@phdthesis{Daubinger2024, author = {Daubinger, Philip}, title = {Electrochemical and Mechanical Interplay of State-of-the-Art and Next-Generation Lithium-Ion Batteries}, doi = {10.25972/OPUS-35125}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-351253}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The demand for LIB with enhanced energy densities leads to increased utilization of the space within the confinements of the battery housing or to the use of electrode material with increased intrinsic specific energy densities. Both requirements result in more stress on the battery electrodes and separator during cycling or aging. However, the effect of mechanical strain on the cell's electrochemistry and thus the performance of batteries is rather unexplored compared to the impact of current or temperature, for example. The objective of this thesis was to give a better understanding of the electrochemical and mechanical interplay in current- and next-generation lithium based battery cells. Therefore, the thesis was structured into the investigations on SoA and next-generation LIBs. For SoA LIBs, the investigations of the interplay started at laboratory scale. Here, the expansion of various electrodes and also the impact of mechanical pressure and its distribution on the performance of the cells were studied. The investigations at laboratory scale was followed by an examination of the electrochemical and mechanical interactions on large format commercial LIBs which are used in BEVs. Accordingly, the effect of bracing and its effect on the performance was studied in an aging and post-mortem study. To gain a deeper understanding of the mechanical changes in LIBs, an ultrasonic study was performed for pouch cells. Here, the mechanical changes were further investigated in dependence of SoC and SoH. The effects of the mechanical stress on the performance for next-generation batteries were studied at laboratory scale. In the beginning, the expansion of next-generation anode materials such as silicon and lithium was compared with today's anode materials. Furthermore, the effect of mechanical pressure and electrolyte on the irreversible dilation and performance was investigated for lithium metal cells. Overall, it was shown that pressure has a significant effect on the performance of today's and also future LIBs. The interplay of the electrochemical and mechanical effects inside a LIB has a considerable impact on the lifetime, capacity fading and impedance increase of the batteries.}, subject = {Lithium-Ionen-Akkumulator}, language = {en} } @phdthesis{SpaethgebLutz2024, author = {Sp{\"a}th [geb. Lutz], Johanna}, title = {Oberfl{\"a}chenfunktionalisierte Gold- und Silbernanopartikel auf Basis von Thioether-Poly(glycidol) f{\"u}r potenzielle biomedizinische Anwendungen - Auswirkungen auf Stabilit{\"a}t, Proteinkoronabildung und Biodistribution}, doi = {10.25972/OPUS-35066}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350662}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Based on previous results showing that thioether modification of gold nanoparticles (AuNPs), especially coating with a multivalent system, yielded in excellent colloidal stability, the first aim of this thesis was to prove whether functionalization of silver nanoparticles (AgNPs) with thioether also has a comparable or even enhanced stabilization efficacy compared with the gold standard of coating with thiols and, particularly, whether the multivalency of polymers leads to stable AgNPs conjugates. Herein, AgNPs coated with mono- and multivalent thiol- and thioether polymers were prepared to systematically investigate the adsorption kinetics onto the silver surface as well as the colloidal stability after exposure to different conditions relevant for biomedical application. Although the thioether-polymers showed a slower immobilization onto AgNPs, same or mostly even better stabilization was exhibited than for the thiol analogs. As multivalent thioether-poly(glycidol) (PG) is already proven as a promising candidate for AuNP modification and stabilization, the second aim of this thesis was to examine the stealth behavior of thioether-PG, side-chain functionalized with various hydrophobic (alkyl and cholesteryl) units, to gain a deeper understanding of AuNP surface functionalization in terms of protein adsorption and their subsequent cellular uptake by human monocyte-derived macrophages. For this purpose, citrate-stabilized AuNPs were modified with the amphiphilic polymers by ligand exchange reaction, followed by incubation in human serum. The various surface amphiphilicities affected