@phdthesis{Zenk2018, author = {Zenk, Markus}, title = {On Numerical Methods for Astrophysical Applications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162669}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Diese Arbeit befasst sich mit der Approximation der L{\"o}sungen von Modellen zur Beschreibung des Str{\"o}mungsverhaltens in Atmosph{\"a}ren. Im Speziellen umfassen die hier behandelten Modelle die kompressiblen Euler Gleichungen der Gasdynamik mit einem Quellterm bez{\"u}glich der Gravitation und die Flachwassergleichungen mit einem nicht konstanten Bodenprofil. Verschiedene Methoden wurden bereits entwickelt um die L{\"o}sungen dieser Gleichungen zu approximieren. Im Speziellen geht diese Arbeit auf die Approximation von L{\"o}sungen nahe des Gleichgewichts und, im Falle der Euler Gleichungen, bei kleinen Mach Zahlen ein. Die meisten numerischen Methoden haben die Eigenschaft, dass die Qualit{\"a}t der Approximation sich mit der Anzahl der Freiheitsgrade verbessert. In der Praxis werden deswegen diese numerischen Methoden auf großen Computern implementiert um eine m{\"o}glichst hohe Approximationsg{\"u}te zu erreichen. Jedoch sind auch manchmal diese großen Maschinen nicht ausreichend, um die gew{\"u}nschte Qualit{\"a}t zu erreichen. Das Hauptaugenmerk dieser Arbeit ist darauf gerichtet, die Qualit{\"a}t der Approximation bei gleicher Anzahl von Freiheitsgrade zu verbessern. Diese Arbeit ist im Zusammenhang einer Kollaboration zwischen Prof. Klingenberg des Mathemaitschen Instituts in W{\"u}rzburg und Prof. R{\"o}pke des Astrophysikalischen Instituts in W{\"u}rzburg entstanden. Das Ziel dieser Kollaboration ist es, Methoden zur Berechnung von stellarer Atmosph{\"a}ren zu entwickeln. In dieser Arbeit werden vor allem zwei Problemstellungen behandelt. Die erste Problemstellung bezieht sich auf die akkurate Approximation des Quellterms, was zu den so genannten well-balanced Schemata f{\"u}hrt. Diese erlauben genaue Approximationen von L{\"o}sungen nahe des Gleichgewichts. Die zweite Problemstellung bezieht sich auf die Approximation von Str{\"o}mungen bei kleinen Mach Zahlen. Es ist bekannt, dass L{\"o}sungen der kompressiblen Euler Gleichungen zu L{\"o}sungen der inkompressiblen Euler Gleichungen konvergieren, wenn die Mach Zahl gegen null geht. Klassische numerische Schemata zeigen ein stark diffusives Verhalten bei kleinen Mach Zahlen. Das hier entwickelte Schema f{\"a}llt in die Kategorie der asymptotic preserving Schematas, d.h. das numerische Schema ist auf einem diskrete Level kompatibel mit dem auf dem Kontinuum gezeigten verhalten. Zus{\"a}tzlich wird gezeigt, dass die Diffusion des hier entwickelten Schemas unabh{\"a}ngig von der Mach Zahl ist. In Kapitel 3 wird ein HLL approximativer Riemann L{\"o}ser f{\"u}r die Approximation der L{\"o}sungen der Flachwassergleichungen mit einem nicht konstanten Bodenprofil angewendet und ein well-balanced Schema entwickelt. Die meisten well-balanced Schemata f{\"u}r die Flachwassergleichungen behandeln nur den Fall eines Fluids im Ruhezustand, die so genannten Lake at Rest L{\"o}sungen. Hier wird ein Schema entwickelt, welches sich mit allen Gleichgewichten befasst. Zudem wird eine zweiter Ordnung Methode entwickelt, welche im Gegensatz zu anderen in der Literatur nicht auf einem iterativen Verfahren basiert. Numerische Experimente werden durchgef{\"u}hrt um die Vorteile des neuen Verfahrens zu zeigen. In Kapitel 4 wird ein Suliciu Relaxations L{\"o}ser angepasst um die hydrostatischen Gleichgewichte der Euler Gleichungen mit einem Gravitationspotential aufzul{\"o}sen. Die Gleichungen der hydrostatischen Gleichgewichte sind unterbestimmt und lassen deshalb keine Eindeutigen L{\"o}sungen zu. Es wird jedoch gezeigt, dass das neue Schema