@phdthesis{Kocic2014, author = {Kocic, Nikola}, title = {Bestimmung des Keimbildungsexponenten f{\"u}r die Kristallisation von Polymeren durch nicht-isotherme DSC-Analysen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113950}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Thermoplastische Kunststoffe (sog. Thermoplaste) lassen sich in einem be-stimmten Temperaturbereich beliebig oft schmelzen und in einer gew{\"u}nschten Form erstarren. Grundvoraussetzung f{\"u}r eine bestimmte Anwendung eines thermoplastischen Bauteils sind die Gebrauchseigenschaften des Materials, die im Wesentlichen vom Ablauf der Erstarrung abh{\"a}ngen. Die Molek{\"u}le einiger Thermoplaste k{\"o}nnen bei der Erstarrung geordnete kristalline Bereiche bilden. Dies sind die sog. teilkristallinen Kunststoffe, deren Erstarrungsprozess Kristallisation genannt wird. Die dabei entstehenden Kristallstrukturen werden zusammen mit deren Charakteristiken allgemein als Morphologie der teilkristallinen Kunststoffe bezeichnet. Die Morphologie hat einen signifikanten Einfluss auf die mechanischen, thermischen und optischen Eigenschaften des Materials. Dementsprechend stellen Kenntnisse {\"u}ber die Kristallisation eine wertvolle Hilfe bei der Vorhersage der Gebrauchseigenschaften eines teilkristallinen Kunststoffs dar. Um die Kristallisation zu starten, muss zun{\"a}chst eine Energiebarriere {\"u}berwunden werden, die an erster Stelle vom molekularen Aufbau des Kunststoffs abh{\"a}ngt. Somit weisen beispielsweise Kunststoffe mit linearen, regelm{\"a}ßigen Molek{\"u}len und kleinen Seitengruppen eine niedrigere Energiebarriere und aus diesem Grund eine starke Neigung zur Kristallisation auf. Einige Zusatzstoffe wie z. B. unterschiedliche Additive, Farbstoffe oder F{\"u}llstoffe k{\"o}nnen die Energiebarriere und infolgedessen die Kristallisation eines teilkristallinen Kunststoffs wesentlich beeinflussen. Das Ziel dieser Dissertation war es, ein bestehendes Kristallisationsmodell zu erweitern und es an gef{\"u}llte oder additivmodifizierte teilkristalline Kunststoffe anzupassen. Das erweiterte Modell soll die Ermittlung eines Kristallisationspa-rameters, des sog. Keimbildungsexponenten, eines gef{\"u}llten oder additivmodifizierten teilkristallinen Kunststoffs bei der nicht-isothermen Kristallisation erm{\"o}glichen. Der Keimbildungsexponent ist mit der erw{\"a}hnten Energiebarriere eng verbunden und bestimmt somit den Ablauf des Kristallisationsprozesses bzw. die daraus folgende Morphologie. Ein wesentlicher Schwerpunkt der Arbeit lag darin, die vorgeschlagene Modellerweiterung bei verschiedenen Abk{\"u}hlgeschwindigkeiten zu {\"u}berpr{\"u}fen. Im Anschluss sollten die Beziehungen zwischen den berechneten Keimbildungsexponenten und experimentell ermittelten me-chanischen Eigenschaften (E-Modul, Streckspannung und Schlagz{\"a}higkeit) {\"u}berpr{\"u}ft werden. F{\"u}r die Untersuchungen wurden drei verschiedene Polymersysteme verwendet: PP / Talkum, HDPE / Talkum sowie PA6 / Bentonit. Hierbei weist der F{\"u}llstoff eine stark positive, schwach positive bzw. inhibierende Wirkung auf die Kristallisation der entsprechenden Polymermatrix auf. Hinsichtlich reiner Polymere wurde eine gute {\"U}bereinstimmung zwischen den ermittelten und Literaturwerten des Keimbildungsexponenten festgestellt. Die Zugabe von positiv wirkendem Talkum in PP bzw. HDPE f{\"u}hrt zu einer Abnah-me des Keimbildungsexponenten, was zu dickeren Kristallen des jeweiligen Kunststoffs f{\"u}hrte. Im Gegensatz dazu bewirkte die Bentonitzugabe einen zu-nehmenden Keimbildungsexponenten, was anschließend d{\"u}nnere PA6-Kristalle zur Folge hat. Die durchgef{\"u}hrten Untersuchungen zeigen außerdem, dass die F{\"u}llstoffpartikelgr{\"o}ße einen ausgepr{\"a}gten Einfluss auf den ermittelten Keimbildungsexponenten hat. Weiterhin wurde festgestellt, dass der ermittelte Keimbildungsexponent durch die (DSC)-Abk{\"u}hlgeschwindigkeit beeinflusst wird. Es wurde ferner gezeigt, dass sich dieser Einfluss ab einer bestimmten Abk{\"u}hlgeschwindigkeit (20 K/min im