadougou and Bobo-Dioulasso remain the two major urban centers in Burkina Faso with an increasing trend in human footprint. The research aimed at analyzing the Land Use/Land Cover (LULC) dynamics in the two cities between 2003 and 2021 using intensity analysis, which decomposes LULC changes into interval, category and transition levels. The satellite data used for this research were composed of surface reflectance imagery from Landsat 5, Landsat 7 and Landsat 8 acquired from the Google Earth Engine Data Catalogue. The Random Forest, Support Vector Machine and Gradient Tree Boost algorithms were employed to run supervised image classifications for four selected years including 2003, 2009, 2015 and 2021. The results showed that the landscape is changing in both cities due to rapid urbanization. Ouagadougou experienced more rapid changes than Bobo-Dioulasso, with a maximum annual change intensity of 3.61\% recorded between 2015 and 2021 against 2.22\% in Bobo-Dioulasso for the period 2009-2015. The transition of change was mainly towards built-up areas, which gain targeted bare and agricultural lands in both cities. This situation has led to a 78.12\% increase of built-up surfaces in Ouagadougou, while 42.24\% of agricultural land area was lost. However, in Bobo-Dioulasso, the built class has increased far more by 140.67\%, and the agricultural land areas experienced a gain of 1.38\% compared with the 2003 baseline. The study demonstrates that the human footprint is increasing in both cities making the inhabitants vulnerable to environmental threats such as flooding and the effect of an Urban Heat Island, which is information that could serve as guide for sustainable urban land use planning.}, language = {en} } @article{KleinCoccoUereyenetal.2022, author = {Klein, Igor and Cocco, Arturo and Uereyen, Soner and Mannu, Roberto and Floris, Ignazio and Oppelt, Natascha and Kuenzer, Claudia}, title = {Outbreak of Moroccan locust in Sardinia (Italy): a remote sensing perspective}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {23}, issn = {2072-4292}, doi = {10.3390/rs14236050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297232}, year = {2022}, abstract = {The Moroccan locust has been considered one of the most dangerous agricultural pests in the Mediterranean region. The economic importance of its outbreaks diminished during the second half of the 20th century due to a high degree of agricultural industrialization and other human-caused transformations of its habitat. Nevertheless, in Sardinia (Italy) from 2019 on, a growing invasion of this locust species is ongoing, being the worst in over three decades. Locust swarms destroyed crops and pasture lands of approximately 60,000 ha in 2022. Drought, in combination with increasing uncultivated land, contributed to forming the perfect conditions for a Moroccan locust population upsurge. The specific aim of this paper is the quantification of land cover land use (LCLU) influence with regard to the recent locust outbreak in Sardinia using remote sensing data. In particular, the role of untilled, fallow, or abandoned land in the locust population upsurge is the focus of this case study. To address this objective, LCLU was derived from Sentinel-2A/B Multispectral Instrument (MSI) data between 2017 and 2021 using time-series composites and a random forest (RF) classification model. Coordinates of infested locations, altitude, and locust development stages were collected during field observation campaigns between March and July 2022 and used in this study to assess actual and previous land cover situation of these locations. Findings show that 43\% of detected locust locations were found on untilled, fallow, or uncultivated land and another 23\% within a radius of 100 m to such areas. Furthermore, oviposition and breeding sites are mostly found in sparse vegetation (97\%). This study demonstrates that up-to-date remote sensing data and target-oriented analyses can provide valuable information to contribute to early warning systems and decision support and thus to minimize the risk concerning this agricultural pest. This is of particular interest for all agricultural pests that are strictly related to changing human activities within transformed habitats.}, language = {en} } @phdthesis{Dhillon2023, author = {Dhillon, Maninder Singh}, title = {Potential of Remote Sensing in Modeling Long-Term Crop Yields}, doi = {10.25972/OPUS-32258}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322581}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Accurate crop monitoring in response to climate change at a regional or field scale plays a significant role in developing agricultural policies, improving food security, forecasting, and analysing global trade trends. Climate change is expected to significantly impact agriculture, with shifts in temperature, precipitation patterns, and extreme weather events negatively affecting crop yields, soil fertility, water availability, biodiversity, and crop growing conditions. Remote sensing (RS) can provide valuable information combined with crop growth models (CGMs) for yield assessment by monitoring crop development, detecting crop changes, and assessing the impact of climate change on crop yields. This dissertation aims to investigate the potential of RS data on modelling long-term crop yields of winter wheat (WW) and oil seed rape (OSR) for the Free State of Bavaria (70,550 km2 ), Germany. The first chapter of the dissertation describes the reasons favouring the importance of accurate crop yield predictions for achieving sustainability in agriculture. Chapter second explores the accuracy assessment of the synthetic RS data by fusing NDVIs of two high spatial resolution data (high pair) (Landsat (30 m, 16-days; L) and Sentinel-2 (10 m, 5-6 days; S), with four low spatial resolution data (low pair) (MOD13Q1 (250 m, 16-days), MCD43A4 (500 m, one day), MOD09GQ (250 m, one-day), and MOD09Q1 (250 m, 8-days)) using the spatial and temporal adaptive reflectance fusion model (STARFM), which fills regions' cloud or shadow gaps without losing spatial information. The chapter finds that both L-MOD13Q1 (R2 = 0.62, RMSE = 0.11) and S-MOD13Q1 (R2 = 0.68, RMSE = 0.13) are more suitable for agricultural monitoring than the other synthetic products fused. Chapter third explores the ability of the synthetic spatiotemporal datasets (obtained in chapter 2) to accurately map and monitor crop yields of WW and OSR at a regional scale. The chapter investigates and