@phdthesis{Meyer2015, author = {Meyer, Frank}, title = {Soft X-ray Spectroscopic Study of Amino Acid and Salt Solutions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124295}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {This thesis focuses on the investigation of the electronic structure of amino acids and salts in aqueous solution using X-ray spectroscopic methods. Both material groups are of fundamental importance with regards to many physiological reactions, especially for the Hofmeister effect which describes the solubility of proteins in salt solutions. Hence, the investigation of the electronic structure of amino acids and the influence of ions on the hydrogen bonding network of liquid water are important milestones to a deeper understanding of the Hofmeister series. Besides investigating the electronic structure of amino acids in aqueous solution, the spectra were used to develop a building block model of the spectral fingerprints of the functional groups and were compared to spectral signatures of suitable reference molecules. In the framework of this thesis, it is shown that the building block approach is a useful tool with allows the interpretation of spectral signatures of considerably more complex molecules In this work, the focus lies on the investigation of the occupied and unoccupied electronic states of molecules in solid state, as well as in aqueous solution. Hereby, different X-ray spectroscopic methods were applied. X-ray emission spectroscopy (XES) was used to probe the occupied electronic structure of the solution, while the unoccupied electronic structure was addressed by using X-ray absorption spectroscopy (XAS). Finally, resonant inelastic X-ray scattering (RIXS) as a combination of XAS and XES measurements provides the combined information about the unoccupied and occupied molecular levels. The element specific character of the three measurement methods is a feature which allows the investigation of the local electronic structure of a single functional group. With RIXS, also non-equivalent atoms of the same element can be addressed separately. Within this thesis firstly, a library of the XE spectra of all 20 proteinogenic amino acids in zwitterionic form is presented. From this sample-set XES fingerprints of the protonated alpha-amino group NH3+ and the deprotonated carboxylic group COO- were evaluated and used to identify the XES fingerprints of the nitrogen and oxygen containing functional groups of the side chains of the amino acids. The data is discussed based on a building block approach. Furthermore, the XE spectra of the functional groups of lysine and histidine, namely the NH2 group and the C3N2H4 ring structure, are both compared to XE spectra of suitable reference molecules (imidazole, ammonia and methylamine). It is found that the XE and RIXS spectra of the side chains of lysine and histidine show large similarities to the XE spectra of the reference molecules. This agreement in the XE and RIXS spectra allows a qualitative investigation of XE and RIXS spectra of more complex amino acids using the XE and RIXS spectra of suitable reference molecules. The chemical structure of histidine and proline is quite different from the structures of the other proteinogenic amino acids. Due to the unique chemical structure of the side chain which in both cases consists of a heterocyclic ring structure, these two amino acids were investigated in more detail. Zubavichus et al. [1] have shown that amino acids are decomposing while exposed to X-ray radiation of the experiment. The damage is irreversible and molecular fragments can adsorb on the membrane of the experimental setup. This contamination can also create a spectral signature which then overlaps with the signal of the solution and which complicates the interpretation of the data. To record spectra which are free from contributions of adsorbed molecular fragments on the membrane, the adsorption behavior was investigated. In contrast to the solid phase in which the amino acids are present as salts in one electronic conformation, the charge state of the amino acids can be manipulated in aqueous solution by tuning the pH-value. By doing this, all possible charge states are accessible (cation, anion, zwitterion). In this work it is shown that also the spectra of the different charge states can be modeled by the spectra of suitable reference molecules using the building block approach. The spectral changes occurring upon protonation and deprotonation of the functional groups are explored and verified by comparing them to theoretical calculations. The comparison with measurements of pyrrolidine show that the electronic structure which surrounds the nitrogen atom of proline is strongly influenced by the ring structure of the side chain. Furthermore, the proline, pyrrolidine, and histidine molecules are also degrading during the liquid sample measurements. This can be observed by the detection of a new spectral component which increases with the measurement time originating from the window membrane. In all cases, the speed of the agglomeration of molecular fragments at the membrane was observed to be highly sensitive to the pH value of the solution. To understand the Hofmeister series, also the impact of the salt ions have to be investigated. In this study the influence of potassium chloride (KCl) on the hydrogen bond network of water was studied by using non-resonantly excited XES as well as RIXS. A decreased dissociation of hydrogen molecules and changes in the molecular vibrations could be detected. These changes were interpreted with a molecular reorganization of the water molecules and a decreased number of hydrogen bonds.