Falle des PP und HDPE bzw. 15 K/min im Falle des PA6) nicht mehr {\"a}ndert, was zu einem konstanten Keimbildungsexponenten f{\"u}hrt. Um den Einfluss der Abk{\"u}hlgeschwindigkeit auf die modellierte Gr{\"o}ße zu ber{\"u}cksichtigen, sind weitere Untersuchungen n{\"o}tig. Die Ergebnisse der Arbeit zeigen weiterhin, dass der berechnete Keimbildungsexponent mit den experimentell ermittelten Werten f{\"u}r E-Modul, Streckspannung und Charpy-Schlagz{\"a}higkeit bei talkumgef{\"u}lltem PP gut korreliert. Solche Korrelationen wurden jedoch bei den HDPE- und PA6-Proben nicht gefunden. Der Grund hierf{\"u}r k{\"o}nnte eine ausgepr{\"a}gte Orientierung der HDPE-Makromolek{\"u}le bzw. ein starker mikromechanischer Effekt des exfolierten Bentonits sein. Diese Effekte konnten im Rahmen der Arbeiten best{\"a}tigt werden. Die in dieser Arbeit erzielten Ergebnisse zeigen, dass die vorgeschlagene Mo-dellerweiterung auch bei gef{\"u}llten oder additivmodifizierten Kunststoffen zufriedenstellende Resultate liefert. Die entsprechende Berechnung erfordert dabei lediglich eine DSC-Messung, was im Vergleich zum Stand der Technik in einen niedrigeren Messaufwand resultiert. Die vorliegende Arbeit liefert daher einen signifikanten Beitrag zur Erstellung des Zusammenhangs zwischen der Kristallisation, der Morphologie und dem mechanischen Verhalten von teilkristallinen Polymeren.}, subject = {Kristallisation}, language = {de} } @phdthesis{Munzert2018, author = {Munzert, Stefanie Martina}, title = {Coordination of dynamic metallosupramolecular polymers (MEPEs)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160650}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Several transition metal ions, like Fe2+, Co2+, Ni2+, and Zn2+ complex to the ditopic ligand 1,4-bis(2,2':6',2''-terpyridin-4'-yl)benzene. Due to the high association constant, metal ion induced self-assembly of Fe2+, Co2+, and Ni2+ leads to extended, rigid-rod like metallo-supramolecular coordination polyelectrolytes (MEPEs) even in aqueous solution. Here, the kinetics of coordination and the kinetics of growth of MEPEs are presented. The species in solutions are analyzed by stopped-flow fluorescence spectroscopy, light scattering, viscometry and cryogenic transmission electron microscopy. At near-stoichiometric amounts of the reactants, high molar masses are obtained, which follow the order Ni-MEPE ~ Co-MEPE < Fe-MEPE. Furthermore, a way is presented to adjust the average molar mass, chain-length and viscosity of MEPEs using the monotopic chain stopper 4'-(phenyl)-2,2':6',2''-terpyridine.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Bittner2017, author = {Bittner, Andreas}, title = {Innovative Materialkonzepte f{\"u}r elektrochemische Energiespeicher}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152300}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Im Rahmen der vorliegenden Arbeit wurde ein neuer Beschichtungstyp f{\"u}r die Elektrodenmaterialien von Lithium-Ionen-Akkumulatoren entwickelt und charakterisiert. Dieser besteht aus einem speziellen anorganisch-organischen Hybridpolymer, das sich bez{\"u}glich seiner Zusammensetzung und Funktion gegen{\"u}ber bestehenden Beschichtungsmaterialien abhebt. Das anorganisch-organische Netzwerk des Hybridpolymers konnte mittels Feststoff-NMR-Messungen vollst{\"a}ndig aufgekl{\"a}rt werden. Dabei zeigte sich ein stabiles anorganisches Ger{\"u}st aus hoch vernetzten Polysiloxan-Einheiten. Zus{\"a}tzliche organische Modifizierungen liegen als lange bewegliche Ketten mit funktionellen Polyethylenoxid-Einheiten vor oder sind in Form von Polyethern und Diolen vernetzt. Mit dieser speziellen Netzwerkstruktur ist es m{\"o}glich, Materialeigenschaften zu erzeugen, die {\"u}ber solche von rein anorganischen und rein organischen Beschichtungen hinausgehen. Zu den mit verschiedenen Methoden nachgewiesenen Eigenschaften z{\"a}hlen eine hohe ionische Leitf{\"a}higkeit von 10\(^{-4}\) S/cm, eine hohe Elastizit{\"a}t mit E = 63 kPa, eine hohe elektrochemische Stabilit{\"a}t bis 5,0 V vs. Li/Li\(^+\) und