discusses the optimal spatial (10 m, 30 m, or 250 m), temporal (8 or 16-day) and CGMs (World Food Studies (WOFOST), and the semi-empiric light use efficiency approach (LUE)) for accurate crop yield estimations of both crop types. Chapter third observes that the observations of high temporal resolution (8-day) products of both S-MOD13Q1 and L-MOD13Q1 play a significant role in accurately measuring the yield of WW and OSR. The chapter investigates that the simple light use efficiency (LUE) model (R2 = 0.77 and relative RMSE (RRMSE) = 8.17\%) that required fewer input parameters to simulate crop yield is highly accurate, reliable, and more precise than the complex WOFOST model (R2 = 0.66 and RRMSE = 11.35\%) with higher input parameters. Chapter four researches the relationship of spatiotemporal fusion modelling using STRAFM on crop yield prediction for WW and OSR using the LUE model for Bavaria from 2001 to 2019. The chapter states the high positive correlation coefficient (R) = 0.81 and R = 0.77 between the yearly R2 of synthetic accuracy and modelled yield accuracy for WW and OSR from 2001 to 2019, respectively. The chapter analyses the impact of climate variables on crop yield predictions by observing an increase in R2 (0.79 (WW)/0.86 (OSR)) and a decrease in RMSE (4.51/2.57 dt/ha) when the climate effect is included in the model. The fifth chapter suggests that the coupling of the LUE model to the random forest (RF) model can further reduce the relative root mean square error (RRMSE) from -8\% (WW) and -1.6\% (OSR) and increase the R2 by 14.3\% (for both WW and OSR), compared to results just relying on LUE. The same chapter concludes that satellite-based crop biomass, solar radiation, and temperature are the most influential variables in the yield prediction of both crop types. Chapter six attempts to discuss both pros and cons of RS technology while analysing the impact of land use diversity on crop-modelled biomass of WW and OSR. The chapter finds that the modelled biomass of both crops is positively impacted by land use diversity to the radius of 450 (Shannon Diversity Index ~0.75) and 1050 m (~0.75), respectively. The chapter also discusses the future implications by stating that including some dependent factors (such as the management practices used, soil health, pest management, and pollinators) could improve the relationship of RS-modelled crop yields with biodiversity. Lastly, chapter seven discusses testing the scope of new sensors such as unmanned aerial vehicles, hyperspectral sensors, or Sentinel-1 SAR in RS for achieving accurate crop yield predictions for precision farming. In addition, the chapter highlights the significance of artificial intelligence (AI) or deep learning (DL) in obtaining higher crop yield accuracies.}, subject = {Ernteertrag}, language = {en} } @phdthesis{Dhillon2023, author = {Dhillon, Maninder Singh}, title = {Potential of Remote Sensing in Modeling Long-Term Crop Yields}, doi = {10.25972/OPUS-33052}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-330529}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Accurate crop monitoring in response to climate change at a regional or field scale plays a significant role in developing agricultural policies, improving food security, forecasting, and analysing global trade trends. Climate change is expected to significantly impact agriculture, with shifts in temperature, precipitation patterns, and extreme weather events negatively affecting crop yields, soil fertility, water availability, biodiversity, and crop growing conditions. Remote sensing (RS) can provide valuable information combined with crop growth models (CGMs) for yield assessment by monitoring crop development, detecting crop changes, and assessing the impact of climate change on crop yields. This dissertation aims to investigate the potential of RS data on modelling long-term crop yields of winter wheat (WW) and oil seed rape (OSR) for the Free State of Bavaria (70,550 km2), Germany. The first chapter of the dissertation describes the reasons favouring the importance of accurate crop yield predictions for achieving sustainability in agriculture. Chapter second explores the accuracy assessment of the synthetic RS data by fusing NDVIs of two high spatial resolution data (high pair) (Landsat (30 m, 16-days; L) and Sentinel-2 (10 m, 5-6 days; S), with four low spatial resolution data (low pair) (MOD13Q1 (250 m, 16-days), MCD43A4 (500 m, one day), MOD09GQ (250 m, one-day), and MOD09Q1 (250 m, 8-days)) using the spatial and temporal adaptive reflectance fusion model (STARFM), which fills regions' cloud or shadow gaps without losing spatial information. The chapter finds that both L-MOD13Q1 (R2 = 0.62, RMSE = 0.11) and S-MOD13Q1 (R2 = 0.68, RMSE = 0.13) are more suitable for agricultural monitoring than the other synthetic products fused. Chapter third explores the ability of the synthetic spatiotemporal datasets (obtained in chapter 2) to accurately map and monitor crop yields of WW and OSR at a regional scale. The chapter investigates and discusses the optimal spatial (10 m, 30 m, or 250 m), temporal (8 or 16-day) and CGMs (World Food Studies (WOFOST), and the semi-empiric light use efficiency approach (LUE)) for accurate crop yield estimations of both crop types. Chapter third observes that the observations of high temporal resolution (8-day) products of both S-MOD13Q1 and L-MOD13Q1 play a significant role in accurately measuring the yield of WW and OSR. The chapter investigates that the simple light use efficiency (LUE) model (R2 = 0.77 and relative RMSE (RRMSE) = 8.17\%) that required fewer input parameters to simulate crop yield is highly accurate, reliable, and more precise than the complex WOFOST model (R2 = 0.66 and RRMSE = 11.35\%) with higher input parameters. Chapter four researches the relationship of spatiotemporal fusion modelling using STRAFM on crop yield prediction for WW and OSR using the LUE model for Bavaria from 2001 to 2019. The chapter states the high positive correlation coefficient (R) = 0.81 and R = 0.77 between the yearly R2 of synthetic accuracy and modelled yield accuracy for WW and OSR from 2001 to 2019, respectively. The chapter analyses the impact of climate variables on crop yield predictions by observing an increase in R2 (0.79 (WW)/0.86 (OSR)) and a decrease in RMSE (4.51/2.57 dt/ha) when the climate effect is included in the model. The fifth chapter suggests that the coupling of the LUE model to the random forest (RF) model can further reduce the