protein adsorption to a certain extent, with less hydrophobic particle layers leading to a more inhibited protein binding. Especially AuNPs functionalized with PG carrying the longest alkyl chain showed differences in the protein corona composition compared to the other polymer-coated NPs. In addition, PGylation, and especially prior serum incubation, of the NPs exhibited reduced macrophage internalization. As the use of mammals for in vivo experiments faces various challenges including increasing regulatory hurdles and costs, the third aim of this thesis was to validate larvae of the domestic silkworm Bombyx mori as an alternative invertebrate model for preliminary in vivo research, using AuNPs with various surface chemistry (one PEG-based modification and three PG-coatings with slightly hydrophobic functionalization, as well as positively and negatively charges) for studying their biodistribution and elimination. 6 h and 24 h after intra-hemolymph injection the Au content in different organ compartments was measured with ICP-MS, showing that positively charged particles appeared to be eliminated most rapidly through the midgut, while AuNPs modified with PEG, alkyl-functionalized PG and negatively charged PG exhibited long-term bioavailability in the silkworm body.}, subject = {Nanopartikel}, language = {en} } @phdthesis{Wenderoth2024, author = {Wenderoth, Sarah}, title = {Synthesis and characterization of shear stress indicator supraparticles}, doi = {10.25972/OPUS-35281}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352819}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The detection of smallest mechanical loads plays an increasingly important role in many areas of advancing automation and manufacturing technology, but also in everyday life. In this doctoral thesis, various microparticle systems were developed that are able to indicate mechanical shear stress via simple mechanisms. Using a toolbox approach, these systems can be spray-dried from various nanoscale primary particles (silica and iron oxide) to micrometer-sized units, so-called supraparticles. By varying the different building blocks and in combination with different dyes, a new class of mechanochromic shear stress indicators was developed by constructing hierarchically structured core-shell supraparticles that can indicate mechanical stress via an easily detectable color change. Three different mechanisms can be distinguished. If a signal becomes visible only by a mechanical load, it is a turn-on indicator. In the opposite case, the turn-off indicator, the signal is switched off by a mechanical load. In the third mechanism, the color-change indicator, the color changes as a result of a mechanical load. In principle, these indicators can be used in two different ways. First, they can be incorporated into a coating as an additive. These coatings can be applied to a wide range of products, including food packaging, medical devices, and generally any sensitive surface where mechanical stress, such as scratches, is difficult to detect but can have serious consequences. Second, these shear stress indicators can also be used directly in powder form and for example then applied in 3D-printing or in ball mills. A total of six different shear stress indicators were developed, three of which were used as additives in coatings and three were applied in powder form. Depending on their composition, these indicators were readout by fluorescence, UV-Vis or Magnetic Particle Spectroscopy. The development of these novel shear stress indicator supraparticles were successfully combined molecular chemistry with the world of nano-objects to develop macroscopic systems that can enable smart and communicating materials to indicate mechanical stress in a variety of applications.}, subject = {Nanopartikel}, language = {en} } @phdthesis{Emmert2023, author = {Emmert, Martin}, title = {The Influence of Substrate Micro- and Nanotopographies on Essential Cell Functions}, doi = {10.25972/OPUS-32779}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-327796}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The introduction of novel bioactive materials to manipulate living cell behavior is a crucial topic for biomedical research and tissue engineering. Biomaterials or surface patterns that boost specific cell functions can enable innovative new products in cell culture and diagnostics. This study aims at investigating the interaction of living cells with microstructured, nanostructured and nanoporous material surfaces in order to identify distinct systematics in cell-material interplay. For this purpose, three