eine hohe thermische Stabilit{\"a}t. Eine weitere Besonderheit des neuen Beschichtungsmaterials ist die mehrstufige Vernetzung der anf{\"a}nglichen Prekursoren zu einem Hybridpolymer-Sol und dem abschließenden Hybridpolymer-Gel. Die im Beschichtungssol vorliegende Teilvernetzung der Vorstufen konnte detailliert mittels Fl{\"u}ssig-NMR-Messungen untersucht und beschrieben werden. Aus den Messungen ließ sich folgern, dass die organisch und anorganisch vernetzbaren Gruppen im Sol teilweise vernetzt vorliegen. Die sterisch erreichbaren Si-OR-Gruppen der so entstandenen Oligomere sind vorwiegend nicht hydrolysiert, wodurch deren anorganische Anbindung an die OH-Gruppen der Partikeloberfl{\"a}chen kinetisch bevorzugt ist. Damit lassen sich besonders homogene und vollst{\"a}ndig bedeckende Beschichtungen der Elektrodenmaterialien erzeugen. Dies konnte mit verschiedenen physikalischen und chemischen Methoden nachgewiesen werden: simulationsgest{\"u}tzte R{\"u}ckstreuanalysen mittels REM, hochaufgel{\"o}ste TEM-Aufnahmen sowie Elementanalysen durch EDX und XPS. Nach der Optimierung des nasschemischen Beschichtungsprozesses {\"u}ber Rotationsverdampfen ergaben sich f{\"u}r die verschiedenen Elektrodenmaterialien Li\(_4\)Ti\(_5\)O\(_{12}\), Li(Ni,Co,Mn)O\(_2\) und Li(Mn,Ni)\(_2\)O\(_4\) jeweils etwa 20 nm dicke Beschichtungen mit Hybridpolymer. Die Frage nach deren L{\"o}sungsmittelbest{\"a}ndigkeit konnte durch die Analyse von behandelten Proben mit TG, REM, XPS und ICP-OES aufgekl{\"a}rt werden. Dabei zeigte sich sowohl f{\"u}r die Behandlung mit NMP, dem klassischen L{\"o}sungsmittel bei der Elektrodenfertigung mit PVDF-Binder, als auch f{\"u}r die Behandlung mit dessen umweltschonenderem Ersatzstoff Aceton eine gute Best{\"a}ndigkeit der Beschichtung. Die Beschichtung l{\"o}ste sich in den L{\"o}sungsmitteln an, blieb allerdings als geschlossene nanoskalige Beschichtung erhalten. Lediglich gegen{\"u}ber dem L{\"o}sungsmittel H\(_2\)O, das in Kombination mit dem neuen Binder CMC eingesetzt wird, wurde eine mangelnde Schichtstabilit{\"a}t deutlich. Das daf{\"u}r verantwortliche Quellverhalten der Beschichtung konnte mittels D{\"u}nnschicht-Modellsystem und daran durchgef{\"u}hrten REM-, IR- und EPA-Untersuchungen aufgekl{\"a}rt werden. Die Optimierung des Hybridpolymer-Materials bez{\"u}glich einer besseren H\(_2\)O-Best{\"a}ndigkeit {\"u}bersteigt den Rahmen dieser Arbeit und liefert die Grundlage f{\"u}r weitere k{\"u}nftige Forschungsarbeiten. Aufgrund der vollst{\"a}ndigen Bedeckung der neuen Beschichtung, ihrer besonderen Eigenschaften und ihrer Best{\"a}ndigkeit bei der klassischen Elektrodenfertigung ist es m{\"o}glich, die Elektrodenmaterialien grundlegend hinsichtlich ihrer wichtigsten Eigenschaften zu verbessern. Hierf{\"u}r wurden sowohl {\"u}ber die NMP- als auch {\"u}ber die Aceton-Route Elektroden gefertigt und zu Halbzellen und Vollzellen verarbeitet. Die REM-Analyse der Elektroden zeigte, dass die Partikelbeschichtungen keinen negativen Einfluss auf die Homogenit{\"a}t und Morphologie der Elektroden aus{\"u}ben. Damit war es m{\"o}glich, jeweils einen direkten Vergleich von beschichteten und unbeschichteten Materialien hinsichtlich ihrer elektrochemischen Performance anzustellen. F{\"u}r die Kathodenmaterialien Li(Ni,Co,Mn)O\(_2\) und Li(Mn,Ni)\(_2\)O\(_4\) ergaben die Zyklenfestigkeits- und Impedanzmessungen klare Verbesserungen durch die Beschichtung. Verbunden mit einer Verbesserung der Energiedichte erh{\"o}hte sich bei beiden Materialien die Zyklenfestigkeit um mehr als 60 \%. Bei Li(Mn,Ni)\(_2\)O\(_4\) zeigt sich die Verbesserung in einer erh{\"o}hten Zellspannung durch das vergleichsweise hohe Redoxpotential des Materials von etwa 4,7 V vs. Li/Li\(^+\), w{\"a}hrend sich bei Li(Ni,Co,Mn)O\(_2\) die Hochvoltf{\"a}higkeit des Materials verbessert, was mit einer vergr{\"o}ßerten Speicherkapazit{\"a}t verbunden ist. Dabei ist herauszustellen, dass f{\"u}r keines der Materialien ein negativer Einfluss der d{\"u}nnen Beschichtung auf die Leistungsdichte festgestellt