@phdthesis{Then2017, author = {Then, Patrick}, title = {Waveguide-based single molecule detection in flow}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140548}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In this work fluorescence-based single molecule detection at low concetration is investigated, with an emphasis on the usage of active transport and waveguides. Active transport allows to overcome the limits of diffusion-based systems in terms of the lowest detectable threshold of concentration. The effect of flow in single molecule experiments is investigated and a theoretical model is derived for laminar flow. Waveguides on the other hand promise compact detection schemes and show great potential for their possible integration into lab-on-a-chip applications. Their properties in single molecule experiments are analyzed with help of a method based on the reciprocity theorem of electromagnetic theory.}, subject = {Optik}, language = {en} } @phdthesis{Kern2014, author = {Kern, Johannes}, title = {Optical and electrical excitation of nanoantennas with atomic-scale gaps}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115492}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Nano-antennas are an emerging concept for the manipulation and control of optical fields at the sub-wavelength scale. In analogy to their radio- and micro-wave counterparts they provide an efficient link between propagating and localized fields. Antennas operating at optical frequencies are typically on the order of a few hundred nanometer in size and are fabricated from noble metals. Upon excitation with an external field the electron gas inside the antenna can respond resonantly, if the dimensions of the antenna are chosen appropriate. Consequently, the resonance wavelength depends on the antenna dimensions. The electron-density oscillation is a hybrid state of electron and photon and is called a localized plasmon resonance. The oscillating currents within the antenna constitute a source for enhanced optical near-fields, which are strongly localized at the metal surface. A particular interesting type of antennas are pairs of metal particles separated by a small insulating gap. For anti-symmetric gap modes charges of opposite sign reside across the gap. The dominating field-components are normal to the metal surface and due to the boundary conditions they are sizable only inside the gap. The attractive Coulomb interaction increases the surface-charge accumulation at the gap and enhanced optical fields occur within the insulating gap. The Coulomb interaction increases with decreasing gap size and extreme localization and strongest intensity enhancement is expected for small gap sizes. In this thesis optical antennas with extremely small gaps, just slightly larger than inter-atomic distances, are investigated by means of optical and electrical excitation. In the case of electrical excitation electron tunneling across the antenna gap is exploited. At the beginning of this thesis little was known about the optical properties of antennas with atomic scale gaps. Standard measurement techniques of field confinement and enhancement involving well-separated source, sample and detector are not applicable at atomic length-scales due to the interaction of the respective elements. Here, an elegant approach has been found. It is based on the fact that for closely-spaced metallic particles the energy splitting of a hybridized mode pair, consisting of symmetric and anti-symmetric mode, provides a direct measure for the Coulomb interaction over the gap. Gap antennas therefore possess an internal ruler which sensitively reports the size of the gap. Upon self-assembly side-by-side aligned nanorods with gap sizes ranging from 2 to 0.5nm could be obtained. These antennas exhibit various symmetric and anti-symmetric modes in the visible range. In order to reveal optical modes of all symmetries a novel scattering setup has been developed and is successfully applied. Careful analysis of the optical spectra and comparison to numerical simulations suggests that extreme field confinement and localization can occur in gaps down to 0.5 nm. This is possibly the limit of plasmonic enhancement since for smaller gaps electron tunneling as well as non-locality of the dielectric function affect plasmonic resonances. The strongly confined and intense optical fields provided by atomic-scale gaps are ideally suited for enhanced light-matter interaction. The interplay of intense optical-frequency fields and static electric fields or currents is of great interest for opto-electronic applications. In this thesis a concept has been developed, which