different studies were carried out and yielded individual effects on different cell functions. Cell migration processes are controlled by sensitive interaction with external cues such as topographic structures of the cell's environment. The first part of this study presents systematically controlled assays to investigate the effects of spatial density and local geometry of micron scale topographic cues on amoeboid migration of Dictyostelium discoideum cells in quasi-3D pillar fields with systematic variation of inter-pillar distance and pillar lattice geometry. We can extract motility parameters in order to elucidate the details of amoeboid migration mechanisms and consolidate them in a two-state contact-controlled motility model, distinguishing directed and random phases. Specifically, we find that directed pillar-to-pillar runs are found preferably in high pillar density regions, and cells in directed motion states sense pillars as attractive topographic stimuli. In contrast, cell motion in random probing states is inhibited by high pillar density, where pillars act as obstacles for cell motion. In a gradient spatial density, these mechanisms lead to topographic guidance of cells, with a general trend towards a regime of inter-pillar spacing close to the cell diameter. In locally anisotropic pillar environments, cell migration is often found to be damped due to competing attraction by different pillars in close proximity and due to lack of other potential stimuli in the vicinity of the cell. Further, we demonstrate topographic cell guidance reflecting the lattice geometry of the quasi-3D environment by distinct preferences in migration direction. We further investigate amoeboid single-cell migration on intrinsically nano-structured, biodegradable silica fibers in comparison to chemically equivalent plain glass surfaces. Cell migration trajectories are classified into directed runs and quasi-random migration by a local mean squared displacement (LMSD) analysis. We find that directed movement on silica fibers is enhanced in a significant manner by the fibers' nanoscale surface-patterns. Further, cell adhesion on the silica fibers is a microtubule-mediated process. Cells lacking microtubules detach from the fibers, but adhere well to glass surfaces. Knock-out mutants of myosin II migrating on the fibers are as active as cells with active myosin II, while the migration of the knock-out mutants is hindered on plain glass. We investigate the influence of the intrinsically nano-patterned surface of nanoporous glass membranes on the behavior of mammalian cells. Three different cell lines and primary human mesenchymal stem cells (hMSCs) proliferate readily on nanoporous glass membranes with mean pore sizes between 10 nm and 124 nm. In both proliferation and mRNA expression experiments, L929 fibroblasts show a distinct trend towards mean pore sizes > 80 nm. For primary hMSCs, excellent proliferation is observed on all nanoporous surfaces. hMSC on samples with 17 nm pore size display increased expression of COL10, COL2A1 and SOX9, especially during the first two weeks of culture. In upside down culture, SK MEL-28 cells on nanoporous glass resist the gravitational force and proliferate well in contrast to cells on flat references. The effect of paclitaxel treatment of MDA MB 321 breast cancer cells is already visible after 48 h on nanoporous membranes and strongly pronounced in comparison to reference samples. The studies presented in this work showed novel and distinct effects of micro- and nanoscale topographies on the behavior of various types of living cells. These examples display how versatile the potential for applications of bioactive materials could become in the next years and decades. And yet this variety of different alterations of cell functions due to topographic cues also shows the crucial part of this field of research: Carving out distinct, robust correlations of external cues and cell behavior is of utmost importance to derive definitive design implications that can lead to scientifically, clinically and commercially successful products.