relative root mean square error (RRMSE) from -8\% (WW) and -1.6\% (OSR) and increase the R2 by 14.3\% (for both WW and OSR), compared to results just relying on LUE. The same chapter concludes that satellite-based crop biomass, solar radiation, and temperature are the most influential variables in the yield prediction of both crop types. Chapter six attempts to discuss both pros and cons of RS technology while analysing the impact of land use diversity on crop-modelled biomass of WW and OSR. The chapter finds that the modelled biomass of both crops is positively impacted by land use diversity to the radius of 450 (Shannon Diversity Index ~0.75) and 1050 m (~0.75), respectively. The chapter also discusses the future implications by stating that including some dependent factors (such as the management practices used, soil health, pest management, and pollinators) could improve the relationship of RS-modelled crop yields with biodiversity. Lastly, chapter seven discusses testing the scope of new sensors such as unmanned aerial vehicles, hyperspectral sensors, or Sentinel-1 SAR in RS for achieving accurate crop yield predictions for precision farming. In addition, the chapter highlights the significance of artificial intelligence (AI) or deep learning (DL) in obtaining higher crop yield accuracies.}, subject = {Ernteertrag}, language = {en} } @article{AnsahAbuKleemannetal.2022, author = {Ansah, Christabel Edena and Abu, Itohan-Osa and Kleemann, Janina and Mahmoud, Mahmoud Ibrahim and Thiel, Michael}, title = {Environmental contamination of a biodiversity hotspot — action needed for nature conservation in the Niger Delta, Nigeria}, series = {Sustainability}, volume = {14}, journal = {Sustainability}, number = {21}, issn = {2071-1050}, doi = {10.3390/su142114256}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297214}, year = {2022}, abstract = {The Niger Delta belongs to the largest swamp and mangrove forests in the world hosting many endemic and endangered species. Therefore, its conservation should be of highest priority. However, the Niger Delta is confronted with overexploitation, deforestation and pollution to a large extent. In particular, oil spills threaten the biodiversity, ecosystem services, and local people. Remote sensing can support the detection of spills and their potential impact when accessibility on site is difficult. We tested different vegetation indices to assess the impact of oil spills on the land cover as well as to detect accumulations (hotspots) of oil spills. We further identified which species, land cover types, and protected areas could be threatened in the Niger Delta due to oil spills. The results showed that the Enhanced Vegetation Index, the Normalized Difference Vegetation Index, and the Soil Adjusted Vegetation Index were more sensitive to the effects of oil spills on different vegetation cover than other tested vegetation indices. Forest cover was the most affected land-cover type and oil spills also occurred in protected areas. Threatened species are inhabiting the Niger Delta Swamp Forest and the Central African Mangroves that were mainly affected by oil spills and, therefore, strong conservation measures are needed even though security issues hamper the monitoring and control.}, language = {en} } @phdthesis{Weigand2024, author = {Weigand, Matthias Johann}, title = {Fernerkundung und maschinelles Lernen zur Erfassung von urbanem Gr{\"u}n - Eine Analyse am Beispiel der Verteilungsgerechtigkeit in Deutschland}, doi = {10.25972/OPUS-34961}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349610}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Gr{\"u}nfl{\"a}chen stellen einen der wichtigsten Umwelteinfl{\"u}sse in der Wohnumwelt der Menschen dar. Einerseits wirken sie sich positiv auf die physische und mentale Gesundheit der Menschen aus, andererseits k{\"o}nnen Gr{\"u}nfl{\"a}chen auch negative Wirkungen anderer Faktoren abmildern, wie beispielsweise die im Laufe des Klimawandels zunehmenden Hitzeereignisse. Dennoch sind Gr{\"u}nfl{\"a}chen nicht f{\"u}r die gesamte Bev{\"o}lkerung gleichermaßen zug{\"a}nglich. Bestehende Forschung im Kontext der Umweltgerechtigkeit (UG) konnte bereits aufzeigen, dass unterschiedliche sozio-{\"o}konomische und demographische Gruppen der deutschen Bev{\"o}lkerung unterschiedlichen Zugriff auf Gr{\"u}nfl{\"a}chen haben. An bestehenden Analysen von Umwelteinfl{\"u}ssen im Kontext der UG wird kritisiert, dass die Auswertung geographischer Daten h{\"a}ufig auf zu stark aggregiertem Level geschieht, wodurch lokal spezifische Expositionen nicht mehr genau abgebildet werden. Dies trifft insbesondere f{\"u}r großfl{\"a}chig angelegte Studien zu. So werden wichtige r{\"a}umliche Informationen verloren. Doch moderne Erdbeobachtungs- und Geodaten sind so detailliert wie nie und Methoden des maschinellen Lernens erm{\"o}glichen die effiziente Verarbeitung zur Ableitung h{\"o}herwertiger Informationen. Das {\"u}bergeordnete Ziel dieser Arbeit besteht darin, am Beispiel von Gr{\"u}nfl{\"a}chen in Deutschland methodische Schritte der systematischen Umwandlung umfassender Geodaten in relevante Geoinformationen f{\"u}r die großfl{\"a}chige und hochaufgel{\"o}ste Analyse von Umwelteigenschaften aufzuzeigen und durchzuf{\"u}hren. An der Schnittstelle der Disziplinen Fernerkundung, Geoinformatik, Sozialgeographie und Umweltgerechtigkeitsforschung sollen Potenziale moderner Methoden f{\"u}r die Verbesserung der r{\"a}umlichen und semantischen Aufl{\"o}sung von Geoinformationen erforscht werden. Hierf{\"u}r werden Methoden des maschinellen Lernens eingesetzt, um Landbedeckung und -nutzung auf nationaler Ebene zu erfassen. Diese Entwicklungen sollen dazu beitragen bestehende Datenl{\"u}cken zu schließen und Aufschluss {\"u}ber die Verteilungsgerechtigkeit von Gr{\"u}nfl{\"a}chen zu bieten. Diese Dissertation gliedert sich in drei konzeptionelle Teilschritte. Im ersten Studienteil werden Erdbeobachtungsdaten der Sentinel-2 Satelliten zur deutschlandweiten Klassifikation von Landbedeckungsinformationen verwendet. In Kombination mit punktuellen Referenzdaten der europaweiten Erfassung f{\"u}r Landbedeckungs- und Landnutzungsinformationen des Land Use and Coverage Area Frame Survey (LUCAS) wird ein maschinelles Lernverfahren trainiert. In diesem Kontext werden verschiedene Vorverarbeitungsschritte der LUCAS-Daten und deren Einfluss auf die Klassifikationsgenauigkeit beleuchtet. Das Klassifikationsverfahren ist in der Lage Landbedeckungsinformationen auch in komplexen urbanen