@phdthesis{Lange2012, author = {Lange, Sebastian}, title = {Turbulenz und Teilchentransport in der Heliosph{\"a}re - Simulationen von inkompressiblen MHD-Plasmen und Testteilchen -}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74012}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die Herkunft hochenergetischer solarer Teilchen konnte in den vergangenen Jahren eindeutig auf Schockbeschleunigung an koronalen Masseausw{\"u}rfen zur{\"u}ckgef{\"u}hrt werden. Durch resonante Interaktionen zwischen Wellen und Teilchen werden zum einen geladene Teilchen unter Ver{\"a}nderung ihrer Energie gestreut, zum anderen wird die Dynamik der Plasmawellen in solchen Beschleunigungsregionen durch diese Prozesse von selbstgenerierten Wellenmoden maßgeblich beeinflusst. Mittels numerischer Modellierungen wurden im Rahmen dieser Arbeit die grundlegenden physikalischen Regimes der Turbulenz und des Teilchentransports beschrieben. Die Simulation der Plasmadynamik bedient sich der Methodik der Magnetohydrodynamik, wohingegen kinetische Einzelteilchen durch die elementaren Bewegungsgleichungen der Elektrodynamik berechnet werden. Es konnten die Turbulenztheorien von Goldreich und Sridhar unter heliosph{\"a}rischen Bedingungen bei drei solaren Radien best{\"a}tigt werden. Vor allem zeigten sich Hinweise f{\"u}r das Erreichen der kritischen Balance, einem Schl{\"u}sselparameter dieser Theorien. Weiterhin werden Ergebnisse der dynamischen Entwicklung angeregter Wellenmoden pr{\"a}sentiert, in denen die Bedeutsamkeit f{\"u}r die gesamte Turbulenz gezeigt werden konnte. Als zentraler Prozess bei hohen Energien hat sich das wave-steepening herausgestellt, das als effizienter Energietransportmechanismus in paralleler Richtung zum Hintergrundmagnetfeld identifiziert wurde und somit turbulente Strukturen bei hohen parallelen Wellenzahlen erkl{\"a}rt, deren Entstehung das Goldreich-Sridhar Modell nicht beschreiben kann. Dar{\"u}ber hinaus wurden grundlegende Erkenntnisse {\"u}ber die quasilineare Theorie des Teilchentransports erzielt. Im Speziellen konnte ein tieferes Verst{\"a}ndnis f{\"u}r die Interpretation der Diffusionskoeffizienten von Welle-Teilchen Wechselwirkungen erlangt werden. Simulationen zur Streuung an angeregten Wellenmoden zeigten erstmals komplexe resonante Strukturen die im Rahmen analytischer Modelle nicht mehr ad{\"a}quat beschrieben werden k{\"o}nnen.}, subject = {Heliosph{\"a}re}, language = {de} } @phdthesis{Ganse2012, author = {Ganse, Urs}, title = {Kinetische Simulationen solarer Typ II Radiobursts}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73676}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die Emission solarer Typ II Radiobursts ist ein seit Jahrzehnten beobachtetes Ph{\"a}nomen der heliosph{\"a}rischen Plasmaphysik. Diese Radiobursts, die im Zusammenhang mit der Propagation koronaler Schockfronten auftreten, zeigen ein charakteristisches, zweibandiges Emissionsspektrum. Mit expandierendem Schock driften sie zu niedrigeren Frequenzen. Analytische Theorien dieser Emission sagen nichtlineare Plasmawellenwechselwirkung als Ursache voraus, doch aufgrund des geringen Sonnenabstands der Emissionsregion ist die in-situ Datenlage durch Satellitenmessungen {\"a}usserst schlecht, so dass eine endg{\"u}ltige Verifikation der vorhergesagten Vorg{\"a}nge bisher nicht m{\"o}glich war. Mit Hilfe eines kinetischen Plasma-Simulationscodes nach dem Particle-in-Cell Prinzip wurde in dieser Dissertation die Plasmaumgebung in der Foreshock-Region einer koronalen Schockfront modelliert. Das Propagations- und Kopplungsverhalten elektrostatischer und elektromagnetischer Wellenmoden wurde untersucht. Die vollst{\"a}ndige r{\"a}umliche Information {\"u}ber die Wellenzusammensetzung in der Simulation erlaubt es, die Kinematik nichtlinearer Wellenkopplungen genauestens zu untersuchen. Es zeigte sich ein mit der analytischen Theorie der Drei-Wellen-Wechselwirkung konsistentes Bild der Erzeugung solarer Radiobursts: durch elektromagnetischen Zerfall elektrostatischer Moden kommt es zur Erzeugung fundamentaler, sowie durch Verschmelzung gegenpropagierender elektrostatischer Moden zur Anregung harmonischer Radioemission. Kopplungsst{\"a}rken und Winkelabh{\"a}ngigkeit dieser Prozesse wurden untersucht. Mit dem somit zur Verf{\"u}gung stehenden, numerischen Laborsystem wurde die Parameter-Abh{\"a}ngigkeit der Wellenkopplungen und entstehenden Radioemissionen bez{\"u}glich St{\"a}rke des Elektronenbeams und des solaren Abstandes untersucht.