}, language = {en} } @phdthesis{Klein2022, author = {Klein, Matthias}, title = {Optische Materialien f{\"u}r die Additive Fertigung}, doi = {10.25972/OPUS-25493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254939}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In der vorliegenden Arbeit wurden neue Materialien f{\"u}r die additive Fertigung f{\"u}r opti-sche Anwendungen entwickelt. Hierbei wurde zun{\"a}chst ein ORMOCER® Harz f{\"u}r den LCD/DLP 3D-Druck synthetisiert und charakterisiert. Das Material zeigte eine gute Druckbarkeit, gute optische Eigenschaften und eine hohe Stabilit{\"a}t gegen{\"u}ber Belas-tungen mit UV-Licht, Temperatur und Luftfeuchtigkeit. Die prozessbedingte Stufenbil-dung f{\"u}r gekr{\"u}mmte Oberfl{\"a}chen beim LDC/DLP Druck erforderte eine Weiterentwick-lung zu einem Harz, das auch mittels Inkjet-Verfahren gedruckt werden kann. Hierf{\"u}r mussten die Viskosit{\"a}t des ORMOCER®s und die Einfl{\"u}sse darauf untersucht werden. Zu diesem Zweck wurde die Synthese entsprechend ver{\"a}ndert und die Produkte cha-rakterisiert. Variationen des Wasseranteils, des Katalysators, der Reaktionszeit, der Re-aktionsf{\"u}hrung und der Edukte wurden durchgef{\"u}hrt. Harze mit resultierender niedriger Viskosit{\"a}t d{\"u}rfen zusammenfassend nur zweifach anorganisch vernetzende Edukte mit niedrigem Reibungskoeffizienten beinhalten. Ein H2O-Verh{\"a}ltnis von 0,5 zu den vorlie-genden Si-O-Gruppen resultiert in akzeptablen Viskosit{\"a}ten und einer ausreichenden Stabilit{\"a}t. Als zuverl{\"a}ssiger Katalysator stellte sich HCl heraus. Die Reaktionszeit muss so gew{\"a}hlt werden, dass die Sol-Gel-Synthese abgeschlossen ist. K{\"u}rzere Zeiten f{\"u}h-ren zwar zu kleineren Viskosit{\"a}ten, jedoch auch zu eventuell schlechter Langzeitstabili-t{\"a}t. Ver{\"a}nderungen in der Reaktionsf{\"u}hrung, durch Zutropfen der Edukte, resultierten jedoch vorwiegend zur Erh{\"o}hung der Viskosit{\"a}ten. Mit diesen Erkenntnissen wurde an-schließend ein Harz synthetisiert, das erfolgreich ohne weitere Verd{\"u}nnungsschritte am Inkjet-Drucker prozessiert werden konnte. Dieses Harz ist zus{\"a}tzlich auch am LCD/DLP Drucker einsetzbar. Als erg{\"a}nzender Schritt konnte im Anschluss noch gezeigt werden, dass Partikel in Harze zus{\"a}tzliche Eigenschaften, wie Fluoreszenz, einbringen k{\"o}nnen.}, subject = {Additive Manufacturing}, language = {de} } @phdthesis{Kolb2022, author = {Kolb, Carina}, title = {Neuartige ORMOCER®-basierte Materialsysteme und deren Formgebung mittels Digital Light Processing f{\"u}r hochwertige dentale Versorgungen}, doi = {10.25972/OPUS-25951}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259516}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Im Rahmen der vorliegenden Dissertation wurden ORMOCER®-basierte Materialsysteme f{\"u}r dentale Versorgungen entwickelt, die additiv mittels Digital Light Processing (DLP) verarbeitbar sind und ein hochwertiges, auf die vorgesehene Zielanwendung abgestimmtes Eigenschaftsprofil besitzen. Zun{\"a}chst wurden grundlegende Untersuchungen zum DLP-Druck des Harzsystems und einfachen Kompositen durchgef{\"u}hrt, um auftretende Herausforderungen zu identifizieren und die weitere Vorgehensweise festzulegen. Ausgehend davon konzentrierte sich die Arbeit neben der Vermeidung der klebrigen Sauerstoffinhibierungsschicht auf der Bauteiloberfl{\"a}che einerseits darauf, die Maßhaltigkeit bei DLP-gedruckten Bauteilen mit {\"u}berh{\"a}ngenden Strukturen zu steigern. Insbesondere wurde das Augenmerk hier auf die Verwendung von organischen Lichtabsorbern zur Realisierung von hochtransluzenten Harz-basierten Bauteilen gelegt. Andererseits lag ein weiterer Schwerpunkt der Arbeit auf der Entwicklung von DLP-druckbaren Kompositen mit hoher Transluzenz. Die daf{\"u}r n{\"o}tige Brechzahlanpassung von Harzsystem und F{\"u}llstoff wurde zum einen durch die Synthese neuer, h{\"o}herbrechender Harzsysteme und zum anderen durch die Verwendung hochbrechender ZrO2-Nanopartikel realisiert. Die resultierenden hochtransluzenten Komposite wurden umfassend mechanisch charakterisiert sowie erfolgreich DLP-gedruckt.}, subject = {Hybridpolymere}, language = {de} } @phdthesis{Hu2022, author = {Hu, Chen}, title = {Novel hybrid hydrogels based on poly(2-oxazoline)}, doi = {10.25972/OPUS-27935}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-279354}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Motivated by the great potential offered by the combination of additive manufacturing technology and hydrogels, especially in the field of tissue engineering and regenerative medicine, a series of novel hybrid hydrogel inks were developed based on the recently described thermogelling poly(2-oxazoline)s-block-poly(2-oxazine)s diblock copolymers, which may help to expand the platform of available hydrogel inks for this transformative 3D printing technology (Fig. 5.1). In the present thesis, the first reported thermogelling polymer solely consisting of POx and POzi, i.e., the diblock copolymer PMeOx-b-PnPrOzi comprising a hydrophilic block (PMeOx) and a thermoresponsive block (PnPrOzi), was selected and used as a