allows for the electrical connection of optical antennas. By means of numerical simulations the concept was first verified for antennas with gap sizes on the order of 25 nm. It could be shown, that by attaching the leads at positions of a field minimum the resonant properties are nearly undisturbed. The resonance wavelengths shift only by a small amount with respect to isolated antennas and the numerically calculated near-field intensity enhancement is about 1000, which is just slightly lower than for an unconnected antenna. The antennas are fabricated from single-crystalline gold and exhibit superior optical and electrical properties. In particular, the conductivity is a factor of 4 larger with respect to multi-crystalline material, the resistance of the gap is as large as 1 TOhm and electric fields of at least 10^8 V/m can be continuously applied without damage. Optical scattering spectra reveal well-pronounced and tunable antenna resonances, which demonstrates the concept of electrically-connected antennas also experimentally. By combining atomic-scale gaps and electrically-connected optical antennas a novel sub-wavelength photon source has been realized. To this end an antenna featuring an atomic scale gap is electrically driven by quantum tunneling across the antenna gap. The optical frequency components of this fluctuating current are efficiently converted to photons by the antenna. Consequently, light generation and control are integrated into a planar single-material nano-structure. Tunneling junctions are realized by positioning gold nanoparticles into the antenna gap, using an atomic force microscope. The presence of a stable tunneling junction between antenna and particle is demonstrated by measuring its distinct current-voltage characteristic. A DC voltage is applied to the junction and photons are generated by inelastically tunneling electrons via the enhanced local density of photonic states provided by the antenna resonance. The polarization of the emitted light is found to be along the antenna axis and the directivity is given by the dipolar antenna mode. By comparing electroluminescence and scattering spectra of different antennas, it has been shown that the spectrum of the generated light is determined by the geometry of the antenna. Moreover, the light generation process is enhanced by two orders of magnitude with respect to a non-resonant structure. The controlled fabrication of the presented single-crystalline structures has not only pushed the frontiers of nano-technology, but the extreme confinement and enhancement of optical fields as well as the light generation by tunneling electrons lays a groundwork for a variety of fundamental studies and applications. Field localization down to the (sub-)nanometer scale is a prerequisite for optical spectroscopy with near-atomic resolution. Indeed, recently first pioneering experiments have achieved molecular resolution exploiting plasmon-enhanced Raman scattering. The small modal volume of antennas with atomic-scale gaps can lead to light-matter interaction in the strong coupling regime. Quantum electro-dynamical effects such as Rabi splitting or oscillations are likely when a single emitter is placed into resonant structures with atomic-scale gaps. The concept of electrically-connected optical antennas is expected to be widely applied within the emerging field of electro-plasmonics. The sub-wavelength photon source developed during this thesis will likely gain attention for future plasmonic nanocircuits. It is envisioned that in such a circuit the optical signal provided by the source is processed at ultrafast speed and nanometer-scales on the chip and is finally converted back into an electronic signal. An integrated optical transistor could be realized by means of photon-assisted tunneling. Moreover, it would be interesting to investigate, if it is possible to imprint the fermionic nature of electrons onto photons in order to realize an electrically-driven source of single photons. Non-classical light sources with the potential for on-chip integration could be built from electrically-connected antennas and are of great interest for quantum communication. To this end single emitters could be placed in the antenna gap or single electron tunneling could be achieved by means of a single-channel quantum point contact or the Coulomb-blockade effect.