@phdthesis{Munzert2018, author = {Munzert, Stefanie Martina}, title = {Coordination of dynamic metallosupramolecular polymers (MEPEs)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160650}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Several transition metal ions, like Fe2+, Co2+, Ni2+, and Zn2+ complex to the ditopic ligand 1,4-bis(2,2':6',2''-terpyridin-4'-yl)benzene. Due to the high association constant, metal ion induced self-assembly of Fe2+, Co2+, and Ni2+ leads to extended, rigid-rod like metallo-supramolecular coordination polyelectrolytes (MEPEs) even in aqueous solution. Here, the kinetics of coordination and the kinetics of growth of MEPEs are presented. The species in solutions are analyzed by stopped-flow fluorescence spectroscopy, light scattering, viscometry and cryogenic transmission electron microscopy. At near-stoichiometric amounts of the reactants, high molar masses are obtained, which follow the order Ni-MEPE ~ Co-MEPE < Fe-MEPE. Furthermore, a way is presented to adjust the average molar mass, chain-length and viscosity of MEPEs using the monotopic chain stopper 4'-(phenyl)-2,2':6',2''-terpyridine.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Brockmann2018, author = {Brockmann, Dorothea E. R.}, title = {Gef{\"u}ge-Simulationen an Nicht-Oxid-Keramiken: Korrelation zwischen Mikrostruktur und makroskopischen Eigenschaften}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157255}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die experimentelle Verbesserung der makroskopischen Eigenschaften (z. B. thermische oder mechanische Eigenschaften) von Keramiken ist aufgrund der zahlreichen erforderlichen Experimente zeitaufw{\"a}ndig und kostenintensiv. Simulationen hingegen k{\"o}nnen die Korrelation von Mikrostruktur und makroskopischen Eigenschaften nutzen, um die Eigenschaften von beliebigen Gef{\"u}gekompositionen zu berechnen. In bisherigen Simulationen wurden meist stark vereinfachte Modelle herangezogen, welche die Mikrostruktur einer Keramik nur sehr grob widerspiegeln und deshalb keine zuverl{\"a}ssigen Ergebnisse liefern. In der vorliegenden Arbeit wird die Mikrostruktur-Eigenschafts-Korrelation der drei wichtigsten Nicht-Oxid-Keramiken untersucht. Dies sind Aluminiumnitrid (AlN), Siliciumnitrid (Si3N4) und Siliciumcarbid (SiC). Diese drei Keramiktypen vertreten die h{\"a}ufigsten Mikrostrukturtypen, welche bei Nicht-Oxid-Keramiken auftreten k{\"o}nnen. Zu jedem Keramiktyp liegen zwei verschiedene Proben vor. Alle drei untersuchten Keramiktypen sind zweiphasig. Die Hauptphase von AlN und Si3N4 besteht aus keramischen K{\"o}rnern, die Nebenphase erstarrt w{\"a}hrend der Sinterung aus den zugesetzten Sinteradditiven. Die Restporosit{\"a}t von AlN und Si3N4 wird als vernachl{\"a}ssigbar angesehen und in den Simulationen nicht ber{\"u}cksichtigt. Bei den SiC-Proben handelt es sich um Keramiken mit bimodaler Korngr{\"o}{\"y}enverteilung. Durch Infiltration mit fl{\"u}ssigem Silicium wurden die Hohlr{\"a}ume zwischen den K{\"o}rnern aufgef{\"u}llt, um porenfreie SiSiC-Proben zu erhalten. Anhand von Simulationen werden zun{\"a}chst reale Mikrostrukturen in Anlehnung an vorliegende Vergleichsproben nachgebildet. Diese Modelle werden durch Abgleich mit rasterelektronenmikroskopischen 2D-Aufnahmen der Proben verifiziert. An den Modellen werden mit der Methode der Finite-Element-Simulation makroskopische Eigenschaften (W{\"a}rmeleitf{\"a}higkeit, Elastizit{\"a}tsmodul und Poisson-Zahl) der Keramiken simuliert und mit experimentellen Messungen an den vorliegenden Proben abgeglichen. Der Vergleich der Mikrostruktur von den computergenerierten Gef{\"u}gen und den vorliegenden Proben zeigt in der Mustererkennung durch das menschliche Auge und quantitativ in den Gef{\"u}geparametern eine gute {\"U}bereinstimmung. F{\"u}r die makroskopischen Eigenschaften wird auf der Basis einer ausf{\"u}hrlichen Literaturrecherche zu den Materialparametern der beteiligten Phasen eine gute {\"U}bereinstimmung zwischen den experimentell gemessenen und den simulierten Eigenschaften erreicht. Evtl. auftretende Abweichungen zwischen Experiment und Simulation k{\"o}nnen damit erkl{\"a}rt werden, dass die Proben Verunreinigungen enthalten, da aus der Literatur bekannt ist, dass Verunreinigungen eine Verschlechterung der W{\"a}rmeleitf{\"a}higkeit bewirken. Nachdem die G{\"u}ltigkeit der Modelle verifiziert ist, wird der Einfluss von charakteristischen Mikrostrukturparametern und Phaseneigenschaften auf die W{\"a}rmeleitf{\"a}higkeit, den Elastizit{\"a}tsmodul und die Poisson-Zahl der Keramiken untersucht. Hierzu werden die