werden konnte. Der erwartete Mechanismus f{\"u}r die verbesserte Elektrodenfunktion durch das Hybridpolymer ist die Bildung einer physikalischen Schutzschicht in Form einer Li\(^+\)-leitf{\"a}higen Membran. Diese umgibt das Elektrodenmaterial vollst{\"a}ndig, erm{\"o}glicht die Ladungstr{\"a}gerinterkalation und sch{\"u}tzt die Elektrode gleichzeitig vor irreversiblen Reaktionen mit dem Elektrolyten. Damit verbunden ist eine verminderte Mn-Ausl{\"o}sung und eine verminderte Entwicklung von isolierenden Deckschichten aus Reaktionsprodukten wie LiF, Li\(_2\)O, Li\(_2\)CO\(_3\), was sich positiv auf die Alterung der Batteriezellen auswirkt. Die Funktion der Beschichtung wurde prim{\"a}r auf den Kathodenmaterialien demonstriert. Doch auch auf der Anodenseite wurde ihre Anwendungstauglichkeit aufgezeigt, was das große Potential der Beschichtung f{\"u}r eine breite Anwendung in Lithium-Ionen-Batterien verdeutlicht.}, subject = {Lithium-Ionen-Akkumulator}, language = {de} } @phdthesis{Ulbricht2018, author = {Ulbricht, Juliane}, title = {Insights into Polymer Biodegradation - Investigations on oxidative, hydrolytic and enzymatic Pathways}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158683}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The present work aims towards the investigation of polymer degradation under biologically relevant conditions. In order to assess a potential degradation of polymers of interest for biomedical applications in vivo and associated effects on living tissue, representatives of poly(2-oxazoline)s and polypeptoids as well as poly(ethylene glycol) and poly(N-vinylpyrrolidone) for reference purposes are examined regarding their stability under oxidative and hydrolytic conditions as well as towards enzymatic degradation. The polymers investigated in the framework of this thesis are generally considered to be non-biodegradable. Both poly(ethylene glycol) and poly(N-vinylpyrrolidone) are or were applied intensively in vivo provoking seriously harmful side effects like fatal blood poisoning from the oxidation of poly(ethylene glycol) chain ends or poly(N-vinylpyrrolidone) storage disease. Poly(2-alkyl-2-oxazoline)s and polypeptoids, both promising polymeric biomaterials for a wide variety of in vivo applications, are not clinically applied yet but undergo thorough investigations. However, comprising amide bonds within the backbone or the appending side chain, poly(2-alkyl-2-oxazoline)s and polypeptoids potentially offer a higher susceptibility towards (bio-)degradation. Representing the three most impactful initiators of degradation in vivo, the present study is focused on polymer deterioration by oxidative species, hydrolytic conditions and enzymes. Oxidative species are generated in a variety of processes in vivo, both on purpose and as an unintentional by-product. Previous investigations revealed the susceptibility of poly(ethylene glycol), poly(N-vinylpyrrolidone), poly(2-alkyl-2-oxazoline)s and polypeptoids to deterioration by hydroxyl radicals deriving from hydrogen peroxide and copper ions. The obtained data confirm previous results of an apparent degradation rate increasing with increasing chain length due to self-inhibitory end group effects for all investigated polymer species. Although the exact concentrations of oxidative species in vivo are very controversial, with respect to their great variety and wide distribution the investigated polymers are likely prone to oxidative deterioration to some extent, with rates, mechanisms and degradation products strongly depending on the respective reactive species, polymer structure and chain length. Like blood, most tissues of the human body benefit from a slightly alkaline pH value. Nevertheless, specific areas like the human stomach or tumor tissues possess acidic conditions potentially capable to cleave amide bonds comprised by poly(2-alkyl-2-oxazoline)s and polypeptoids. Unlike the hydrolysis of poly(2-alkyl-2-oxazoline)s resulting in side chain cleavage, the hydrolysis of polypeptoids induces backbone