@phdthesis{Richter2014, author = {Richter, Stephan}, title = {Detaillierte Simulationen von Blazar-Emissionen : ein numerischer Zugang zu Radiobeobachtungen und Kurzzeitvariabilit{\"a}t}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103209}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit den Prozessen, die in einer Unterklasse der Aktiven Galaxienkerne, den Blazaren, das Emissionsspektrum dieser Objekte erzeugen. Dies beinhaltet insbesondere den Beschleunigungsprozess, der eine nichtthermische Teilchenverteilung erzeugt, sowie diverse Strahlungsprozesse. Das Spektrum dieser Quellen reicht dabei vom Radiobereich bis zu Energien im TeV-Bereich. Die Form des zeitlich gemittelten Spektrums kann durch Modelle bereits sehr gut beschrieben werden. Insbesondere die erste der beiden dominierenden Komponenten des Spektrums kann mit hoher Sicherheit mit Synchrotronemission einer Elektronenenergieverteilung in Form eines Potenzgesetzes identifiziert werden. F{\"u}r den Ursprung der zweiten Komponente existieren jedoch verschiedene Erkl{\"a}rungsversuche. Dies sind im wesentlichen die inverse Compton-Streuung der internen oder externer Strahlung (leptonische Modelle) sowie die Emission und photohadronische Wechselwirkung einer hochenergetischen Verteilung von Protonen in der Quelle. Eine r{\"a}umliche Aufl{\"o}sung des Ursprungs der detektierten Strahlung ist mit den zur Verf{\"u}gung stehenden Teleskopen nicht m{\"o}glich. Einschr{\"a}nkungen f{\"u}r die Ausdehnung dieser Emissionszone ergeben sich lediglich aus der Variation des Emissionsspektrums. Eine Bestimmung der Morphologie ist jedoch im selbstabsorbierten Radiobereich des Spektrums durch die Ausnutzung von interferometrischen Beobachtungen m{\"o}glich. Die resultierenden L{\"a}ngen, auf denen die im inneren der Quelle selbstabsorbierte Strahlung die Quelle schließlich verl{\"a}sst, sind jedoch etwa zwei Gr{\"o}ßenordnungen oberhalb der aus den Variabilit{\"a}tszeitskalen gefolgerten Limits. Das im Rahmen dieser Arbeit entwickelte Modell soll dabei helfen, verschiedene Beobachtungen mit Hilfe eines quantitativen Modells zu beschreiben. Hier steht insbesondere die Korrelation zwischen den Verl{\"a}ufen der Hochenergie- und Radioemission im Vordergrund. Eine Aussage {\"u}ber die Existenz einer solchen Verbindung konnte aus den bisherigen Beobachtungen nicht getroffen werden. Eine quantitative Modellierung k{\"o}nnte bei der Interpretation der bisher uneindeutigen Datenlage helfen. Eine weitere, durch Modelle bisher nicht beschreibbare, Beobachtungsevidenz sind extrem kurzzeitige Variationen des Flusszustands. Die Lichtlaufzeit durch das f{\"u}r die Modellierung ben{\"o}tigte Raumgebiet ist zumeist gr{\"o}ßer als die beobachtete Zeitskala. Zudem deuten die Beobachtungen darauf hin, dass manche dieser Flussausbr{\"u}che nicht zwischen den verschiedenen B{\"a}ndern korreliert sind, wie es zumindest die leptonischen Modelle erwarten lassen w{\"u}rden. Das hier beschriebene Modell verbindet eine r{\"a}umliche Aufl{\"o}sung des Emissionsgebiets mit dem dominanten Beschleunigungsmechanismus. Hierdurch konnte zun{\"a}chst gezeigt werden, dass die Beschreibung von Variabilit{\"a}t auch auf Skalen unterhalb der Lichtlaufzeit durch das modellierte Raumgebiet m{\"o}glich ist. Zudem wurde ein Szenario quantifiziert, dass im leptonischen Fall unkorrelierte Ausbr{\"u}che vorhersagt. \thispagestyle{empty} Durch eine Erweiterung des Emissionsgebiets gegen{\"u}ber anderen Blazar-Modellen um zwei Gr{\"o}ßenordnung konnte zudem eine Verkn{\"u}pfung zwischen dem Hochenergie- und dem Radiobereich erfolgen. Die gefundene Morphologie des Einschlussgebiets der nichtthermischen Teilchenpopulation beinhaltet eine physikalisch sinnvolle Randbedingung f{\"u}r das Emissionsgebiet der Hochenergiestrahlung, die zudem den f{\"u}r die betrachtete Quelle korrekten Spektralindex im Radiobereich erzeugt. Dar{\"u}ber hinaus wurden in das Modell sowohl leptonische als auch hadronische Prozesse integriert, die eine flexible und unvoreingenommene Modellierung potentieller Hybridquellen erlauben. Mit dem entwickelten Modell ist es m{\"o}glich, aus detailliert vermessenen Lichtkurven im Hochenergiebereich die zu erwartende Radioemission vorherzusagen. Die in diese Vorhersage eingehenden Parameter lassen sich aus der Modellierung des Gleichgewichtsspektrums bestimmen.}, subject = {Blazar}, language = {de} } @phdthesis{Lewandowska2015, author = {Lewandowska, Natalia Ewelina}, title = {A Correlation Study of Radio Giant Pulses and Very High Energy Photons from the Crab Pulsar}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123533}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Pulsars (in short for Pulsating Stars) are magnetized, fast rotating neutron stars. The basic picture of a pulsar describes it as a neutron star which has a rotation axis that is not aligned with its magnetic field axis. The emission is assumed to be generated near the magnetic poles of the neutron star and emitted along the open magnetic field lines. Consequently, the corresponding beam of photons is emitted along the magnetic field line