Mikrostrukturparameter von AlN und Si3N4 gezielt um die Parameter der vorliegenden Vergleichsproben variiert. Bei beiden Keramiktypen werden die Volumenanteile der beteiligten Phasen sowie die mittlere Sehnenl{\"a}nge der keramischen K{\"o}rner ver{\"a}ndert. Bei den AlN-Keramiken wird zus{\"a}tzlich der Dihedralwinkel variiert, welcher Auskunft {\"u}ber den Benetzungsgrad der Fl{\"u}ssigphase gibt; bei den Si3N4-Keramiken ist das Achsenverh{\"a}ltnis der langgezogenen Si3N4-K{\"o}rner von Interesse und wird deshalb ebenfalls variiert. Es zeigt sich, dass die Aufteilung der Teilvolumina zwischen den zwei Phasen den gr{\"o}ßten Einfluss auf die Eigenschaften der Keramik hat, w{\"a}hrend die {\"u}brigen Mikrostrukturparameter nur eine untergeordnete Rolle spielen. Um die Qualit{\"a}t der Simulationen zu {\"u}berpr{\"u}fen, wird die Simulationsreihe an AlN mit unterschiedlicher Aufteilung der Volumina zwischen den beiden Phasen in Relation zu etablierten Modellen aus der Literatur (Mischungsregel und Modell nach Ondracek) gesetzt. Alle Simulationsergebnisse f{\"u}r die W{\"a}rmeleitf{\"a}higkeit und den Elastizit{\"a}tsmodul liegen innerhalb der jeweils oberen und unteren Grenze beider Modelle. Es konnte also eine Verbesserung gegen{\"u}ber den etablierten Modellen erzielt werden. An allen drei Keramiktypen wird der Einfluss der Materialeigenschaften der Haupt- und Nebenphase auf die makroskopischen Eigenschaften der Keramik untersucht. Hierf{\"u}r werden die W{\"a}rmeleitf{\"a}higkeit, der Elastizit{\"a}tsmodul und die Poisson-Zahl der Phasen getrennt voneinander {\"u}ber einen gr{\"o}ßeren Bereich variiert. Es stellt sich heraus, dass es vom Keramiktyp und dem Volumenanteil der Nebenphase abh{\"a}ngt, wie stark der Einfluss einer Komponenteneigenschaft auf die Eigenschaft der Keramik ist. Mit den im Rahmen dieser Arbeit durchgef{\"u}hrten Simulationen wird der Einfluss von Mikrostrukturparametern und Phaseneigenschaften berechnet. Auf der Grundlage dieser Simulationen k{\"o}nnen die Architektur des Gef{\"u}ges simuliert und die Eigenschaften von Keramiken f{\"u}r individuelle Anwendungen berechnet werden. Dies ist die Basis f{\"u}r die Produktion von maßgeschneiderten Keramiken. Zudem k{\"o}nnen mit den validierten Mikrostrukturmodellen die Eigenschaften von unbekannten Mischphasen ermittelt werden, was experimentell oft nicht m{\"o}glich ist.}, subject = {Aluminiumnitrid}, language = {de} } @phdthesis{Ulbricht2018, author = {Ulbricht, Juliane}, title = {Insights into Polymer Biodegradation - Investigations on oxidative, hydrolytic and enzymatic Pathways}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158683}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The present work aims towards the investigation of polymer degradation under biologically relevant conditions. In order to assess a potential degradation of polymers of interest for biomedical applications in vivo and associated effects on living tissue, representatives of poly(2-oxazoline)s and polypeptoids as well as poly(ethylene glycol) and poly(N-vinylpyrrolidone) for reference purposes are examined regarding their stability under oxidative and hydrolytic conditions as well as towards enzymatic degradation. The polymers investigated in the framework of this thesis are generally considered to be non-biodegradable. Both poly(ethylene glycol) and poly(N-vinylpyrrolidone) are or were applied intensively in vivo provoking seriously harmful side effects like fatal blood poisoning from the oxidation of poly(ethylene glycol) chain ends or poly(N-vinylpyrrolidone) storage disease. Poly(2-alkyl-2-oxazoline)s and polypeptoids, both promising polymeric biomaterials for a wide variety of in vivo applications, are not clinically applied yet but undergo thorough investigations. However, comprising amide bonds within the backbone or the appending side chain, poly(2-alkyl-2-oxazoline)s and polypeptoids potentially offer a higher susceptibility towards (bio-)degradation. Representing the three most impactful initiators of degradation in vivo, the present study is focused on polymer deterioration by oxidative species, hydrolytic conditions and enzymes. Oxidative species are generated in a variety of processes in vivo, both on purpose and as an unintentional by-product. Previous investigations revealed the susceptibility of poly(ethylene glycol), poly(N-vinylpyrrolidone), poly(2-alkyl-2-oxazoline)s and polypeptoids to deterioration by hydroxyl radicals deriving from hydrogen peroxide and copper ions. The obtained data confirm previous results of an apparent degradation rate increasing