}, subject = {Nanooptik}, language = {en} } @phdthesis{Ullherr2021, author = {Ullherr, Maximilian}, title = {Optimization of Image Quality in High-Resolution X-Ray Imaging}, doi = {10.25972/OPUS-23117}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231171}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The SNR spectra model and measurement method developed in this work yield reliable application-specific optima for image quality. This optimization can either be used to understand image quality, find out how to build a good imaging device or to (automatically) optimize the parameters of an existing setup. SNR spectra are here defined as a fraction of power spectra instead of a product of device properties. In combination with the newly developed measurement method for this definition, a close correspondence be- tween theory and measurement is achieved. Prior approaches suffer from a focus on theoretical definitions without fully considering if the defined quantities can be measured correctly. Additionally, discrepancies between assumptions and reality are common. The new approach is more reliable and complete, but also more difficult to evaluate and interpret. The signal power spectrum in the numerator of this fraction allows to model the image quality of different contrast mechanisms that are used in high-resolution x-ray imaging. Superposition equations derived for signal and noise enable understanding how polychromaticity (or superposition in general) affects the image quality. For the concept of detection energy weighting, a quantitative model for how it affects im- age quality was found. It was shown that—depending on sample properties—not detecting x-ray photons can increase image quality. For optimal computational energy weighting, more general formula for the optimal weight was found. In addition to the signal strength, it includes noise and modulation transfer. The novel method for measuring SNR spectra makes it possible to experimentally optimize image quality for different contrast mechanisms. This method uses one simple measurement to obtain a measure for im- age quality for a specific experimental setup. Comparable measurement methods typically require at least three more complex measurements, where the combination may then give a false result. SNR spectra measurements can be used to: • Test theoretical predictions about image quality optima. • Optimize image quality for a specific application. • Find new mechanisms to improve image quality. The last item reveals an important limitation of x- ray imaging in general: The achievable image quality is limited by the amount of x-ray photons interacting with the sample, not by the amount incident per detector area (see section 3.6). If the rest of the imaging geometry is fixed, moving the detector only changes the field of view, not the image quality. A practical consequence is that moving the sample closer to the x-ray source increases image quality quadratically. The results of a SNR spectra measurement represent the image quality only on a relative scale, but very reliable. This relative scale is sufficient for an optimization problem. Physical effects are often already clearly identifiable by the shape of the functional relationship between input parameter and measurement result. SNR spectra as a quantity are not well suited for standardization, but instead allow a reliable optimization. Not satisfying the requirements of standardization allows to use methods which have other advantages. In this case, the SNR spectra method describes the image quality for a specific application. Consequently, additional physical effects can be taken into account. Additionally, the measurement method can be used to automate the setting of optimal machine parameters. The newly proposed image quality measure detection effectiveness is better suited for standardization or setup comparison. This quantity is very similar to measures from other publications (e.g. CNR(u)), when interpreted monochromatically. Polychromatic effects can only be modeled fully by the DE(u). The measurement processes of both are different and the DE(u) is fundamentally more reliable. Information technology and digital data processing make it possible to determine SNR spectra from a mea- sured image series. This measurement process was designed from the ground up to use these technical capabilities. Often, information technology is only used to make processes easier and more exact. Here, the whole measurement method would be infeasible without it. As this example shows, using the capabilities of digital data processing much more extensively opens many new possibilities. Information technology can be used to extract information from measured data in ways that analog data processing simply cannot. The original purpose of the SNR spectra optimization theory and methods was to optimize high resolution x-ray imaging only. During the course of this work, it has become clear that some of the results of this work affect x-ray imaging in general. In the future, these results could be applied to MI and NDT x-ray imaging. Future work on the same topic will also need to consider the relationship between SNR spectra or DE(u) and sufficient image quality.This question is about the minimal image quality required for a specific measurement task.