Gebieten mit hoher Genauigkeit abzuleiten. Ein Ergebnis des Studienteils ist eine deutschlandweite Landbedeckungsklassifikation mit einer Gesamtgenauigkeit von 93,07 \%, welche im weiteren Verlauf der Arbeit genutzt wird, um gr{\"u}ne Landbedeckung (GLC) r{\"a}umlich zu quantifizieren. Im zweiten konzeptionellen Teil der Arbeit steht die differenzierte Betrachtung von Gr{\"u}nfl{\"a}chen anhand des Beispiels {\"o}ffentlicher Gr{\"u}nfl{\"a}chen (PGS), die h{\"a}ufig Gegenstand der UG-Forschung ist, im Vordergrund. Doch eine h{\"a}ufig verwendete Quelle f{\"u}r r{\"a}umliche Daten zu {\"o}ffentlichen Gr{\"u}nfl{\"a}chen, der European Urban Atlas (EUA), wird bisher nicht fl{\"a}chendeckend f{\"u}r Deutschland erhoben. Dieser Studienteil verfolgt einen datengetriebenen Ansatz, die Verf{\"u}gbarkeit von {\"o}ffentlichem Gr{\"u}n auf der r{\"a}umlichen Ebene von Nachbarschaften f{\"u}r ganz Deutschland zu ermitteln. Hierf{\"u}r dienen bereits vom EUA erfasste Gebiete als Referenz. Mithilfe einer Kombination von Erdbeobachtungsdaten und Informationen aus dem OpenStreetMap-Projekt wird ein Deep Learning -basiertes Fusionsnetzwerk erstellt, welche die verf{\"u}gbare Fl{\"a}che von {\"o}ffentlichem Gr{\"u}n quantifiziert. Das Ergebnis dieses Schrittes ist ein Modell, welches genutzt wird, um die Menge {\"o}ffentlicher Gr{\"u}nfl{\"a}chen in der Nachbarschaft zu sch{\"a}tzen (𝑅 2 = 0.952). Der dritte Studienteil greift die Ergebnisse der ersten beiden Studienteile auf und betrachtet die Verteilung von Gr{\"u}nfl{\"a}chen in Deutschland unter Hinzunahme von georeferenzierten Bev{\"o}lkerungsdaten. Diese exemplarische Analyse unterscheidet dabei Gr{\"u}nfl{\"a}chen nach zwei Typen: GLC und PGS. Zun{\"a}chst wird mithilfe deskriptiver Statistiken die generelle Gr{\"u}nfl{\"a}chenverteilung in der Bev{\"o}lkerung Deutschlands beleuchtet. Daraufhin wird die Verteilungsgerechtigkeit anhand g{\"a}ngiger Gerechtigkeitsmetriken bestimmt. Abschließend werden die Zusammenh{\"a}nge zwischen der demographischen Komposition der Nachbarschaft und der verf{\"u}gbaren Menge von Gr{\"u}nfl{\"a}chen anhand dreier exemplarischer soziodemographischer Gesellschaftsgruppen untersucht. Die Analyse zeigt starke Unterschiede der Verf{\"u}gbarkeit von PGS zwischen st{\"a}dtischen und l{\"a}ndlichen Gebieten. Ein h{\"o}herer Prozentsatz der Stadtbev{\"o}lkerung hat Zugriff das Mindestmaß von PGS gemessen an der Vorgabe der Weltgesundheitsorganisation. Die Ergebnisse zeigen auch einen deutlichen Unterschied bez{\"u}glich der Verteilungsgerechtigkeit zwischen GLC und PGS und verdeutlichen die Relevanz der Unterscheidung von Gr{\"u}nfl{\"a}chentypen f{\"u}r derartige Untersuchungen. Die abschließende Betrachtung verschiedener Bev{\"o}lkerungsgruppen arbeitet Unterschiede auf soziodemographischer Ebene auf. In der Zusammenschau demonstriert diese Arbeit wie moderne Geodaten und Methoden des maschinellen Lernens genutzt werden k{\"o}nnen bisherige Limitierungen r{\"a}umlicher Datens{\"a}tze zu {\"u}berwinden. Am Beispiel von Gr{\"u}nfl{\"a}chen in der Wohnumgebung der Bev{\"o}lkerung Deutschlands wird gezeigt, dass landesweite Analysen zur Umweltgerechtigkeit durch hochaufgel{\"o}ste und lokal feingliedrige geographische Informationen bereichert werden k{\"o}nnen. Diese Arbeit verdeutlicht, wie die Methoden der Erdbeobachtung und Geoinformatik einen wichtigen Beitrag leisten k{\"o}nnen, die Ungleichheit der Wohnumwelt der Menschen zu identifizieren und schlussendlich den nachhaltigen Siedlungsbau in Form von objektiven Informationen zu unterst{\"u}tzen und {\"u}berwachen.}, subject = {Geografie}, language = {de} } @article{WeismannMoeckelPaethetal.2023, author = {Weismann, Dirk and M{\"o}ckel, Martin and Paeth, Heiko and Slagman, Anna}, title = {Modelling variations of emergency attendances using data on community mobility, climate and air pollution}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-47857-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357578}, year = {2023}, abstract = {Air pollution is associated with morbidity and mortality worldwide. We investigated the impact of improved air quality during the economic lockdown during the SARS-Cov2 pandemic on emergency room (ER) admissions in Germany. Weekly aggregated clinical data from 33 hospitals were collected in 2019 and 2020. Hourly concentrations of nitrogen and sulfur dioxide (NO2, SO2), carbon and nitrogen monoxide (CO, NO), ozone (O3) and particulate matter (PM10, PM2.5) measured by ground stations and meteorological data (ERA5) were selected from a 30 km radius around the corresponding ED. Mobility was assessed using aggregated cell phone data. A linear stepwise multiple regression model was used to predict ER admissions. The average weekly emergency numbers vary from 200 to over 1600 cases (total n = 2,216,217). The mean maximum decrease in caseload was 5 standard deviations. With the enforcement of the shutdown in March, the mobility index dropped by almost 40\%. Of all air pollutants, NO2 has the strongest correlation with ER visits when averaged across all departments. Using a linear stepwise multiple regression model, 63\% of the variation in ER visits is explained by the mobility index, but still 6\% of the variation is explained by air quality and climate change.}, language = {en} } @article{BellKleinRieseretal.2023, author = {Bell, Alexandra and Klein, Doris and Rieser, Jakob and Kraus, Tanja and Thiel, Michael and Dech, Stefan}, title = {Scientific evidence from space — a review of spaceborne remote sensing applications at the science-policy interface}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {4}, issn = {2072-4292}, doi = {10.3390/rs15040940}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303925}, year = {2023}, abstract = {On a daily basis, political decisions are made, often with their full extent of impact being unclear. Not seldom, the decisions and policy measures implemented result in direct or indirect unintended negative impacts, such as on the natural environment, which can vary in time, space, nature, and severity. To achieve a more sustainable world with equitable societies requires fundamental rethinking of our policymaking. It calls for informed decision making and a monitoring of political impact for which evidence-based knowledge is necessary. The most powerful tool to derive objective and systematic spatial information and, thus, add to transparent decisions is remote sensing (RS). This review analyses how spaceborne RS is used by the scientific