axis. The non-alignment of both, the rotation and the magnetic field axis, results in the effect that the emission of the pulsar is only seen if its beam points towards the observer. The emission from a pulsar is therefore perceived as being pulsed although its generation is not. This rather simple geometrical model is commonly referred to as Lighthouse Model and has been widely accepted. However, it does not deliver an explanation of the precise mechanisms behind the emission from pulsars (see below for more details). Nowadays more than 2000 pulsars are known. They are observed at various wavelengths. Multiwavelength studies have shown that some pulsars are visible only at certain wavelengths while the emission from others can be observed throughout large parts of the electromagnetic spectrum. An example of the latter case is the Crab pulsar which is also the main object of interest in this thesis. Originating from a supernova explosion observed in 1054 A.D. and discovered in 1968, the Crab pulsar has been the central subject of numerous studies. Its pulsed emission is visible throughout the whole electromagnetic spectrum which makes it a key figure in understanding the possible mechanisms of multiwavelength emission from pulsars. The Crab pulsar is also well known for its radio emission strongly varying on long as well as on short time scales. While long time scale behaviour from a pulsar is usually examined through the use of its average profile (a profile resulting from averaging of a large number of individual pulses resulting from single rotations), short time scale behaviour is examined via its single pulses. The short time scale anomalous behaviour of its radio emission is commonly referred to as Giant Pulses and represents the central topic of this thesis. While current theoretical approaches place the origin of the radio emission from a pulsar like the Crab near its magnetic poles (Polar Cap Model) as already indicated by the Lighthouse model, its emission at higher frequencies, especially its gamma-ray emission, is assumed to originate further away in the geometrical region surrounding a pulsar which is commonly referred to as a pulsar magnetosphere (Outer Gap Model). Consequently, the respective emission regions are usually assumed not to be connected. However, past observational results from the Crab pulsar represent a contradiction to this assumption. Radio giant pulses from the Crab pulsar have been observed to emit large amounts of energy on very short time scales implying small emission regions on the surface of the pulsar. Such energetic events might also leave a trace in the gamma-ray emission of the Crab pulsar. The aim of this thesis is to search for this connection in the form of a correlation study between radio giant pulses and gamma-photons from the Crab pulsar. To make such a study possible, a multiwavelength observational campaign was organized for which radio observations were independently applied for, coordinated and carried out with the Effelsberg radio telescope and the Westerbork Synthesis Radio Telescope and gamma-ray observations with the Major Atmospheric Imaging Cherenkov telescopes. The corresponding radio and gamma-ray data sets were reduced and the correlation analysis thereafter consisted of three different approaches: 1) The search for a clustering in the differences of the times of arrival of radio giant pulses and gamma-photons; 2) The search for a linear correlation between radio giant pulses and gamma-photons using the Pearson correlation approach; 3) A search for an increase of the gamma-ray flux around occurring radio giant pulses. In the last part of the correlation study an increase of the number of gamma-photons centered on a radio giant pulse by about 17\% (in contrast with the number of gamma-photons when no radio giant pulse occurs in the same time window) was discovered. This finding suggests that a new theoretical approach for the emission of young pulsars like the Crab pulsar, is necessary.}, subject = {Pulsar}, language = {en} } @techreport{Dandekar2021, type = {Working Paper}, author = {Dandekar, Thomas}, title = {A new cosmology of a crystallization process (decoherence) from the surrounding quantum soup provides heuristics to unify general relativity and quantum physics by solid state physics}, doi = {10.25972/OPUS-23076}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230769}, pages = {42 Seiten}, year = {2021}, abstract = {We explore a cosmology where the Big Bang singularity is replaced by a condensation event of interacting strings. We study the transition from an uncontrolled, chaotic soup ("before") to a clearly interacting "real world". Cosmological inflation scenarios do not fit current observations and are avoided. Instead, long-range interactions inside this crystallization event limit growth and crystal symmetries ensure the same laws of nature and basic symmetries over our domain. Tiny mis-arrangements present nuclei of superclusters and galaxies and crystal structure leads to the arrangement of dark (halo regions) and normal matter (galaxy nuclei) so convenient