}, subject = {Bildqualit{\"a}t}, language = {en} } @phdthesis{Joseph2013, author = {Joseph, Arun Antony}, title = {Real-time MRI of Moving Spins Using Undersampled Radial FLASH}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-94000}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Nuclear spins in motion is an intrinsic component of any dynamic process when studied using magnetic resonance imaging (MRI). Moving spins define many functional characteristics of the human body such as diffusion, perfusion and blood flow. Quantitative MRI of moving spins can provide valuable information about the human physiology or of a technical system. In particular, phase-contrast MRI, which is based on two images with and without a flow-encoding gradient, has emerged as an important diagnostic tool in medicine to quantify human blood flow. Unfortunately, however, its clinical usage is hampered by long acquisition times which only provide mean data averaged across multiple cardiac cycles and therefore preclude Monitoring the immediate physiological responses to stress or exercise. These limitations are expected to be overcome by real-time imaging which constitutes a primary aim of this thesis. Short image acquisition times, as the core for real-time phase-contrast MRI, can be mainly realized through undersampling of the acquired data. Therefore the development focused on related technical aspects such as pulse sequence design, k-space encoding schemes and image reconstruction. A radial encoding scheme was experimentally found to be robust to motion and less sensitive to undersampling than Cartesian encoding. Radial encoding was combined with a FLASH acquisition technique for building an efficient real-time phase-contrast MRI sequence. The sequence was further optimized through overlapping of gradients to achieve the shortest possible echo time. Regularized nonlinear inverse reconstruction (NLINV), a technique which jointly estimates the image content and its corresponding coil sensitivities, was used for image reconstruction. NLINV was adapted specifically for phase-contrast MRI to produce both Magnitude images and phase-contrast maps. Real-time phase-contrast MRI therefore combined two highly undersampled (up to a factor of 30) radial gradient-echo acquisitions with and without a flow-encoding gradient with modified NLINV reconstructions. The developed method achieved real-time phase-contrast MRI at both high spatial (1.3 mm) and temporal resolution (40 ms). Applications to healthy human subjects as well as preliminary studies of patients demonstrated real-time phase-contrast MRI to offer improved patient compliance (e.g., free breathing) and immediate access to physiological variations of flow parameters (e.g., response to enhanced intrathoracic pressure). In most cases, quantitative blood flow was measured in the ascending aorta as an important blood vessel of the cardiovascular circulation system commonly studied in the clinic. The performance of real-time phase-contrast MRI was validated in comparison to standard Cine phase-contrast MRI using studies of flow phantoms as well as under in vivo conditions. The evaluations confirmed good agreement for comparable results. As a further extension to real-time phase-contrast MRI, this thesis implemented and explored a dual-echo phase-contrast MRI method which employs two sequential gradient echoes with and without flow encoding. The introduction of a flow-encoding gradient in between the two echoes aids in the further reduction of acquisition time. Although this technique was efficient under in vitro conditions, in vivo studies showed the influence of additional motion-induced Phase contributions. Due to these additional temporal phase information, the approach showed Little promise for quantitative flow MRI. As a further method three-dimensional real-time phase-contrast MRI was developed in this thesis to visualize and quantify multi-directional flow at about twice the measuring time of the standard real-time MRI method, i.e. at about 100 ms temporal resolution. This was achieved through velocity mapping along all three physical gradient directions. Although the method is still too slow to adequately cover cardiovascular blood flow, the preliminary results were found to be promising for future applications in tissues and organ systems outside the heart. Finally, future developments are expected to benefit from the adaptation of model-based reconstruction techniques to real-time phase-contrast MRI.