community to provide evidence for the policymaking process. We reviewed 194 scientific publications from 2015 to 2020 and analysed them based on general insights (e.g., study area) and RS application-related information (e.g., RS data and products). Further, we classified the studies according to their degree of science-policy integration by determining their engagement with the political field and their potential contribution towards four stages of the policy cycle: problem identification/knowledge building, policy formulation, policy implementation, and policy monitoring and evaluation. Except for four studies, we found that studies had not directly involved or informed the policy field or policymaking process. Most studies contributed to the stage problem identification/knowledge building, followed by ex post policy impact assessment. To strengthen the use of RS for policy-relevant studies, the concept of the policy cycle is used to showcase opportunities of RS application for the policymaking process. Topics gaining importance and future requirements of RS at the science-policy interface are identified. If tackled, RS can be a powerful complement to provide policy-relevant evidence to shed light on the impact of political decisions and thus help promote sustainable development from the core.}, language = {en} } @article{DhillonDahmsKuebertFlocketal.2023, author = {Dhillon, Maninder Singh and Dahms, Thorsten and K{\"u}bert-Flock, Carina and Liepa, Adomas and Rummler, Thomas and Arnault, Joel and Steffan-Dewenter, Ingolf and Ullmann, Tobias}, title = {Impact of STARFM on crop yield predictions: fusing MODIS with Landsat 5, 7, and 8 NDVIs in Bavaria Germany}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {6}, issn = {2072-4292}, doi = {10.3390/rs15061651}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311092}, year = {2023}, abstract = {Rapid and accurate yield estimates at both field and regional levels remain the goal of sustainable agriculture and food security. Hereby, the identification of consistent and reliable methodologies providing accurate yield predictions is one of the hot topics in agricultural research. This study investigated the relationship of spatiotemporal fusion modelling using STRAFM on crop yield prediction for winter wheat (WW) and oil-seed rape (OSR) using a semi-empirical light use efficiency (LUE) model for the Free State of Bavaria (70,550 km\(^2\)), Germany, from 2001 to 2019. A synthetic normalised difference vegetation index (NDVI) time series was generated and validated by fusing the high spatial resolution (30 m, 16 days) Landsat 5 Thematic Mapper (TM) (2001 to 2012), Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (2012), and Landsat 8 Operational Land Imager (OLI) (2013 to 2019) with the coarse resolution of MOD13Q1 (250 m, 16 days) from 2001 to 2019. Except for some temporal periods (i.e., 2001, 2002, and 2012), the study obtained an R\(^2\) of more than 0.65 and a RMSE of less than 0.11, which proves that the Landsat 8 OLI fused products are of higher accuracy than the Landsat 5 TM products. Moreover, the accuracies of the NDVI fusion data have been found to correlate with the total number of available Landsat scenes every year (N), with a correlation coefficient (R) of +0.83 (between R\(^2\) of yearly synthetic NDVIs and N) and -0.84 (between RMSEs and N). For crop yield prediction, the synthetic NDVI time series and climate elements (such as minimum temperature, maximum temperature, relative humidity, evaporation, transpiration, and solar radiation) are inputted to the LUE model, resulting in an average R\(^2\) of 0.75 (WW) and 0.73 (OSR), and RMSEs of 4.33 dt/ha and 2.19 dt/ha. The yield prediction results prove the consistency and stability of the LUE model for yield estimation. Using the LUE model, accurate crop yield predictions were obtained for WW (R\(^2\) = 0.88) and OSR (R\(^2\) = 0.74). Lastly, the study observed a high positive correlation of R = 0.81 and R = 0.77 between the yearly R\(^2\) of synthetic accuracy and modelled yield accuracy for WW and OSR, respectively.}, language = {en} } @article{KunzUllmannKneiseletal.2023, author = {Kunz, Julius and Ullmann, T. and Kneisel, C. and Baumhauer, R.}, title = {Three-dimensional subsurface architecture and its influence on the spatiotemporal development of a retrogressive thaw slump in the Richardson Mountains, Northwest Territories, Canada}, series = {Arctic, Antarctic, and Alpine Research}, volume = {55}, journal = {Arctic, Antarctic, and Alpine Research}, number = {1}, issn = {1523-0430}, doi = {10.1080/15230430.2023.2167358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350147}, year = {2023}, abstract = {The development of retrogressive thaw slumps (RTS) is known to be strongly influenced by relief-related parameters, permafrost characteristics, and climatic triggers. To deepen the understanding of RTS, this study examines the subsurface characteristics in the vicinity of an active thaw slump, located in the Richardson Mountains (Western Canadian Arctic). The investigations aim to identify relationships between the spatiotemporal slump development and the influence of subsurface structures. Information on these were gained by means of electrical resistivity tomography (ERT) and ground-penetrating radar (GPR). The spatiotemporal development of the slump was revealed by high-resolution satellite imagery and unmanned aerial vehicle-based digital elevation models (DEMs). The analysis indicated an acceleration of slump expansion, especially since 2018. The comparison of the DEMs enabled the detailed balancing of erosion and accumulation within the slump area between August 2018 and August 2019. In addition, manual frost probing and GPR revealed a strong relationship between the active layer thickness, surface morphology, and hydrology. Detected furrows in permafrost table topography seem to affect the active layer hydrology and cause a canalization of runoff toward the slump. The three-dimensional ERT data revealed a partly unfrozen layer underlying a heterogeneous permafrost body. This may influence the local hydrology and affect the development of the RTS. The results highlight the complex relationships between slump development, subsurface structure, and hydrology and indicate a distinct research need for other RTSs.