f{\"u}r eine große Klasse dieser L{\"o}sungen die well-balanced Eigenschaft besitzt. F{\"u}r bestimmte Klassen werden Quadraturformeln zur Approximation des Quellterms entwickelt. Es wird auch gezeigt, dass das Schema robust, d.h. es erh{\"a}lt die Positivit{\"a}t der Masse und Energie, und stabil bez{\"u}glich der Entropieungleichung ist. Die numerischen Experimente konzentrieren sich vor allem auf den Einfluss der Quadraturformeln auf die well-balanced Eigenschaften. In Kapitel 5 wird ein Suliciu Relaxations Schema angepasst f{\"u}r Simulationen im Bereich kleiner Mach Zahlen. Es wird gezeigt, dass das neue Schema asymptotic preserving und die Diffusion kontrolliert ist. Zudem wird gezeigt, dass das Schema f{\"u}r bestimmte Parameter robust ist. Eine Stabilit{\"a}t wird aus einer Chapman-Enskog Analyse abgeleitet. Resultate numerische Experimente werden gezeigt um die Vorteile des neuen Verfahrens zu zeigen. In Kapitel 6 werden die Schemata aus den Kapiteln 4 und 5 kombiniert um das Verhalten des numerischen Schemas bei Fl{\"u}ssen mit kleiner Mach Zahl in durch die Gravitation geschichteten Atmosph{\"a}ren zu untersuchen. Es wird gezeigt, dass das Schema well-balanced ist. Die Robustheit und die Stabilit{\"a}t werden analog zu Kapitel 5 behandelt. Auch hier werden numerische Tests durchgef{\"u}hrt. Es zeigt sich, dass das neu entwickelte Schema in der Lage ist, die Dynamiken besser Aufzul{\"o}sen als vor der Anpassung. Das Kapitel 7 besch{\"a}ftigt sich mit der Entwicklung eines multidimensionalen Schemas basierend auf der Suliciu Relaxation. Jedoch ist die Arbeit an diesem Ansatz noch nicht beendet und numerische Resultate k{\"o}nnen nicht pr{\"a}sentiert werden. Es wird aufgezeigt, wo sich die Schw{\"a}chen dieses Ansatzes befinden und weiterer Entwicklungsbedarf besteht.}, subject = {Str{\"o}mung}, language = {en} } @phdthesis{Ganse2012, author = {Ganse, Urs}, title = {Kinetische Simulationen solarer Typ II Radiobursts}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73676}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die Emission solarer Typ II Radiobursts ist ein seit Jahrzehnten beobachtetes Ph{\"a}nomen der heliosph{\"a}rischen Plasmaphysik. Diese Radiobursts, die im Zusammenhang mit der Propagation koronaler Schockfronten auftreten, zeigen ein charakteristisches, zweibandiges Emissionsspektrum. Mit expandierendem Schock driften sie zu niedrigeren Frequenzen. Analytische Theorien dieser Emission sagen nichtlineare Plasmawellenwechselwirkung als Ursache voraus, doch aufgrund des geringen Sonnenabstands der Emissionsregion ist die in-situ Datenlage durch Satellitenmessungen {\"a}usserst schlecht, so dass eine endg{\"u}ltige Verifikation der vorhergesagten Vorg{\"a}nge bisher nicht m{\"o}glich war. Mit Hilfe eines kinetischen Plasma-Simulationscodes nach dem Particle-in-Cell Prinzip wurde in dieser Dissertation die Plasmaumgebung in der Foreshock-Region einer koronalen Schockfront modelliert. Das Propagations- und Kopplungsverhalten elektrostatischer und elektromagnetischer Wellenmoden wurde untersucht. Die vollst{\"a}ndige r{\"a}umliche Information {\"u}ber die Wellenzusammensetzung in der Simulation erlaubt es, die Kinematik nichtlinearer Wellenkopplungen genauestens zu untersuchen. Es zeigte sich ein mit der analytischen Theorie der Drei-Wellen-Wechselwirkung konsistentes Bild der Erzeugung solarer Radiobursts: durch elektromagnetischen Zerfall elektrostatischer Moden kommt es zur Erzeugung fundamentaler, sowie durch Verschmelzung gegenpropagierender elektrostatischer Moden zur Anregung harmonischer Radioemission. Kopplungsst{\"a}rken und Winkelabh{\"a}ngigkeit dieser Prozesse wurden untersucht. Mit dem somit zur Verf{\"u}gung stehenden, numerischen Laborsystem wurde die Parameter-Abh{\"a}ngigkeit der Wellenkopplungen und entstehenden Radioemissionen bez{\"u}glich St{\"a}rke des Elektronenbeams und des solaren Abstandes untersucht.