scission decreasing the polymer chain length tremendously and releasing, if performed exhaustively, the respective amino acids. Hydrolysis of polysarcosine is monitored by quantification of the released sarcosine via 1H-NMR spectroscopy and determination of the residual Mw via GPC. Its cyclic dimer sarcosine anhydride is formed as an intermediate product in this process via cyclization of unstable linear dimers of sarcosine. Modification and degradation of bio(macro)molecules is an essential part of human metabolism. Polymers bearing amide bonds and showing a great similarity to natural occurring and widely distributed polypeptides, like poly(2-alkyl-2-oxazoline)s and polypeptoids, bear the potential of an enzymatic biodegradability by (more or less specific) peptidases. Just like the acidic hydrolysis described previously, peptidase activity would result in the cleavage of polymer amide bonds. The aim of the present thesis was to evaluate the stability of poly(2-alkyl-2-oxazoline)s and polypeptoids as well as poly(ethylene glycol) for the sake of reference under circumstances resembling in vivo conditions as closely as possible. Initial experiments focused on the degradation of dye-labeled upon incubation with homogenates of freshly harvested rat liver and kidney. However, although the obtained results are promising for the most part, they are considered rather unreliable and non-reproducible for various reasons. More conclusive data are attained from the incubation of non-labeled polymers in freshly laid chicken eggs. While no evidence for an enzymatic digestion of poly(ethylene glycol) in chicken egg white is found and deterioration of poly(2-methyl-2-oxazoline) upon incubation apparently derives from non-enzymatic hydrolysis, incubated polysarcosine samples reveal distinct elugram patterns depending on the respective C- and N-terminal end groups indicating both exopeptidase and endopeptidase activity. It has to be kept in mind though, that an enzymatic digestibility of polysarcosine does not necessarily imply the digestion of polypeptoids bearing longer side chains by peptidases as well, which should be investigated in further studies.}, subject = {Biologischer Abbau}, language = {en} } @phdthesis{Lorson2019, author = {Lorson, Thomas}, title = {Novel Poly(2-oxazoline) Based Bioinks}, doi = {10.25972/OPUS-18051}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180514}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Motivated by the great potential which is offered by the combination of additive manufacturing and tissue engineering, a novel polymeric bioink platform based on poly(2 oxazoline)s was developed which might help to further advance the young and upcoming field of biofabrication. In the present thesis, the synthesis as well as the characteristics of several diblock copolymers consisting of POx and POzi have been investigated with a special focus on their suitability as bioinks. In general, the copolymerization of 2-oxazolines and 2-oxazines bearing different alkyl side chains was demonstrated to yield polymers in good agreement with the degree of polymerization aimed for and moderate to low dispersities. For every diblock copolymer synthesized during the present study, a more or less pronounced dependency of the dynamic viscosity on temperature could be demonstrated. Diblock copolymers comprising a hydrophilic PMeOx block and a thermoresponsive PnPrOzi block showed temperature induced gelation above a degree of polymerization of 50 and a polymer concentration of 20 wt\%. Such a behavior has never been described before for copolymers solely consisting of poly(cyclic imino ether)s. Physically cross linked hydrogels based on POx b POzi copolymers exhibit reverse thermal gelation properties like described for solutions of PNiPAAm and Pluronic F127. However, by applying SANS, DLS, and SLS it could be demonstrated that the underlying gel formation mechanism is different for POx b POzi based hydrogels. It appears that polymersomes with low polydispersity are formed already