}, language = {en} } @article{MeistervonSuchodoletzZeeden2023, author = {Meister, Julia and von Suchodoletz, Hans and Zeeden, Christian}, title = {Preface: Quaternary research from and inspired by the first virtual DEUQUA conference}, series = {E\&G Quaternary Science Journal}, volume = {72}, journal = {E\&G Quaternary Science Journal}, number = {2}, doi = {10.5194/egqsj-72-185-2023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350157}, pages = {185-187}, year = {2023}, abstract = {No abstract available.}, language = {en} } @article{ReinermannAsamGessneretal.2023, author = {Reinermann, Sophie and Asam, Sarah and Gessner, Ursula and Ullmann, Tobias and Kuenzer, Claudia}, title = {Multi-annual grassland mowing dynamics in Germany}, series = {Frontiers in Environmental Science}, volume = {11}, journal = {Frontiers in Environmental Science}, issn = {2296-665X}, doi = {10.3389/fenvs.2023.1040551}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320700}, year = {2023}, abstract = {Introduction: Grasslands cover one third of the agricultural area in Germany and are mainly used for fodder production. However, grasslands fulfill many other ecosystem functions, like carbon storage, water filtration and the provision of habitats. In Germany, grasslands are mown and/or grazed multiple times during the year. The type and timing of management activities and the use intensity vary strongly, however co-determine grassland functions. Large-scale spatial information on grassland activities and use intensity in Germany is limited and not openly provided. In addition, the cause for patterns of varying mowing intensity are usually not known on a spatial scale as data on the incentives of farmers behind grassland management decisions is not available. Methods: We applied an algorithm based on a thresholding approach utilizing Sentinel-2 time series to detect grassland mowing events to investigate mowing dynamics in Germany in 2018-2021. The detected mowing events were validated with an independent dataset based on the examination of public webcam images. We analyzed spatial and temporal patterns of the mowing dynamics and relationships to climatic, topographic, soil or socio-political conditions. Results: We found that most intensively used grasslands can be found in southern/south-eastern Germany, followed by areas in northern Germany. This pattern stays the same among the investigated years, but we found variations on smaller scales. The mowing event detection shows higher accuracies in 2019 and 2020 (F1 = 0.64 and 0.63) compared to 2018 and 2021 (F1 = 0.52 and 0.50). We found a significant but weak (R2 of 0-0.13) relationship for a spatial correlation of mowing frequency and climate as well as topographic variables for the grassland areas in Germany. Further results indicate a clear value range of topographic and climatic conditions, characteristic for intensive grassland use. Extensive grassland use takes place everywhere in Germany and on the entire spectrum of topographic and climatic conditions in Germany. Natura 2000 grasslands are used less intensive but this pattern is not consistent among all sites. Discussion: Our findings on mowing dynamics and relationships to abiotic and socio-political conditions in Germany reveal important aspects of grassland management, including incentives of farmers.}, language = {en} } @article{RedlichZhangBenjaminetal.2022, author = {Redlich, Sarah and Zhang, Jie and Benjamin, Caryl and Dhillon, Maninder Singh and Englmeier, Jana and Ewald, J{\"o}rg and Fricke, Ute and Ganuza, Cristina and Haensel, Maria and Hovestadt, Thomas and Kollmann, Johannes and Koellner, Thomas and K{\"u}bert-Flock, Carina and Kunstmann, Harald and Menzel, Annette and Moning, Christoph and Peters, Wibke and Riebl, Rebekka and Rummler, Thomas and Rojas-Botero, Sandra and Tobisch, Cynthia and Uhler, Johannes and Uphus, Lars and M{\"u}ller, J{\"o}rg and Steffan-Dewenter, Ingolf}, title = {Disentangling effects of climate and land use on biodiversity and ecosystem services—A multi-scale experimental design}, series = {Methods in Ecology and Evolution}, volume = {13}, journal = {Methods in Ecology and Evolution}, number = {2}, doi = {10.1111/2041-210X.13759}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258270}, pages = {514-527}, year = {2022}, abstract = {Climate and land-use change are key drivers of environmental degradation in the Anthropocene, but too little is known about their interactive effects on biodiversity and ecosystem services. Long-term data on biodiversity trends are currently lacking. Furthermore, previous ecological studies have rarely considered climate and land use in a joint design, did not achieve variable independence or lost statistical power by not covering the full range of environmental gradients. Here, we introduce a multi-scale space-for-time study design to disentangle effects of climate and land use on biodiversity and ecosystem services. The site selection approach coupled extensive GIS-based exploration (i.e. using a Geographic information system) and correlation heatmaps with a crossed and nested design covering regional, landscape and local scales. Its implementation in Bavaria (Germany) resulted in a set of study plots that maximise the potential range and independence of environmental variables at different spatial scales. Stratifying the state of Bavaria into five climate zones (reference period 1981-2010) and three prevailing land-use types, that is, near-natural, agriculture and urban, resulted in 60 study regions (5.8 × 5.8 km quadrants) covering a mean annual temperature gradient of 5.6-9.8°C and a spatial extent of ~310 × 310 km. Within these regions, we nested 180 study plots located in contrasting local land-use types, that is, forests, grasslands, arable land or settlement (local climate gradient 4.5-10°C). This approach achieved low correlations between climate and land use (proportional cover) at the regional and landscape scale with |r ≤ 0.33| and |r ≤ 0.29| respectively. Furthermore, using correlation heatmaps for local plot selection reduced potentially confounding relationships between landscape composition and configuration for plots located in forests, arable land and settlements. The suggested design expands upon previous research in covering a significant range of environmental gradients and including a diversity of dominant land-use types at different scales within different climatic contexts. It allows independent assessment of the relative contribution of multi-scale climate and land use on biodiversity and ecosystem services. Understanding potential interdependencies among global change drivers is essential to develop effective restoration and mitigation strategies against biodiversity decline, especially in expectation of future climatic changes. Importantly, this study also provides a baseline for long-term ecological monitoring programs.