with increasing chain length due to self-inhibitory end group effects for all investigated polymer species. Although the exact concentrations of oxidative species in vivo are very controversial, with respect to their great variety and wide distribution the investigated polymers are likely prone to oxidative deterioration to some extent, with rates, mechanisms and degradation products strongly depending on the respective reactive species, polymer structure and chain length. Like blood, most tissues of the human body benefit from a slightly alkaline pH value. Nevertheless, specific areas like the human stomach or tumor tissues possess acidic conditions potentially capable to cleave amide bonds comprised by poly(2-alkyl-2-oxazoline)s and polypeptoids. Unlike the hydrolysis of poly(2-alkyl-2-oxazoline)s resulting in side chain cleavage, the hydrolysis of polypeptoids induces backbone scission decreasing the polymer chain length tremendously and releasing, if performed exhaustively, the respective amino acids. Hydrolysis of polysarcosine is monitored by quantification of the released sarcosine via 1H-NMR spectroscopy and determination of the residual Mw via GPC. Its cyclic dimer sarcosine anhydride is formed as an intermediate product in this process via cyclization of unstable linear dimers of sarcosine. Modification and degradation of bio(macro)molecules is an essential part of human metabolism. Polymers bearing amide bonds and showing a great similarity to natural occurring and widely distributed polypeptides, like poly(2-alkyl-2-oxazoline)s and polypeptoids, bear the potential of an enzymatic biodegradability by (more or less specific) peptidases. Just like the acidic hydrolysis described previously, peptidase activity would result in the cleavage of polymer amide bonds. The aim of the present thesis was to evaluate the stability of poly(2-alkyl-2-oxazoline)s and polypeptoids as well as poly(ethylene glycol) for the sake of reference under circumstances resembling in vivo conditions as closely as possible. Initial experiments focused on the degradation of dye-labeled upon incubation with homogenates of freshly harvested rat liver and kidney. However, although the obtained results are promising for the most part, they are considered rather unreliable and non-reproducible for various reasons. More conclusive data are attained from the incubation of non-labeled polymers in freshly laid chicken eggs. While no evidence for an enzymatic digestion of poly(ethylene glycol) in chicken egg white is found and deterioration of poly(2-methyl-2-oxazoline) upon incubation apparently derives from non-enzymatic hydrolysis, incubated polysarcosine samples reveal distinct elugram patterns depending on the respective C- and N-terminal end groups indicating both exopeptidase and endopeptidase activity. It has to be kept in mind though, that an enzymatic digestibility of polysarcosine does not necessarily imply the digestion of polypeptoids bearing longer side chains by peptidases as well, which should be investigated in further studies.}, subject = {Biologischer Abbau}, language = {en} } @article{RoedelBaumannGrolletal.2018, author = {R{\"o}del, Michaela and Baumann, Katrin and Groll, J{\"u}rgen and Gbureck, Uwe}, title = {Simultaneous structuring and mineralization of silk fibroin scaffolds}, series = {Journal of Tissue Engineering}, volume = {9}, journal = {Journal of Tissue Engineering}, doi = {10.1177/2041731418788509}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226427}, pages = {1-16}, year = {2018}, abstract = {Silk fibroin is commonly used as scaffold material for tissue engineering applications. In combination with a mineralization with different calcium phosphate phases, it can also be applied as material for bone regeneration. Here, we present a study which was performed to produce mineralized silk fibroin scaffolds with controlled macroporosity. In contrast to former studies, our approach focused on a simultaneous gelation and mineralization of silk fibroin by immersion of frozen silk fibroin monoliths in acidic calcium phosphate solutions. This was achieved by thawing frozen silk fibroin monoliths in acidic calcium phosphate solution, leading to the precipitation of monocalcium phosphate within the silk fibroin matrix. In the second approach, a conversion of incorporated -tricalcium phosphate particles into brushite was successfully achieved. Furthermore, a controlled cryostructuring process of silk fibroin scaffolds was carried out leading to the formation of parallel-oriented pores with diameters of 30-50 mu m.}, language = {en} }