for galaxy formation. Crystals come and go, allowing an evolutionary cosmology where entropic forces from the quantum soup "outside" of the crystal try to dissolve it. These would correspond to dark energy and leads to a big rip scenario in 70 Gy. Preference of crystals with optimal growth and most condensation nuclei for the next generation of crystals may select for multiple self-organizing processes within the crystal, explaining "fine-tuning" of the local "laws of nature" (the symmetry relations formed within the crystal, its "unit cell") to be particular favorable for self-organizing processes including life or even conscious observers in our universe. Independent of cosmology, a crystallization event may explain quantum-decoherence in general: The fact, that in our macroscopic everyday world we only see one reality. This contrasts strongly with the quantum world where you have coherence, a superposition of all quantum states. We suggest that a "real world" (so our everyday macroscopic world) happens only in our domain, i.e. inside a crystal. "Outside" of our domain and our observable universe there is the quantum soup of boiling quantum foam and superposition of all possibilities. In our crystallized world the vacuum no longer boils but is cooled down by the crystallization event and hence is 10**20 smaller, exactly as observed in our everyday world. As we live in a "solid" state, within a crystal, the different quanta which build our world have all their different states nicely separated. This theory postulates there are only n quanta and m states available for them (there is no Everett-like ever splitting multiverse after each decision). In the solid state we live in, there is decoherence, the states are nicely separated. The arrow of entropy for each edge of the crystal forms one fate, one worldline or clear development of a world, while the layers of the crystal are different system states. Some mathematical leads from loop quantum gravity point to required interactions and potentials. A complete mathematical treatment of this unified theory is far too demanding currently. Interaction potentials for strings or membranes of any dimension allow a solid state of quanta, so allowing decoherence in our observed world are challenging to calculate. However, if we introduce here the heuristic that any type of physical interaction of strings corresponds just to a type of calculation, there is already since 1898 the Hurwitz theorem showing that then only 1D, 2D, 4D and 8D (octonions) allow complex or hypercomplex number calculations. No other hypercomplex numbers and hence dimensions or symmetries are possible to allow calculations without yielding divisions by zero. However, the richest solution allowed by the Hurwitz theorem, octonions, is actually the observed symmetry of our universe, E8.  }, subject = {Kosmologie}, language = {en} } @phdthesis{Langejahn2022, author = {Langejahn, Marcus}, title = {Hard X-ray Properties of Relativistically Beamed Jets from Radio- and Gamma-Ray-Bright Blazars}, doi = {10.25972/OPUS-28200}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282009}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In this work I characterize the hard X-ray properties of blazars, active galactic nuclei with highly beamed emission, which are notoriously hard to detect in this energy range. I employ pre-defined samples of beamed AGN: the radio-selected MOJAVE and TANAMI samples, as well as the most recent gamma-ray-selected Fermi/LAT 4LAC catalog. The hard X-ray data is extracted from the 105-month all-sky survey maps of the Swift/BAT (Burst Alert Telescope) in the energy band of 20 keV to 100 keV. A great majority of both the MOJAVE and TANAMI samples are significantly detected, with signal-to noise ratios of the sources often just below the X-ray catalog signal thresholds. All blazar sub-types (FSRQs, BL Lacs) and radio galaxies show characteristic ranges of X-ray flux, luminosity, and photon index. Their properties are correlated with the corresponding SED's shape / peak frequency. The LogN-LogS distributions of the samples show a scarcity of blazars in the middle and lower X-ray flux range, indicating differing evolutionary paths between radio and X-ray emission, which is also suggested by the corresponding luminosity functions. Compared to the radio samples, the 4LAC sources are on average significantly less bright in the BAT band since this range often coincides with the spectral gap region between the two big SED emission bumps. Also, the spectral shapes differ notably, especially for the sub-type of BL Lacs. Using the parameter space of X-ray and gamma-ray photon indices, 35 blazar candidate sources can be assigned to either the FSRQ or BL Lac type with high certainty. The reason why many blazars are weak in this energy band can be traced back to a number of factors: the selection bias of the initial sample, differential evolution of the X-rays and the wavelengths in which the sample is defined, and the limited sensitivity of the observing instruments.}, subject = {Aktiver galaktischer Kern}, language = {en} }