}, language = {en} } @article{LibandaPaeth2023, author = {Libanda, Brigadier and Paeth, Heiko}, title = {Modelling wind speed across Zambia: Implications for wind energy}, series = {International Journal of Climatology}, volume = {43}, journal = {International Journal of Climatology}, number = {2}, doi = {10.1002/joc.7826}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312134}, pages = {772 -- 786}, year = {2023}, abstract = {Wind energy is a key option in global dialogues about climate change mitigation. Here, we combined observations from surface wind stations, reanalysis datasets, and state-of-the-art regional climate models from the Coordinated Regional Climate Downscaling Experiment (CORDEX Africa) to study the current and future wind energy potential in Zambia. We found that winds are dominated by southeasterlies and are rarely strong with an average speed of 2.8 m·s\(^{-1}\). When we converted the observed surface wind speed to a turbine hub height of 100 m, we found a ~38\% increase in mean wind speed for the period 1981-2000. Further, both simulated and observed wind speed data show statistically significant increments across much of the country. The only areas that divert from this upward trend of wind speeds are the low land terrains of the Eastern Province bordering Malawi. Examining projections of wind power density (WPD), we found that although wind speed is increasing, it is still generally too weak to support large-scale wind power generation. We found a meagre projected annual average WPD of 46.6 W·m\(^{-2}\). The highest WPDs of ~80 W·m\(^{-2}\) are projected in the northern and central parts of the country while the lowest are to be expected along the Luangwa valley in agreement with wind speed simulations. On average, Zambia is expected to experience minor WPD increments of 0.004 W·m\(^{-2}\) per year from 2031 to 2050. We conclude that small-scale wind turbines that accommodate cut-in wind speeds of 3.8 m·s\(^{-1}\) are the most suitable for power generation in Zambia. Further, given the limitations of small wind turbines, they are best suited for rural and suburban areas of the country where obstructions are few, thus making them ideal for complementing the government of the Republic of Zambia's rural electrification efforts.}, language = {en} } @article{StanglRauchRauhetal.2021, author = {Stangl, Stephanie and Rauch, Sebastian and Rauh, J{\"u}rgen and Meyer, Martin and M{\"u}ller-Nordhorn, Jacqueline and Wildner, Manfred and W{\"o}ckel, Achim and Heuschmann, Peter U.}, title = {Disparities in Accessibility to Evidence-Based Breast Cancer Care Facilities by Rural and Urban Areas in Bavaria, Germany}, series = {Cancer}, volume = {127}, journal = {Cancer}, number = {13}, doi = {10.1002/cncr.33493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239854}, pages = {2319 -- 2332}, year = {2021}, abstract = {Background Breast cancer (BC), which is most common in elderly women, requires a multidisciplinary and continuous approach to care. With demographic changes, the number of patients with chronic diseases such as BC will increase. This trend will especially hit rural areas, where the majority of the elderly live, in terms of comprehensive health care. Methods Accessibility to several cancer facilities in Bavaria, Germany, was analyzed with a geographic information system. Facilities were identified from the national BC guideline and from 31 participants in a proof-of-concept study from the Breast Cancer Care for Patients With Metastatic Disease registry. The timeframe for accessibility was defined as 30 or 60 minutes for all population points. The collection of address information was performed with different sources (eg, a physician registry). Routine data from the German Census 2011 and the population-based Cancer Registry of Bavaria were linked at the district level. Results Females from urban areas (n = 2,938,991 [ie, total of females living in urban areas]) had a higher chance for predefined accessibility to the majority of analyzed facilities in comparison with females from rural areas (n = 3,385,813 [ie, total number of females living in rural areas]) with an odds ratio (OR) of 9.0 for cancer information counselling, an OR of 17.2 for a university hospital, and an OR of 7.2 for a psycho-oncologist. For (inpatient) rehabilitation centers (OR, 0.2) and genetic counselling (OR, 0.3), women from urban areas had lower odds of accessibility within 30 or 60 minutes. Conclusions Disparities in accessibility between rural and urban areas exist in Bavaria. The identification of underserved areas can help to inform policymakers about disparities in comprehensive health care. Future strategies are needed to deliver high-quality health care to all inhabitants, regardless of residence.}, language = {en} } @article{IbebuchiPaeth2021, author = {Ibebuchi, Chibuike Chiedozie and Paeth, Heiko}, title = {The Imprint of the Southern Annular Mode on Black Carbon AOD in the Western Cape Province}, series = {Atmosphere}, volume = {12}, journal = {Atmosphere}, number = {10}, issn = {2073-4433}, doi = {10.3390/atmos12101287}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248387}, year = {2021}, abstract = {This study examines the relationship between variations of the Southern Annular Mode (SAM) and black carbon (BC) at 550 nm aerosol optical depth (AOD) in the Western Cape province (WC). Variations of the positive (negative) phase of the SAM are found to be related to regional circulation types (CTs) in southern Africa, associated with suppressed (enhanced) westerly wind over the WC through the southward (northward) migration of Southern Hemisphere mid-latitude cyclones. The CTs related to positive (negative) SAM anomalies induce stable (unstable) atmospheric conditions over the southwestern regions of the WC, especially during the austral winter and autumn seasons. Through the control of CTs, positive (negative) SAM phases tend to contribute to the build-up (dispersion and dilution) of BC in the study region because they imply dry (wet) conditions which favor the build-up (washing out) of pollutant particles in the atmosphere. Indeed, recent years with an above-average frequency of CTs related to positive (negative) SAM anomalies are associated with a high (low) BC AOD over southwesternmost Africa.