}, subject = {Aminos{\"a}uren}, language = {en} } @phdthesis{Scholz2013, author = {Scholz, Markus}, title = {Energy-Dispersive NEXAFS: A Novel Tool for the Investigation of Intermolecular Interaction and Structural Phase Dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83839}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In the context of this thesis, the novel method soft X-ray energy-dispersive NEXAFS spectroscopy was explored and utilized to investigate intermolecular coupling and post-growth processes with a temporal resolution of seconds. 1,4,5,8- naphthalene tetracarboxylic acid dianhydride (NTCDA)multilayer films were the chosen model system for these investigations. The core hole-electron correlation in coherently coupled molecules was studied by means of energy-dispersive near-edge X-ray absorption fine-structure spectroscopy. A transient phase was found which exists during the transition between a disordered condensed phase and the bulk structure. This phase is characterized by distinct changes in the spectral line shape and energetic position of the X-ray absorption signal at the C K-edge. The findings were explained with the help of theoretical models based on the coupling of transition dipole moments, which are well established for optically excited systems. In consequence, the experimental results provides evidence for a core hole-electron pair delocalized over several molecules. Furthermore, the structure formation of NTCDA multilayer films on Ag(111) surfaces was investigated. With time-resolved and energy-dispersive NEXAFS experiments the intensity evolution in s- and p-polarization showed a very characteristic behavior. By combining these findings with the results of time-dependent photoemission measurements, several sub-processes were identified in the post- growth behavior. Upon annealing, the amorphous but preferentially flat-lying molecules flip into an upright orientation. After that follows a phase characterized by strong intermolecular coupling. Finally, three-dimensional islands are established. Employing the Kolmogorov-Johnson-Mehl-Avrami model, the activation energies of the sub-processes were determined.}, subject = {Organisches Molek{\"u}l}, language = {en} } @phdthesis{Gerlach2023, author = {Gerlach, Marius David}, title = {Spectroscopy of fulminic acid HCNO with VUV- and soft X-ray radiation}, doi = {10.25972/OPUS-32972}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-329722}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die Fulmins{\"a}ure HCNO wurde zum ersten Mal im Jahre 1800 synthetisiert und wurde seitdem immer wieder verwendet, um neue chemische Konzepte und Theorien zu entwickeln. Durch die erstmalige Entdeckung der Fulmins{\"a}ure im Weltall im Jahr 2009 ist die Fulmins{\"a}ure heutzutage vor allem im Bereich der Astrochemie interessant. In dieser Doktorarbeit haben wir die Interaktion von Fulmins{\"a}ure mit interstellar Strahlung, genauer mit VUV- sowie weicher R{\"o}ntgenstrahlung untersucht. In Zuge der Messung mit VUV-Strahlung konnten wir das Photoelektronenspektrum von HCNO mit hoher Aufl{\"o}sung aufnehmen und den Renner-Teller verzerrten Grundzustand des Kations mit Hilfe von Wellenpaketdynamiksimulationen beschreiben. Außerdem konnten wir den Mechanismus der dissoziativen Photoionisation bis zu einer Bindungsenergie von 15.3 eV aufkl{\"a}ren. Mit weicher R{\"o}ntgenstrahlung ist es m{\"o}glich die 1s Elektronen des HCNO zu ionisieren oder anzuregen. Der erzeugte Zustand zerf{\"a}llt anschließend durch einen Auger-Meitner Prozess, bei dem ein Auger-Elektron erzeugt wird. Im Zuge der Auger-Elektronenspektroskopie haben wir die kinetische Energie dieser Elektronen gemessen und konnten mittels quantenchemischer Rechnung die beobachten Signale analysieren. Wir untersuchten außerdem, wie das durch den Auger-Meitner Prozess erzeugte Ion zerf{\"a}llt. Hier konnten wir eine Selektivit{\"a}t des Zerfalls beobachten, je nachdem welches der 1s Elektronen im ersten Schritt angeregt oder ionisiert wurde. Diese Beobachtung konnten wir durch ein einfaches thermodynamisches Argument erkl{\"a}ren. Diese Arbeit gibt also ein vollst{\"a}ndiges Bild {\"u}ber die Interaktion von HCNO mit ionisierender Strahlung. Die erhaltenen Daten k{\"o}nnten f{\"u}r die Beschreibung von HCNO im interstellaren Raum Bedeutung haben.}, subject = {Chemie}, language = {en} }