@article{WeiserCuiDewhurstetal.2023, author = {Weiser, Jonas and Cui, Jingjing and Dewhurst, Rian D. and Braunschweig, Holger and Engels, Bernd and Fantuzzi, Felipe}, title = {Structure and bonding of proximity-enforced main-group dimers stabilized by a rigid naphthyridine diimine ligand}, series = {Journal of Computational Chemistry}, volume = {44}, journal = {Journal of Computational Chemistry}, number = {3}, doi = {10.1002/jcc.26994}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312586}, pages = {456 -- 467}, year = {2023}, abstract = {The development of ligands capable of effectively stabilizing highly reactive main-group species has led to the experimental realization of a variety of systems with fascinating properties. In this work, we computationally investigate the electronic, structural, energetic, and bonding features of proximity-enforced group 13-15 homodimers stabilized by a rigid expanded pincer ligand based on the 1,8-naphthyridine (napy) core. We show that the redox-active naphthyridine diimine (NDI) ligand enables a wide variety of structural motifs and element-element interaction modes, the latter ranging from isolated, element-centered lone pairs (e.g., E = Si, Ge) to cases where through-space π bonds (E = Pb), element-element multiple bonds (E = P, As) and biradical ground states (E = N) are observed. Our results hint at the feasibility of NDI-E2 species as viable synthetic targets, highlighting the versatility and potential applications of napy-based ligands in main-group chemistry.}, language = {en} } @article{PreitschopfSturmStroganovaetal.2023, author = {Preitschopf, Tobias and Sturm, Floriane and Stroganova, Iuliia and Lemmens, Alexander K. and Rijs, Anouk M. and Fischer, Ingo}, title = {IR/UV Double Resonance Study of the 2-Phenylallyl Radical and its Pyrolysis Products}, series = {Chemistry - A European Journal}, volume = {29}, journal = {Chemistry - A European Journal}, number = {13}, doi = {10.1002/chem.202202943}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312338}, year = {2023}, abstract = {Isolated 2-phenylallyl radicals (2-PA), generated by pyrolysis from a nitrite precursor, have been investigated by IR/UV ion dip spectroscopy using free electron laser radiation. 2-PA is a resonance-stabilized radical that is considered to be involved in the formation of polycyclic aromatic hydrocarbons (PAH) in combustion, but also in interstellar space. The radical is identified based on its gas-phase IR spectrum. Furthermore, a number of bimolecular reaction products are identified, showing that the self-reaction as well as reactions with unimolecular decomposition products of 2-PA form several PAH efficiently. Possible mechanisms are discussed and the chemistry of 2-PA is compared with the one of the related 2-methylallyl and phenylpropargyl radicals.}, language = {en} } @unpublished{DietzschJayachandranMuelleretal.2023, author = {Dietzsch, Julia and Jayachandran, Ajay and Mueller, Stefan and H{\"o}bartner, Claudia and Brixner, Tobias}, title = {Excitonic coupling of RNA-templated merocyanine dimer studied by higher-order transient absorption spectroscopy}, series = {Chemical Communications}, journal = {Chemical Communications}, edition = {submitted version}, doi = {10.1039/D3CC02024J}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-327772}, year = {2023}, abstract = {We report the synthesis and spectroscopic analysis of RNA containing the barbituric acid merocyanine rBAM2 as a nucleobase surrogate. Incorporation into RNA strands by solid-phase synthesis leads to fluorescence enhancement compared to the free chromophore. In addition, linear absorption studies show the formation of an excitonically coupled H-type dimer in the hybridized duplex. Ultrafast third- and fifth-order transient absorption spectroscopy of this non-fluorescent dimer suggests immediate (sub-200 fs) exciton transfer and annihilation due to the proximity of the rBAM2 units.}, language = {en} } @phdthesis{Matthaei2023, author = {Matthaei, Christian Tobias}, title = {Studying the Photodissociation of Chlorine-Containing Molecules with Velocity Map Imaging}, doi = {10.25972/OPUS-32740}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-327405}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The first is via direct dissociation and the second likely involves a barrier slowing down dissociation. Chlorine-containing hydrocarbons pose a great risk for the environment and especially for the atmosphere. In this thesis I present the photodissociation dynamics of multiple chlorine-containing molecules. The method of velocity map imaging was utilized for gaining information on the kinetic energy distribution of the fragments generated in the photodissociation reactions. First, the photodissociation of benzoyl chloride after excitation to the S1, S2 and the S3 state between 279 nm and 237 nm was studied. This stable molecule was an ideal candidate for demonstrating a new ionization scheme for chlorine atoms. It was shown that benzoyl chloride dissociates statistically from the ground state. Afterwards, the results from experiments on the radicals trichloromethyl and dichlorocarbene are presented in the range of 230 to 250 nm. These radicals remain after the dissociation of carbon tetrachloride and have not been studied in detail because of their instability. Trichlormethyl dissociates via two paths: The loss of a chlorine atom to dichlorocarbene and by decaying to CCl and a chlorine molecule. The dissociation to dichlorocarbene involves a barrier. If the photon exciting the molecule has enough energy to surpass the barrier, which is the case starting at around 235 nm, trichlormethyl dissociates rapidly resulting in an anisotropic VMI. However, if the the excitation energy is lower, the dissociation takes longer than a rotational period and the anisotropy is lost.The path to CCl is a statistical dissociation. Dichlorocarbene dissociates to CCl and Cl via to separate channels. The first is via direct dissociation and the second likely involves a barrier slowing down dissociation.