at very low polymer concentrations of 6 mg/L. Increasing the polymer concentration resulted in the formation of a bicontinuous sponge like structure which might be formed due to the merger of several vesicles. For longer polymer chains a phase transition into a gyroid structure was postulated and corresponds well with the observed rheological data. Stable hydrogels with an unusually high mechanical strength (G' ~ 4 kPa) have been formed above TGel which could be adjusted over a range of 20 °C by changing the degree of polymerization if maintaining the symmetric polymer architecture. Variations of the chain ends revealed only a minor influence on TGel whereas the influence of the solvent should not be neglected as shown by a comparison of cell culture medium and MilliQ water. Rotationally as well as oscillatory rheological measurements revealed a high suitability for printing as POx b POzi based hydrogels exhibit strong shear thinning behavior in combination with outstanding recovery properties after high shear stress. Cell viability assays (WST-1) of PMeOx b PnPrOzi copolymers against NIH 3T3 fibroblasts and HaCat cells indicated that the polymers were well tolerated by the cells as no dose-dependent cytotoxicity could be observed after 24 h at non-gelling concentrations up to 100 g/L. In summary, copolymers consisting of POx and POzi significantly increased the accessible range of properties of POx based materials. In particular thermogelation of aqueous solutions of diblock copolymers comprising PMeOx and PnPrOzi was never described before for any copolymer consisting solely of POx or POzi. In combination with other characteristics, e.g. very good cytocompatibility at high polymer concentrations and comparably high mechanical strength, the formed hydrogels could be successfully used for 3D bioprinting. Although the results appear promising and the developed hydrogel is a serious bioink candidate, competition is tough and it remains an open question which system or systems will be used in the future.}, subject = {Polymere}, language = {en} } @phdthesis{Nahm2021, author = {Nahm, Daniel}, title = {Poly(2-oxazine) Based Biomaterial Inks for the Additive Manufacturing of Microperiodic Hydrogel Scaffolds}, doi = {10.25972/OPUS-24598}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245987}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The aim of this thesis was the preparation of a biomaterial ink for the fabrication of chemically crosslinked hydrogel scaffolds with low micron sized features using melt electrowriting (MEW). By developing a functional polymeric material based on 2-alkyl-2-oxazine (Ozi) and 2-alkyl-2-oxazoline (Ox) homo- and copolymers in combination with Diels-Alder (DA)-based dynamic covalent chemistry, it was possible to achieve this goal. This marks an important step for the additive manufacturing technique melt electrowriting (MEW), as soft and hydrophilic structures become available for the first time. The use of dynamic covalent chemistry is a very elegant and efficient method for consolidating covalent crosslinking with melt processing. It was shown that the high chemical versatility of the Ox and Ozi chemistry offers great potential to control the processing parameters. The established platform offers straight forward potential for modification with biological cues and fluorescent markers. This is essential for advanced biological applications. The physical properties of the material are readily controlled and the potential for 4D-printing was highlighted as well. The developed hydrogel architectures are excellent candidates for 3D cell culture applications. In particular, the low internal strength of some of the scaffolds in combination with the tendency of such constructs to collapse into thin strings could be interesting for the cultivation of muscle or nerve cells. In this context it was also possible to show that MEW printed hydrogel scaffolds can withstand the aspiration and ejection through a cannula. This allows the application as scaffolds for the minimally invasive delivery of implants or functional tissue equivalent structures to various locations in the human body.