}, subject = {Kernspintomografie}, language = {en} } @phdthesis{Rueckert2023, author = {R{\"u}ckert, Martin Andreas}, title = {Rotationsdriftspektroskopie}, doi = {10.25972/OPUS-26863}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268631}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die wachsende Verf{\"u}gbarkeit von magnetischen Nanopartikeln (MNPs) mit funktionalisierten Partikeloberfl{\"a}chen er{\"o}ffnet weitreichende M{\"o}glichkeiten f{\"u}r chemische, biologische und klinische Analysemethoden. Durch Funktionalisierung kann eine gezielte Interaktion mit Molek{\"u}len bewirkt werden, die im Allgemeinen auch die Beweglichkeit der MNPs ver{\"a}ndern. Methoden zur Charakterisierung von MNPs wie bspw. AC-Suszeptometrie, Magnetorelaxometrie (MRX) oder Magnetic Particle Spectroscopy (MPS) k{\"o}nnen diese {\"A}nderung der Beweglichkeit bei MNPs messen, wenn es sich um MNPs handelt, deren magnetisches Moment im Partikel fixiert ist. Damit ist mit funktionalisierten MNPs indirekt auch die spezifische Messung von Molek{\"u}lkonzentrationen m{\"o}glich. MNPs k{\"o}nnen zudem in biokompatibler Form hergestellt werden und sind dadurch auch als in-vivo Marker einsetzbar. Das 2005 das erste Mal ver{\"o}ffentlichte Magnetic Particle Imaging (MPI) kann als ein mittels Gradientenfeldern um die r{\"a}umliche Kodierung erweitertes MPS betrachtet werden. Dank biokompatibler MNPs handelt es sich dabei um eine in-vivo-taugliche, nicht-invasive Bildgebungsmethode. Mit funktionalisierten MNPs als Marker ist damit im Prinzip auch molekulare Bildgebung m{\"o}glich, die durch Detektion der beteiligten Molek{\"u}le (Biomarker) Stoffwechselprozesse r{\"a}umlich abbilden kann. Im Vergleich zur Bildgebung von Gewebe- und Knochenstrukturen lassen sich die diagnostischen M{\"o}glichkeiten durch molekulare Bildgebung erheblich erweitern. Rotationsdriftspektroskopie (Rotational Drift Spectroscopy, RDS) ist eine in dieser Arbeit entwickelte Methode f{\"u}r die induktive Messung der Beweglichkeit von MNPs in fl{\"u}ssiger Suspension. Es verwendet die Rotationsdrift von MNPs in rotierenden magnetischen Feldern als Grundlage und bietet das Potential die {\"A}nderungen der Beweglichkeit von MNPs mit einer Empfindlichkeit messen zu k{\"o}nnen, welche potentiell um mehrere Gr{\"o}ßenordnungen h{\"o}her sein kann als mit den oben erw{\"a}hnten Verfahren. Die vorliegende Arbeit konzentriert sich auf die Verwendbarkeit dieses Effekts als Spektroskopiemethode. Die Eigenschaften des RDS-Signals sind jedoch auch als Grundlage f{\"u}r r{\"a}umliche Kodierung vielversprechend. In weiterf{\"u}hrenden Projekten soll daher auch die Entwicklung von Rotationsdriftbildgebung (Rotating Drift Imaging, RDI) als ein nicht-invasives Verfahren f{\"u}r molekulare Bildgebung angestrebt werden. Der Grundgedanke von RDS entlehnt sich aus einem in 2006 ver{\"o}ffentlichten Sensordesign basierend auf magnetische Mikropartikel in einem schwachen rotierenden Magnetfeld. Das rotierende Magnetfeld ist dabei so schwach gew{\"a}hlt, dass sich das Partikel aufgrund der viskosen Reibung nicht mehr synchron mit dem externen Feld drehen kann. Die Frequenz der resultierenden asynchronen Rotationsdrift liegt unterhalb der Frequenz des externen Rotationsfelds und ist Abh{\"a}ngig von der viskosen Reibung. Aufgrund dieser Abh{\"a}ngigkeit k{\"o}nnen {\"A}nderungen im Reibungskoeffizienten des Partikels {\"u}ber {\"A}nderungen in der Rotationsdriftfrequenz gemessen werden. RDS zielt darauf ab, diese Rotationsdrift bei suspendierten MNPs {\"u}ber deren makroskopische Magnetisierung messen zu k{\"o}nnen. Damit wird u.a. auch die nicht-invasive Messung von MNPs innerhalb opaker biologischer Proben m{\"o}glich. MNP-Suspensionen sind großzahlige Nanopartikel-ensembles und k{\"o}nnen nicht wie ein einzelnes Mikropartikel gemessen werden. F{\"u}r die induktive Messung ist vor dem Start eine Ausrichtung aller magnetischen Momente n{\"o}tig, da sich deren makroskopische Magnetisierung andernfalls zu Null addiert. Aufgrund von Rotationsdiffusion bleibt diese Ausrichtung nur eine begrenzte Zeit bestehen, so dass auch die eigentliche Messung des RDS-Signals nur eine begrenzte Zeit m{\"o}glich ist. Diese Ausrichtung wurde in den ersten Experimenten durch einen kurzen Magnetfeldpuls erzeugt. In der Empfangsspule ist die Induktion durch das Rotationsfeld typischer Weise um mehrere Gr{\"o}ßenordnungen h{\"o}her als das zu erwartende Signal und muss durch einen Tiefpass