}, subject = {Heliosph{\"a}re}, language = {de} } @phdthesis{Rueger2011, author = {R{\"u}ger, Michael}, title = {Ein zeitabh{\"a}ngiges, selbstkonsistentes hadronisch-leptonisches Strahlungsmodell zur Modellierung der Multiwellenl{\"a}ngenemission von Blazaren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56955}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit Strahlungsprozessen in Blazaren. Bei den Blazaren handelt es sich um eine Unterkategorie der aktiven Galaxienkerne, bei denen die Jetachse in Richtung des Beobachters zeigt. Charakteristisch f{\"u}r die Blazare ist ein Multifrequenzspektrum der Photonen, welches sich vom Radiobereich bis hin zur Gamma-Strahlung mit TeV-Energien erstreckt. Insbesondere der Gamma-Bereich r{\"u}ckt aktuell in den Fokus der Betrachtung mit Experimenten wie zum Beispiel FERMI und MAGIC. Ziel dieser Arbeit ist die Modellierung der auftretenden Strahlungsprozesse und die Beschreibung der Multifrequenzspektren der Blazare mit Hilfe eines hadronisch-leptonischen Modells. Grundlage hierf{\"u}r ist ein selbstkonsistentes Synchrotron-Selbst-Compton-Modell (SSC), welches zur Beschreibung des Spektrums der Quelle 1 ES 1218+30.4 verwendet wird. Dabei wird die Parameterwahl unterst{\"u}tzt durch eine Absch{\"a}tzung der Masse des zentralen schwarzen Loches. Das hier behandelte SSC-Modell wird dahingehend untersucht, wie es sich unter Ver{\"a}nderung der Modellparameter verh{\"a}lt. Dabei werden Abh{\"a}ngigkeiten des Photonenspektrums von {\"A}nderungsfaktoren der Parameter abgeleitet. Außerdem werden diese Abh{\"a}ngigkeiten in Relation gesetzt und aus dieser Betrachtung ergibt sich die Schlussfolgerung, dass unter der Voraussetzung eines festen Spektralindex der Elektronenverteilung die Wahl eines Parametersatzes zur Modellierung eines Photonenspektrums eindeutig ist. Zur Einf{\"u}hrung eines zeitabh{\"a}ngigen, hadronischen Modells wird das SSCModell um die Anwesenheit nichtthermischer Protonen erweitert. Dadurch kann Proton-Synchrotron-Strahlung einen Beitrag im Gamma-Bereich leisten. Außerdem werden durch Proton-Photon-Wechselwirkung Pionen erzeugt. Aus deren Zerfall werden zusammen mit der Paarbildung aus Photon-Photon-Absorption sekund{\"a}re Elektronen und Positronen produziert, die wiederum zum Hochenergiespektrum beitragen. Neben den Pionen werden bei der Proton-Photon- Wechselwirkung außerdem noch Neutrinos und Neutronen erzeugt, die einen direkten Einblick in die Emissionsregion erlauben. Das hier vorgestellte hadronische Modell wird auf die Quelle 3C 279 angewandt. F{\"u}r diese Quelle reicht mit der Detektion im VHE-Bereich der SSCAnsatz nicht aus, um das Photonenspektrum zu beschreiben. Mit dem vorgelegten Modell gelingt die Beschreibung des Spektrums in den SSC-kritischen Bereichen sehr gut. Insbesondere k{\"o}nnen verschiedene Flusszust{\"a}nde modelliert und allein durch Ver{\"a}nderung der Maximalenergien von Protonen und Elektronen ineinander {\"u}berf{\"u}hrt werden. Diese einfache M{\"o}glichkeit der Modellierung der Variabilit{\"a}t der Quelle unterstreicht die Wahl des hadronischen Ansatzes. Somit wird hier ein sehr gutes Werkzeug zur Untersuchung der Emissionsprozesse in Blazaren geliefert. Dar{\"u}ber hinaus ist mit der Absch{\"a}tzung des Neutrino-Flusses zwar die Detektion von 3C 279 als Punktquelle mit IceCube unwahrscheinlich, jedoch liefert das Modell generell die M{\"o}glichkeit im Kontext des Multimessenger-Ansatzes Antworten zu liefern. Im gleichen Kontext wird auch der Beitrag zur kosmischen Strahlung durch entweichende Neutronen untersucht.}, subject = {Blazar}, language = {de} } @misc{Wendel2022, type = {Master Thesis}, author = {Wendel, Christoph}, title = {Bestimmung des hochenergetischen Spektrums des Crab-Pulsars anhand eines Outer Gap-Modells}, doi = {10.25972/OPUS-25719}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257191}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Im Rahmen eines selbst-konsistenten Outer-Gap-Modells der Pulsar-Magnetosph{\"a}re wurde die elektromagnetische sehr hochenergetische Strahlung des Crab-Pulsars simuliert. Dies wurde parallel anhand zweier verschiedener F{\"a}lle getan, die sich in den angenommenen Gleichungen f{\"u}r die elektrische Feldst{\"a}rke und f{\"u}r den Kr{\"u}mmungsradius der magnetischen Feldlinien unterscheiden. Die Kinetik der geladenen Teilchen bei ihrer Propagation durch die Outer Gap wurde unter Einbeziehung von Kr{\"u}mmungsstrahlung, inverser Compton-Streuung und Triple Paarbildung betrachtet. Das theoretisch simulierte Spektrum wird mit von Fermi-LAT und von den MAGIC Teleskopen gemessenen Daten verglichen.}, subject = {Neutronenstern}, language = {de} }