}, subject = {Photodissoziation}, language = {en} } @article{MuellerMetaMeidneretal.2023, author = {M{\"u}ller, Patrick and Meta, Mergim and Meidner, Jan Laurenz and Schwickert, Marvin and Meyr, Jessica and Schwickert, Kevin and Kersten, Christian and Zimmer, Collin and Hammerschmidt, Stefan Josef and Frey, Ariane and Lahu, Albin and de la Hoz-Rodr{\´i}guez, Sergio and Agost-Beltr{\´a}n, Laura and Rodr{\´i}guez, Santiago and Diemer, Kira and Neumann, Wilhelm and Gonz{\`a}lez, Florenci V. and Engels, Bernd and Schirmeister, Tanja}, title = {Investigation of the compatibility between warheads and peptidomimetic sequences of protease inhibitors — a comprehensive reactivity and selectivity study}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {8}, issn = {1422-0067}, doi = {10.3390/ijms24087226}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313596}, year = {2023}, abstract = {Covalent peptidomimetic protease inhibitors have gained a lot of attention in drug development in recent years. They are designed to covalently bind the catalytically active amino acids through electrophilic groups called warheads. Covalent inhibition has an advantage in terms of pharmacodynamic properties but can also bear toxicity risks due to non-selective off-target protein binding. Therefore, the right combination of a reactive warhead with a well-suited peptidomimetic sequence is of great importance. Herein, the selectivities of well-known warheads combined with peptidomimetic sequences suited for five different proteases were investigated, highlighting the impact of both structure parts (warhead and peptidomimetic sequence) for affinity and selectivity. Molecular docking gave insights into the predicted binding modes of the inhibitors inside the binding pockets of the different enzymes. Moreover, the warheads were investigated by NMR and LC-MS reactivity assays against serine/threonine and cysteine nucleophile models, as well as by quantum mechanics simulations.}, language = {en} } @phdthesis{Gerlach2023, author = {Gerlach, Marius David}, title = {Spectroscopy of fulminic acid HCNO with VUV- and soft X-ray radiation}, doi = {10.25972/OPUS-32972}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-329722}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die Fulmins{\"a}ure HCNO wurde zum ersten Mal im Jahre 1800 synthetisiert und wurde seitdem immer wieder verwendet, um neue chemische Konzepte und Theorien zu entwickeln. Durch die erstmalige Entdeckung der Fulmins{\"a}ure im Weltall im Jahr 2009 ist die Fulmins{\"a}ure heutzutage vor allem im Bereich der Astrochemie interessant. In dieser Doktorarbeit haben wir die Interaktion von Fulmins{\"a}ure mit interstellar Strahlung, genauer mit VUV- sowie weicher R{\"o}ntgenstrahlung untersucht. In Zuge der Messung mit VUV-Strahlung konnten wir das Photoelektronenspektrum von HCNO mit hoher Aufl{\"o}sung aufnehmen und den Renner-Teller verzerrten Grundzustand des Kations mit Hilfe von Wellenpaketdynamiksimulationen beschreiben. Außerdem konnten wir den Mechanismus der dissoziativen Photoionisation bis zu einer Bindungsenergie von 15.3 eV aufkl{\"a}ren. Mit weicher R{\"o}ntgenstrahlung ist es m{\"o}glich die 1s Elektronen des HCNO zu ionisieren oder anzuregen. Der erzeugte Zustand zerf{\"a}llt anschließend durch einen Auger-Meitner Prozess, bei dem ein Auger-Elektron erzeugt wird. Im Zuge der Auger-Elektronenspektroskopie haben wir die kinetische Energie dieser Elektronen gemessen und konnten mittels quantenchemischer Rechnung die beobachten Signale analysieren. Wir untersuchten außerdem, wie das durch den Auger-Meitner Prozess erzeugte Ion zerf{\"a}llt. Hier konnten wir eine Selektivit{\"a}t des Zerfalls beobachten, je nachdem welches der 1s Elektronen im ersten Schritt angeregt oder ionisiert wurde. Diese Beobachtung konnten wir durch ein einfaches thermodynamisches Argument erkl{\"a}ren. Diese Arbeit gibt also ein vollst{\"a}ndiges Bild {\"u}ber die Interaktion von HCNO mit ionisierender Strahlung. Die erhaltenen Daten k{\"o}nnten f{\"u}r die Beschreibung von HCNO im interstellaren Raum Bedeutung haben.}, subject = {Chemie}, language = {en} } @phdthesis{Luettig2023, author = {L{\"u}ttig, Julian Konstantin}, title = {Coherent Higher-Order Spectroscopy: Investigating Multi-Exciton Interaction}, doi = {10.25972/OPUS-29318}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293182}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The goal of this thesis was the development and application of higher-order spectroscopic techniques. In contrast to ordinary pump-probe (PP) and two-dimensional (2D) spectroscopy, higher-order coherently detected spectroscopic methods measure a polarization that has an order of nonlinearity higher than three. The key idea of the techniques in this thesis is to isolate the higher-order signals from the lower-order signals either by their excitation frequency or by their excitation intensity dependence. Due to the increased number of interactions in higher-order spectroscopy, highly excited states can be probed. For excitonic systems such as aggregates and polymers, the fifth-order signal allows one to directly measure exciton-exciton annihilation (EEA). In polymers and aggregates, the exciton transport is not connected