unterdr{\"u}ckt werden. In diesem Tiefpassfilter ruft jedoch die Einkopplung des Anfangspulses eine Pulsantwort hervor, die ebenso mehrere Gr{\"o}ßenordnungen des zu erwartenden Signals betragen kann und {\"a}hnlich langsam wie typische Signale abklingt. Die Unterdr{\"u}ckung dieser Pulsantwort stellte in den ersten Experimenten die gr{\"o}ßte H{\"u}rde da. Der erste Aufbau hatte eine Relaisschaltung zur Pulsunterdr{\"u}ckung und resultierte in einer Totzeit von 3 ms zwischen Anfangspuls und Start der Messung. Aufgrund dieser Totzeit waren die ersten Messungen auf gr{\"o}ßere Agglomerate und Sedimente von MNPs beschr{\"a}nkt, da nur in diesem Fall eine hinreichend lange Zerfallsdauer der Probenmagnetisierung vorlag. Das Verhalten derartiger Partikelsysteme ist jedoch aufgrund von mechanischer und magnetischer Interpartikelwechselwirkung vergleichsweise komplex und theoretisch schwer modellierbar. Das prim{\"a}re Zielsystem f{\"u}r RDS hingegen, Eindom{\"a}nenpartikel mit im Partikel fixierter Magnetisierung und Punktsymmetrie bzgl. des Reibungstensors, erlaubt die Aufstellung einer parametrisierten Funktion f{\"u}r den Signalverlauf. Es erm{\"o}glicht somit aufgrund der besseren Berechenbarkeit eine solidere Auswertung des RDS-Signals. Um Eindom{\"a}nenpartikel in w{\"a}ssriger Suspension mit typischen Partikeldurchmessern um 100 nm messen zu k{\"o}nnen ist eine Verk{\"u}rzung der Totzeit auf mindestens 1/10 erforderlich. Prinzipiell kann diese Problematik durch die Verwendung schneller Halbleiterschalter in Verbindung mit einer pr{\"a}zise abstimmbaren induktiven Entkopplung des Spulensystems gemindert werden. Simulationen des RDS-Signals f{\"u}r verschiedene RDS-Sequenzen zeigen jedoch noch zwei weitere M{\"o}glichkeiten auf, die ohne aufw{\"a}ndigen Eingriffe in der Hardware auskommen. Zum einen kann durch orthogonales Frequenzmischen mit geeignetem Frequenz- und Phasenverh{\"a}ltnis eine Ausrichtung der magnetischen Momente bewirkt werden. Da die ben{\"o}tigten Frequenzen vollst{\"a}ndig im Sperrband des Tiefpassfilters liegen k{\"o}nnen, l{\"a}sst sich damit die Pulsantwort bei hinreichend „weichem" Umschalten zwischen der Polarisierungssequenz und der RDS-Sequenz vollst{\"a}ndig vermeiden. Dar{\"u}ber hinaus zeigt sich, dass es bei Anwesenheit eines schwachen Offsetfelds (< 10 \% der Rotationsfeldamplitude) zu einer Ausrichtung der magnetischen Momente kommt, wenn das magnetische Rotationsfeld seine Richtung {\"a}ndert und diese {\"A}nderung nicht abrupt erfolgt, sondern das Rotationsfeld {\"u}bergangsweise in ein linear oszillierendes Feld {\"u}bergeht. Hingegen wird die Wirkung des Offsetfelds durch das Rotationsfeld vor und nach dem Wechsel nahezu vollst{\"a}ndig neutralisiert, so dass damit das St{\"o}rsignale generierende Schalten eines Offsetfelds ersetzt werden kann. Es ist auf diese Weise nicht m{\"o}glich, Echosequenzen zu erzeugen, da hier bei der f{\"u}r Echosequenzen ben{\"o}tigten Richtungsumkehr des Rotationsfelds die zuvor aufgepr{\"a}gte Phasenverteilung durch das Offsetfeld zerst{\"o}rt wird und somit anstelle einer Signalechogenerierung eine neue RDS-Messung gestartet wird. Obwohl es Echosequenzen mit Anfangspuls erlauben, mehr MNP Parameter zu messen, bietet dieser Ansatz dennoch entscheidende Vorteile. So ergibt sich eine massive Vereinfachung der Hardware und es sind bei gleicher Rotationsfrequenz deutlich h{\"o}here Wiederholraten m{\"o}glich. Die Vermeidung von Schaltvorg{\"a}ngen durch die Verwendung von Offsetfeldern erm{\"o}glicht es, mit dem urspr{\"u}nglichem Aufbau auch Partikelsysteme zu untersuchen, deren Relaxationszeit weit unter 3 ms liegt. Hier zeigt sich, dass sich f{\"u}r unterschiedliche Partikelsysteme teils sehr charakteristische Signalmuster ergeben. Diese lassen sich grob in drei Kategorien einteilen. Die erste Kategorie sind suspendierte Eindom{\"a}nenpartikel mit einer nicht vernachl{\"a}ssigbaren Relaxationszeit. Hier handelt es sich um das bevorzugte Zielsystem f{\"u}r RDS, das durch die Langevin-Gleichung beschrieben werden kann. Die zweite Kategorie sind Partikelsysteme, bei denen die Relaxationsdauer vernachl{\"a}ssigbar ist. In diesem Fall kann der Signalverlauf mit der Langevinfunktion beschrieben werden. Die dritte Kategorie umfasst alle {\"u}brigen Partikelsysteme, insbesondere Suspensionen von MNP-Clustern, die u.a. aufgrund von Interpartikelwechselwirkung komplexe Signalverl{\"a}ufe ergeben, die sich praktisch nicht berechnen lassen. Spektroskopische Untersuchungen sind damit dennoch durch das Anlegen entsprechender Referenzdatenbanken m{\"o}glich (Fingerprinting). Multiparametrisches RDS, d.h. die Wiederholung der Messung f{\"u}r