}, subject = {Heliosph{\"a}re}, language = {de} } @phdthesis{Rueger2011, author = {R{\"u}ger, Michael}, title = {Ein zeitabh{\"a}ngiges, selbstkonsistentes hadronisch-leptonisches Strahlungsmodell zur Modellierung der Multiwellenl{\"a}ngenemission von Blazaren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56955}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit Strahlungsprozessen in Blazaren. Bei den Blazaren handelt es sich um eine Unterkategorie der aktiven Galaxienkerne, bei denen die Jetachse in Richtung des Beobachters zeigt. Charakteristisch f{\"u}r die Blazare ist ein Multifrequenzspektrum der Photonen, welches sich vom Radiobereich bis hin zur Gamma-Strahlung mit TeV-Energien erstreckt. Insbesondere der Gamma-Bereich r{\"u}ckt aktuell in den Fokus der Betrachtung mit Experimenten wie zum Beispiel FERMI und MAGIC. Ziel dieser Arbeit ist die Modellierung der auftretenden Strahlungsprozesse und die Beschreibung der Multifrequenzspektren der Blazare mit Hilfe eines hadronisch-leptonischen Modells. Grundlage hierf{\"u}r ist ein selbstkonsistentes Synchrotron-Selbst-Compton-Modell (SSC), welches zur Beschreibung des Spektrums der Quelle 1 ES 1218+30.4 verwendet wird. Dabei wird die Parameterwahl unterst{\"u}tzt durch eine Absch{\"a}tzung der Masse des zentralen schwarzen Loches. Das hier behandelte SSC-Modell wird dahingehend untersucht, wie es sich unter Ver{\"a}nderung der Modellparameter verh{\"a}lt. Dabei werden Abh{\"a}ngigkeiten des Photonenspektrums von {\"A}nderungsfaktoren der Parameter abgeleitet. Außerdem werden diese Abh{\"a}ngigkeiten in Relation gesetzt und aus dieser Betrachtung ergibt sich die Schlussfolgerung, dass unter der Voraussetzung eines festen Spektralindex der Elektronenverteilung die Wahl eines Parametersatzes zur Modellierung eines Photonenspektrums eindeutig ist. Zur Einf{\"u}hrung eines zeitabh{\"a}ngigen, hadronischen Modells wird das SSCModell um die Anwesenheit nichtthermischer Protonen erweitert. Dadurch kann Proton-Synchrotron-Strahlung einen Beitrag im Gamma-Bereich leisten. Außerdem werden durch Proton-Photon-Wechselwirkung Pionen erzeugt. Aus deren Zerfall werden zusammen mit der Paarbildung aus Photon-Photon-Absorption sekund{\"a}re Elektronen und Positronen produziert, die wiederum zum Hochenergiespektrum beitragen. Neben den Pionen werden bei der Proton-Photon- Wechselwirkung außerdem noch Neutrinos und Neutronen erzeugt, die einen direkten Einblick in die Emissionsregion erlauben. Das hier vorgestellte hadronische Modell wird auf die Quelle 3C 279 angewandt. F{\"u}r diese Quelle reicht mit der Detektion im VHE-Bereich der SSCAnsatz nicht aus, um das Photonenspektrum zu beschreiben. Mit dem vorgelegten Modell gelingt die Beschreibung des Spektrums in den SSC-kritischen Bereichen sehr gut. Insbesondere k{\"o}nnen verschiedene Flusszust{\"a}nde modelliert und allein durch Ver{\"a}nderung der Maximalenergien von Protonen und Elektronen ineinander {\"u}berf{\"u}hrt werden. Diese einfache M{\"o}glichkeit der Modellierung der Variabilit{\"a}t der Quelle unterstreicht die Wahl des hadronischen Ansatzes. Somit wird hier ein sehr gutes Werkzeug zur Untersuchung der Emissionsprozesse in Blazaren geliefert. Dar{\"u}ber hinaus ist mit der Absch{\"a}tzung des Neutrino-Flusses zwar die Detektion von 3C 279 als Punktquelle mit IceCube unwahrscheinlich, jedoch liefert das Modell generell die M{\"o}glichkeit im Kontext des Multimessenger-Ansatzes Antworten zu liefern. Im gleichen Kontext wird auch der Beitrag zur kosmischen Strahlung durch entweichende Neutronen untersucht.}, subject = {Blazar}, language = {de} }