to a change of the absorption and can therefore not be investigated with conventional third-order techniques. In contrast, EEA can be used as a probe to study exciton diffusion in these isonergetic systems. As a part of this thesis, anisotropy in fifth-order 2D spectroscopy was investigated and was used to study geometric properties in polymers. In 2D spectroscopy, the multi-quantum signals are separated from each other by their spectral position along the excitation axis. This concept can be extended systematically to higher signals. Another approach to isolate multi-quantum signals in PP spectroscopy utilizes the excitation intensity. The PP signal is measured at specific excitation intensities and linear combinations of these measurements result in different signal contributions. However, these signals do not correspond to clean nonlinear signals because the higher-order signals contaminate the lower-order multi-quantum signals. In this thesis, a correction protocol was derived that uses the isolated multiquantum signals, both from 2D spectroscopy and from PP spectroscopy, to remove the contamination of higher-order signals resulting in clean nonlinear signals. Using the correction on the third-order signal allows one to obtain annihilation-free signals at high excitation intensities, i.e., with high signal-to-noise ratio. Isolation and correction in PP and 2D spectroscopy were directly compared by measuring the clean third-order signals of squaraine oligomers at high excitation intensities. Furthermore, higher-order PP spectroscopy was used to isolate up to the 13th nonlinear order of squaraine polymers. The demonstrated spectroscopic techniques represent general procedures to isolate clean signals in terms of perturbation theory. The technique of higher-order PP spectroscopy needs only small modifications of ordinary PP setups which opens the field of higher-order spectroscopy to the broad scientific community. The technique to obtain clean nonlinear signals allows one to systematically increase the number of interacting (quasi)particles in a system and to characterize their interaction energies and dynamics.}, subject = {Coherent Multidimensional Spectroscopy}, language = {en} } @phdthesis{Wirsing2023, author = {Wirsing, Sara}, title = {Computational Spectroscopic Studies with Focus on Organic Semiconductor Systems}, doi = {10.25972/OPUS-28655}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286552}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This work presents excited state investigations on several systems with respect to experimental spectroscopic work. The majority of projects covers the temporal evolution of excitations in thin films of organic semiconductor materials. In the first chapters, thinfilm and interface systems are build from diindeno[1,2,3-cd:1',2',3'-lm]perylene (DIP) and N,N'-bis-(2-ethylhexyl)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDIR-CN2) layers, in the third chapter bulk systems consist of 4,4',4"-tris[(3-methylphenyl)phenylamino] triphenylamine (m-MTDATA), 4,7-diphenyl-1,10-phenanthroline (BPhen) and tris-(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane (3TPYMB). These were investigated by aggregate-based calculations. Careful selection of methods and incorporation of geometrical relaxation and environmental effects allows for a precise energetical assignment of excitations. The biggest issue was a proper description of charge-transfer excitations, which was resolved by the application of ionization potential tuning on aggregates. Subsequent characterization of excitations and their interplay condenses the picture. Therefore, we could assign important features of the experimental spectroscopic data and explain differences between systems. The last chapter in this work covers the analysis of single molecule spectroscopy on methylbismut. This poses different challenges for computations, such as multi-reference character of low-lying excitations and an intrinsic need for a relativistic description. We resolved this by combining complete active space self-consistent field based methods with scalarrelativistic density-functional theory. Thus we were able to confidently assign the spectroscopic features and explain underlying processes.}, subject = {Theoretische Chemie}, language = {en} } @article{SchuergerEngel2023, author = {Sch{\"u}rger, Peter and Engel, Volker}, title = {Differential Shannon entropies characterizing electron-nuclear dynamics and correlation: momentum-space versus coordinate-space wave packet motion}, series = {Entropy}, volume = {25}, journal = {Entropy}, number = {7}, issn = {1099-4300}, doi = {10.3390/e25070970}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-362670}, year = {2023}, abstract = {We calculate differential Shannon entropies derived from time-dependent coordinate-space and momentum-space probability densities. This is performed for a prototype system of a coupled electron-nuclear motion. Two situations are considered, where one is a Born-Oppenheimer adiabatic dynamics, and the other is a diabatic motion involving strong non-adiabatic transitions. The information about coordinate- and momentum-space dynamics derived from the total and single-particle entropies is discussed and interpreted with the help of analytical models. From the entropies, we derive mutual information, which is a measure for the electron-nuclear correlation. In the adiabatic case, it is found that such correlations are manifested differently in coordinate- and momentum space. For the diabatic dynamics, we show that it is possible to decompose the entropies into state-specific contributions.}, language = {en} }