z.B. unterschiedliche Amplituden oder unterschiedliche Viskosit{\"a}ten des Suspensionsmediums, erzeugt aufgrund mehrerer nichtlinearer Abh{\"a}ngigkeiten massive Unterschiede im resultierenden multidimensionalen Datensatz. Das verspricht die Erreichbarkeit hoher spektroskopischer Trennsch{\"a}rfen bei geeigneter Partikel- und Sequenzoptimierung. Die Simulationen und experimentellen Ergebnisse dieser Arbeit zeigen grunds{\"a}tzliche H{\"u}rden und M{\"o}glichkeiten f{\"u}r das ebenfalls in dieser Arbeit eingef{\"u}hrte RDS auf. Es zeigt damit grundlegende Aspekte auf, die f{\"u}r die Entwicklung von RDS-Hardware und die Optimierung von MNP-Suspensionen n{\"o}tig sind. Mit RDS wird in weiterf{\"u}hrenden Arbeiten die Entwicklung von hochempfindlichen Bioassays und die Erweiterung um die r{\"a}umliche Kodierung angestrebt (RDI), da der zugrunde liegende Effekt zugleich sehr vielversprechend als Grundlage f{\"u}r molekulare Bildgebung ist.}, subject = {Magnetteilchen}, language = {de} } @phdthesis{Knoefel2018, author = {Kn{\"o}fel, Patrick}, title = {Energiebilanzmodellierung zur Ableitung der Evapotranspiration - Beispielregion Khorezm}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-042-9 (Print)}, issn = {0510-9833}, doi = {10.25972/WUP-978-3-95826-043-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135669}, school = {W{\"u}rzburg University Press}, pages = {276}, year = {2018}, abstract = {Zum Verst{\"a}ndnis der komplexen Wechselwirkungen innerhalb des Klimasystems der Erde sind Kenntnisse {\"u}ber den hydrologischen Zyklus und den Energiekreislauf essentiell. Eine besondere Rolle obliegt hierbei der Evapotranspiration (ET), da sie eine wesentliche Teilkomponente beider oben erw{\"a}hnter Kreisl{\"a}ufe ist. Die exakte Quantifizierung der regionalen, tats{\"a}chlichen Evapotranspiration innerhalb der Wasser- und Energiekreisl{\"a}ufe der Erdoberfl{\"a}che auf unterschiedlichen zeitlichen und r{\"a}umlichen Skalen ist f{\"u}r hydrologische, klimatologische und agronomische Fragestellungen von großer Bedeutung. Dabei ist eine realistische Absch{\"a}tzung der regionalen tats{\"a}chlichen Evapotranspiration die wichtigste Herausforderung der hydrologischen Modellierung. Besonders die unterschiedlichen r{\"a}umlichen und zeitlichen Aufl{\"o}sungen von Satelliteninformationen machen die Fernerkundung sowohl f{\"u}r globale als auch regionale hydrologischen Fragestellungen interessant. Zus{\"a}tzlich zur Notwendigkeit des Prozessverst{\"a}ndnisses des Wasserkreislaufs auf globaler Ebene kommt dessen regionale Bedeutung f{\"u}r die Landwirtschaft, insbesondere in Bew{\"a}sserungssystemen arider Regionen. In ariden Klimazonen {\"u}bersteigt die Menge der Verdunstung oft bei weitem die Niederschlagsmengen. Aufgrund der geringen Niederschlagsmenge muss in ariden agrarischen Regionen das zum Pflanzenwachstum ben{\"o}tigte Wasser mit Hilfe k{\"u}nstlicher Bew{\"a}sserung aufgebracht werden. Der jeweilige lokale Bew{\"a}sserungsbedarf h{\"a}ngt von der Feldfrucht und deren Wachstumsphase, den Klimabedingungen, den Bodeneigenschaften und der Ausdehnung der Wurzelzone ab. Die Evapotranspiration ist als Komponente der regionalen Wasserbilanz eine wichtige Steuerungsgr{\"o}ße und Effizienzindikator f{\"u}r das lokale Bew{\"a}sserungsmanagement. Die Bew{\"a}sse-rungslandwirtschaft verbraucht weltweit etwa 70 \% der verf{\"u}gbaren S{\"u}ßwasservorkom-men. Dies wird als einer der Hauptgr{\"u}nde f{\"u}r die weltweit steigende Wasserknappheit identifiziert. Dabei liegt die Wasserentnahme des landwirtschaftlichen Sektors in den OECD Staaten im Mittel bei etwa 44 \%, in den Staaten Mittelasiens bei {\"u}ber 90 \%. Bei der Erstellung der vorliegenden Arbeit kam die Methode der residualen Bestimmung der Energiebilanz zum Einsatz. Eines der weltweit am h{\"a}ufigsten eingesetzten und vali-dierten fernerkundlichen Residualmodelle zur ET Ableitung ist das SEBAL-Modell (Surface Energy Balance Algorithm for Land, mit {\"u}ber 40 ver{\"o}ffentlichten Studien. SEBAL eignet sich zur Quantifizierung der Verdunstung großfl{\"a}chiger Gebiete und wurde bisher {\"u}ber-wiegend in der Bew{\"a}sserungslandwirtschaft eingesetzt. Aus diesen Gr{\"u}nden wurde es f{\"u}r die Bearbeitung der Fragestellungen in dieser Arbeit ausgew{\"a}hlt. SEBAL verwendet physikalische und empirische Beziehungen zur Berechnung der Energiebilanzkomponenten basierend auf Fernerkundungsdaten, bei gleichzeitig minimalem Einsatz bodengest{\"u}tzter Daten. Als Eingangsdaten werden u.a. Informationen {\"u}ber Strahlung, Bodenoberfl{\"a}chentemperatur, NDVI, LAI und Albedo verwendet. Zus{\"a}tzlich zu SEBAL wurden einige Komponenten der SEBAL Weiterentwicklung