}, subject = {Polymere}, language = {en} } @phdthesis{Luebtow2020, author = {L{\"u}btow, Michael M.}, title = {Structure-property relationships in poly(2-oxazoline)/poly(2-oxazine) based drug formulations}, doi = {10.25972/OPUS-19338}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193387}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {According to estimates, more than 40\% of all new chemical entities developed in pharmaceutical industry are practically insoluble in water. Naturally, the demand for excipients which increase the water solubility and thus, the bioavailability of such hydrophobic drugs is enormous. Poly(2-oxazoline)s (POx) are currently intensively discussed as highly versatile class of biomaterials. Although selected POx based micellar drug formulations exhibit extraordinarily high drug loadings > 50 wt.\% enabling high anti-tumor efficacies in vivo, the formulation of other hydrophobic compounds has failed. This casts doubt on the general understanding in which a hydrophobic active pharmaceutical ingredient is dissolved rather unspecifically in the hydrophobic core of the micelles following the fundamental concept of "like dissolves like". Therefore, a closer look at the interactions between all components within a formulation becomes increasingly important. To do so, a large vehicle platform was synthesized, loaded with various hydrophobic drugs of different structure, and the formulations subsequently characterized with conventional and less conventional techniques. The obtained in-depth insights helped to develop a more thorough understanding about the interaction of polymer and incorporated API finally revealing morphologies deviating from a classical core/shell structure. During these studies, the scarcely investigated polymer class of poly(2-oxazine)s (POzi) was found as promising drug-delivery vehicle for hydrophobic drugs. Apart from this fundamental research, the anti-tumor efficacy of the two APIs curcumin and atorvastatin has been studied in more detail. To increase the scope of POx and POzi based formulations designed for intravenous administration, a curcumin loaded hydrogel was developed as injectable drug-depot.}, subject = {Polymere}, language = {en} } @article{PoepplerLuebtowSchlauersbachetal.2019, author = {P{\"o}ppler, Ann-Christin and L{\"u}btow, Michael M. and Schlauersbach, Jonas and Wiest, Johannes and Meinel, Lorenz and Luxenhofer, Robert}, title = {Strukturmodell von Polymermizellen in Abh{\"a}ngigkeit von der Curcumin-Beladung mithilfe von Festk{\"o}rper-NMR-Spektroskopie}, series = {Angewandte Chemie}, volume = {131}, journal = {Angewandte Chemie}, number = {51}, doi = {10.1002/ange.201908914}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212513}, pages = {18712-18718}, year = {2019}, abstract = {Detaillierte Einblicke in die Struktur von mit Wirkstoffen beladenen Polymermizellen sind rar, aber wichtig um gezielt optimierte Transportsysteme entwickeln zu k{\"o}nnen. Wir konnten beobachten, dass eine Erh{\"o}hung der Curcumin-Beladung von Triblockcopolymeren auf Basis von Poly(2-oxazolinen) und Poly(2-oxazinen) schlechtere Aufl{\"o}sungseigenschaften nach sich zieht. Mitthilfe von Festk{\"o}rper-NMR-Spektroskopie und komplement{\"a}ren Techniken ist es m{\"o}glich, ein ladungsabh{\"a}ngiges Strukturmodell auf molekularer Ebene zu erstellen, das eine Erkl{\"a}rung f{\"u}r die beobachteten Unterschiede liefert. Dabei belegen die {\"A}nderungen der chemischen Verschiebungen und Kreuzsignale in 2D-NMR-Experimenten die Beteiligung des hydrophoben Polymerblocks an der Koordination der Curcumin-Molek{\"u}le, w{\"a}hrend bei h{\"o}herer Beladung auch eine zunehmende Wechselwirkung mit dem hydrophilen Polymerblock beobachtet wird. Letztere k{\"o}nnte elementar f{\"u}r die Stabilisierung von ultrahochbeladenen Polymermizellen sowie das Design von verbesserten Wirkstofftransportsystemen sein.}, language = {de} }