proof-of-concept for the preparation of three novel hybrid hydrogels. Therefore, three batches of the diblock copolymers with a DP of 100 were synthesized for the study of three different hybrid hydrogels with a special focus on their suitability as (bio)inks for extrusion-based 3D printing. The PMeOx-b-PnPrOzi diblock copolymer solution shows a temperature induced reversible gelation behavior above a critical polymer concentration of 20 wt\%, as described for the Pluronic F127 solution but with a unique gelation mechanism, working through the formation of a bicontinuous sponge-like structure from the physically crosslinked vesicles. Specially, its intrinsic shear thinning behavior and excellent recovery property with a certain yield point make it a promising ink candidate for extrusion-based printing technology. Increasing the polymer concentration is the most traditional approach to improve the printability of an ink material, and serve as the major strategy available to improve the printability of PMeOx-b-PnPrOzi systems prior to this work. From the analysis of rheological properties related to printability, it came a conclusion that increasing the copolymer concentration does improve the hydrogel strength and thus the printability. However, such improvement is very limited and usually leads to other problems such as more viscous systems and stringent requirements on the printers, which are not ideal for the printing process and applications especially in the cell-embedded biofabrication field. POx-b-POzi/clay Hybrid Hydrogel An alternative method proposed to improve the printability of this thermoresponsive hydrogel ink is through nanoclay (Laponite XLG) addition, i.e., the first hybrid hydrogel system of PMeOx-b-PnPrOzi/clay (also named shortly as POx-b-POzi/clay) in this thesis. To optimize the viscoelastic properties of the ink material, Laponite XLG acted as a reinforcement additive and a physically crosslinker was blended with the copolymers. Compared with the pristine copolymer solution of PMeOx-b-PnPrOzi, the hybrid PMeOx-b-PnPrOzi/clay solution well retained the temperature induced gelation performance of the copolymers. The obtained hybrid hydrogels exhibited a rapid in situ reversible thermogelation at a physiological relevant Tgel of around 15 ℃ and a rapid recovery of viscoelastic properties within a few seconds. More importantly, with the addition of only a small amount of 1.2 wt\% clay, it exhibited obviously enhanced shear thinning character (n = 0.02), yield stress (240 Pa) and mechanical strength (storage modulus over 5 kPa). With this novel hybrid hydrogel, real three-dimensional constructs with multiple layers and various geometries are generation with greatly enhanced shape fidelity and resolution. In this context, the thermogelling properties of the hybrid hydrogels over a copolymer concentration range of 10-20 wt\% and a clay concentration of 0-4 wt\% were systematically investigated, and from which a printable window was obtained from the laboratory as a reference. In fact, the printing performance of an ink is not only determined by the intrinsic physicochemical properties of the material, but is also influenced by the external printing environments as well as the printer parameter settings. All the printing experiments in this study were conducted under a relatively optimized conditions obtained from preliminary experiments. In future work, the relationship between material rheology properties, printer parameters and printing performance could be systematically explored. Such a fundamental study will help to develop models that allows the prediction and comparison of printing results from different researches based on the parameters available through rheology, which is very beneficial for further development of more advanced ink systems. Although the printability has been significantly improved by the addition of nanoclay Laponite XLG, the hybrid hydrogels and their printed constructs still suffer from some major limitations. For example, these materials are still thermoresponsive, which will cause the printed constructs to collapse when the environment temperature changes below their Tgel. In addition, the formed hydrogel constructs are mechanical too weak for load-bearing applications, and the allowed incubation time is very limited during media exchange/addition as it will lead to dissolution of the hydrogels due to dilution effects. Therefore, it is essential to establish a second (chemical or physical) crosslinking mechanism that allows further solidification of the gels after printing. It should be kept in mind that the second crosslinking step will eliminate the thermoresponsive behavior of the gels and thus the possibility of cell recovery. In this case, besides through the traditional approach of copolymer modification to realize further crosslinking, like one of the well-known post-polymerization modification approach Diels-Alder reaction,[430] designing of interpenetrating networks (IPN) hydrogels serves as one of the major strategy for advanced (bio)ink preparation.