}, language = {en} } @book{Guth2020, author = {Guth, Denis}, title = {Zur Sicherstellung der ‚Vertr{\"a}glichkeit' innerst{\"a}dtischer Einkaufszentren - Raumbezogene Diskurs- und Kalkulationsordnungen am Beispiel der Mainzer Innenstadt}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-130-3}, doi = {10.25972/WUP-978-3-95826-131-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192670}, publisher = {W{\"u}rzburg University Press}, pages = {248}, year = {2020}, abstract = {Der Begriff der ‚Vertr{\"a}glichkeit' spielt eine zentrale Rolle f{\"u}r die politisch-planerische Steuerung von Einzelhandels- und Stadtentwicklung. Besonders kontrovers wird v.a. seit Mitte der 1990er Jahre die Frage der ‚Vertr{\"a}glichkeit' innerst{\"a}dtischer Einkaufszentren diskutiert. Die vorliegende Studie untersucht anhand ehemaliger Shopping-Center-Planungen f{\"u}r die Mainzer Innenstadt, wie der Vertr{\"a}glichkeitsbegriff in der Praxis gef{\"u}llt wird und welche planerischen Steuerungslogiken hieraus hervorgehen. Die Arbeit setzt sich kritisch mit der Frage auseinander, auf welche normativen Wissensordnungen {\"u}ber den innerst{\"a}dtischen Raum sich die politisch-planerische Bearbeitung der Vertr{\"a}glichkeitsproblematik st{\"u}tzt und welche Machtwirkungen hiermit einhergehen. Ausgehend von einer poststrukturalistisch inspirierten, diskurstheoretischen Perspektive verschiebt die Studie damit den geographischen Blick auf die Vertr{\"a}glichkeitsfrage: Was ‚Vertr{\"a}glichkeit' f{\"u}r die politisch-planerische Praxis konkret bedeutet, ob ein geplantes Einkaufszentrum als ‚(innenstadt)vertr{\"a}glich' gelten kann bzw. welche konkreten Interventionen dies erfordert, h{\"a}ngt demzufolge weniger von objektiven {\"o}konomischen, r{\"a}umlichen oder st{\"a}dtebaulichen Gegebenheiten ab - vielmehr zeigt die Studie, dass eine ganzen Reihe von Techniken raumbezogener Wissensproduktion mobilisiert werden m{\"u}ssen, damit die Vertr{\"a}glichkeitsfrage {\"u}berhaupt als eine objektivierbare Frage erscheinen kann.}, subject = {Einkaufszentrum}, language = {de} } @techreport{MeyerJobLaneretal.2022, author = {Meyer, Constantin and Job, Hubert and Laner, Peter and Omizzolo, Andrea and Kollmann, Nadia and Clare, Jasmin and Vesely, Philipp and Riedler, Walter and Plassmann, Guido and Coronado, Oriana and Praper Gulič, Sergeja and Gulič, Andrej and Koblar, Simon and Teofili, Corrado and Rohringer, Verena and Schoßleitner, Richard and Ainz, Gerhard}, title = {OpenSpaceAlps - Manuale di Pianificazione: Prospettive per la salvaguardia coerente degli Spazi Aperti nella regione alpina}, doi = {10.25972/OPUS-27704}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-277042}, pages = {114}, year = {2022}, abstract = {Nella regione alpina, si pu{\`o} osservare il continuo consumo di spazi aperti a causa dell'aumento di aree di insediamento e di infrastrutture tecniche e la conseguente impermeabilizzazione del suolo. Questo fenomeno porta principalmente alla perdita di suolo agricolo. A seconda dell'estensione dello sviluppo, si riscontra anche una maggiore frammentazione del paesaggio, che {\`e} associata all'isolamento degli habitat naturali e alla perdita della connettivit{\`a} ecologica, cos{\`i} come ad altre conseguenze negative. Il progetto OpenSpaceAlps ha affrontato questo problema e, sulla base di procedure cooperative partecipate attuate in diverse regioni pilota alpine, ha sviluppato approcci e strategie di soluzione per la salvaguardia sostenibile degli spazi aperti. Questo manuale supporta le attivit{\`a} e il processo decisionale di vari stakeholder, in primo luogo i pianificatori delle autorit{\`a} pubbliche di pianificazione. Sulla base di un'analisi delle sfide e delle condizioni generali nella regione alpina, il manuale presenta e confronta i "principi" centrali della pianificazione degli spazi aperti. Inoltre, vengono discusse strategie di pianificazione integrata per diverse categorie spaziali.}, subject = {Raumordnung}, language = {it} } @article{ReinermannAsamKuenzer2020, author = {Reinermann, Sophie and Asam, Sarah and Kuenzer, Claudia}, title = {Remote Sensing of Grassland Production and Management - A Review}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {12}, issn = {2072-4292}, doi = {10.3390/rs12121949}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207799}, year = {2020}, abstract = {Grasslands cover one third of the earth's terrestrial surface and are mainly used for livestock production. The usage type, use intensity and condition of grasslands are often unclear. Remote sensing enables the analysis of grassland production and management on large spatial scales and with high temporal resolution. Despite growing numbers of studies in the field, remote sensing applications in grassland biomes are underrepresented in literature and less streamlined compared to other vegetation types. By reviewing articles within research on satellite-based remote sensing of grassland production traits and management, we describe and evaluate methods and results and reveal spatial and temporal patterns of existing work. In addition, we highlight research gaps and suggest research opportunities. The focus is on managed grasslands and pastures and special emphasize is given to the assessment of studies on grazing intensity and mowing detection based on earth observation data. Grazing and mowing highly influence the production and ecology of grassland and are major grassland management types. In total, 253 research articles were reviewed. The majority of these studies focused on grassland production traits and only 80 articles were about grassland management and use intensity. While the remote sensing-based analysis of grassland production heavily relied on empirical relationships between ground-truth and satellite data or radiation transfer models, the used methods to detect and investigate grassland management differed. In addition, this review identified that studies on grassland production traits with satellite data often lacked including spatial management information into the analyses. Studies focusing on grassland management and use intensity mostly investigated rather small study areas with homogeneous intensity levels among the grassland parcels. Combining grassland production estimations with management information, while accounting for the variability among grasslands, is recommended to facilitate the development of large-scale continuous monitoring and remote sensing grassland products, which have been rare thus far.}, language = {en} }