METRIC (Mapping Evapotranspiration with Internalized Calibration) verwendet, um die Modellierung der ET vorzunehmen. METRIC {\"u}berwindet einige Limitierungen des SEBAL Verfahrens und kann beispielsweise auch in st{\"a}rker reliefierten Regionen angewendet werden. Außerdem erm{\"o}glicht die Integration einer gebietsspezifischen Referenz-ET sowie einer Landnutzungsklassifikation eine bessere regionale Anpassung des Residualverfahrens. Unter der Annahme der Bedingungen zum Zeitpunkt der Fernerkundungsaufnahme ergibt sich die Energiebilanz an der Erdoberfl{\"a}che RN = LvE + H + G. Demnach teilt sich die verf{\"u}gbare Strahlungsenergie RN in die Komponenten latenter W{\"a}rme (LVE), f{\"u}hlbarer W{\"a}rme (H) und Bodenw{\"a}rme (G) auf. Durch Umstellen der Gleichung kann auf die latente W{\"a}rme geschlossen werden. Das wesentliche Ziel der vorliegenden Arbeit ist die Optimierung, Erweiterung und Validierung des ausgew{\"a}hlten SEBAL Verfahrens zur regionalen Modellierung der Energiebilanzkomponenten und der daraus abgeleiteten tats{\"a}chlichen Evapotranspiration. Die validierten Modellergebnisse der Gebietsverdunstung der Jahre 2009-2011 sollen anschließend als Grundlage dienen, das Gesamtverst{\"a}ndnis der regionalen Prozesse des Wasserkreislaufs zu verbessern. Die Arbeit basiert auf der Datengrundlage von MODIS Daten mit 1 km r{\"a}umlicher Aufl{\"o}sung. W{\"a}hrend die Komponenten verf{\"u}gbare Strahlungsenergie und f{\"u}hlbarer W{\"a}rmestrom physikalisch basiert ermittelt werden, beruht die Berechnung des Bodenw{\"a}rmestroms ausschließlich auf empirischen Absch{\"a}tzungen. Ein großer Nachteil des empirischen Ansatzes ist die Vernachl{\"a}ssigung des zeitlichen Versatzes zwischen Strahlungsbilanz und Bodenw{\"a}rmestrom in Abh{\"a}ngigkeit der aktuellen Bodenfeuchtesituation. Ein besonderer Schwerpunkt der vorliegenden Arbeit liegt auf der Bewertung und Verbesserung der Modellg{\"u}te des Bodenw{\"a}rmestroms durch Verwendung eines neuen Ansatzes zur Integration von Bodenfeuchteinformationen. Daher wird in der Arbeit ein physikalischer Ansatz entwickelt der auf dem Ansatz der periodischen Temperaturver{\"a}nderung basiert. Hierbei wurde neben dem ENVISAT ASAR SSM Produkt der TU Wien das operationelle Oberfl{\"a}chenbodenfeuchteprodukt ASCAT SSM als Fernerkundungseingangsdaten ausgew{\"a}hlt. Die mit SEBAL modellierten Energiebilanzkomponenten werden durch eine intensive Validierung mit bodengest{\"u}tzten Messungen bewertet, die Messungen stammen von Bodensensoren und Daten einer Eddy-Kovarianz-Station aus den Jahren 2009 bis 2011. Die Region Khorezm gilt als charakteristisch f{\"u}r die wasserbezogene Problematik der Bew{\"a}sserungslandwirtschaft Mittelasiens und wurde als Untersuchungsgebiet f{\"u}r diese Arbeit ausgew{\"a}hlt. Die wesentlichen Probleme dieser Region entstehen durch die nach wie vor nicht nachhaltige Land- und Wassernutzung, das marode Bew{\"a}sserungsnetz mit einer Verlustrate von bis zu 40 \% und der Bodenversalzung aufgrund hoher Grundwasserspiegel. Im Untersuchungsgebiet wurden in den Jahren 2010 und 2011 umfangreiche Feldarbeiten zur Erhebung lokaler bodengest{\"u}tzter Informationen durchgef{\"u}hrt. Bei der Evaluierung der modellierten Einzelkomponenten ergab sich f{\"u}r die Strahlungsbi-lanz eine hohe Modellg{\"u}te (R² > 0,9; rRMSE < 0,2 und NSE > 0,5). Diese Komponente bildet die Grundlage bei der Bezifferung der f{\"u}r die Prozesse an der Erdoberfl{\"a}che zur Verf{\"u}gung stehenden Energie. F{\"u}r die f{\"u}hlbaren W{\"a}rmestr{\"o}me wurden ebenfalls gute Ergebnisse erzielt, mit NSE von 0,31 und rRMSE von ca. 0,21. F{\"u}r die residual bestimmte Gr{\"o}ße der latenten W{\"a}rmestr{\"o}mung konnte eine insgesamt gute Modellg{\"u}te festgestellt werden (R² > 0,6; rRMSE < 0,2 und NSE > 0,5). Dementsprechend gut wurde die t{\"a}gliche Evapotranspiration modelliert. Hier ergab sich, nach der Interpolation t{\"a}glicher Werte, eine insgesamt ausreichend gute Modellg{\"u}te (R² > 0,5; rRMSE < 0,2 und NSE > 0,4). Dies best{\"a}tigt die Ergebnisse vieler Energiebilanzstudien, die lediglich den f{\"u}r die Ableitung der Evapotranspiration maßgebenden W{\"a}rmestrom untersuchten. Die Modellergebnisse f{\"u}r den Bodenw{\"a}rmestrom konnten durch die Entwicklung und Verwendung des neu entwickelten physikalischen Ansatzes von NSE < 0 und rRMSE von ca. 0,57 auf NSE von 0,19 und rRMSE von 0,35 verbessert werden. Dies f{\"u}hrt zu einer insgesamt positiven Einsch{\"a}tzung des Verbesserungspotenzials des neu entwickelten Bodenw{\"a}rmestromansatzes bei der Berechnung der Energiebilanz mit Hilfe von Fernerkundung.}, subject = {Evapotranspiration}, language = {de} }