[311] Therefore, the second hybrid hydrogel system of PMeOx-b-PnPrOzi/PDMAA/clay (also named shortly as POx-b-POzi/PDMAA/clay) was developed in this thesis, which is a 3D printable and highly stretchable ternary organic-inorganic IPN hydrogel. POx-b-POzi/PDMAA/clay Hybrid Hydrogel The nanocomposite IPN hydrogel combines a thermoresponsive hydrogel with clay described above and in situ polymerized poly(N, N-dimethylacrylamide). Before in situ polymerization, the thermoresponsive hydrogel precursors exhibited thermogelling behavior (Tgel ~ 25 ℃, G' ~ 6 kPa) and shear thinning properties, making the system well-suited for extrusion-based 3D printing. After chemical curing of the 3D-printed constructs by free radical polymerization, the resulting IPN hydrogels show excellent mechanical strength with a high stretchability to a tensile strain at break exceeding 550\%. The hybrid hydrogel can sustain a high stretching deformation and recover quickly due to the energy dissipation from the non-covalent interactions. With this hybrid hydrogel, integrating with the advanced 3D-printing technique, various 3D constructs can be printed and cured successfully with high shape fidelity and geometric accuracy. In this context, we also investigated the possibility of acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as alternative hydrogel precursors. However, the addition of these two monomers affected the thermogelation of POx-b-POzi in an unfavorable manner, as these monomers competed more effectively with water molecules, preventing the hydration of nPrOzi block at lower temperatures and therefore, the liquefaction of the gels. Furthermore, the influence of the printing process and direction on the mechanical properties of the hydrogel was investigated and compared with the corresponding bulk materials obtained from a mold. No significant effects from the additive manufacturing process were observed due to a homogeneously adhesion and merging between sequentially deposited layers. In the future, further studies on the specific performance differences among hydrogels fabricated at different printing directions/speeds would be of great interest to the community, as this allows for a more accurately control and better predict of the printed structures. This newly developed hybrid IPN hydrogel is expected to expand the material toolbox available for hydrogel-based 3D printing, and may be interesting for a wide range of applications including tissue engineering, drug delivery, soft robotics, and additive manufacturing in general. However, in this case, the low toxicity from the monomer DMAA and other small molecules residuals in the polymerized hydrogels made this hybrid hydrogel not ideal for bioprinting in the field of biofabrication. For this problem, cyto-/biocompatible monomers such as polyethylene glycol diacrylate (PEGDA) can be used as an alternative, while the overall properties of the hydrogels including mechanical properties should be re-evaluated accordingly. Moreover, the swelling behavior of the hydrogels should also be taken into account, as it may most likely affect the mechanical strength and geometry size of the printed scaffold, but is often be overlooked after printing. For example, regarding the specific hybrid hydrogel POx-b-POzi/PDMAA/clay in this work, an equilibrium swelling ratio of 1100\% was determined. The printed hydrogel cuboid experienced a volume increasing over 6-fold after equilibrium swelling in water, and became mechanical fragile due to the formation of a swollen hydrogel network absorbing large amount of water. POx-b-POzi/Alg/clay Hybrid Hydrogel In the final part of this dissertation, to enable the cell-loaded bioprinting and long-term cell culture, the third hybrid hydrogel system POx-b-POzi/Alg/clay was introduced by replacing the monomer DMAA to the natural polysaccharides alginate. Initially, detailed rheological characterization and mechanical tests were performed to evaluate their printability and mechanically properties. Subsequently, some simple patterns were printed with the optimized hydrogel precursor solutions for the preliminary filament fusion and collapse test before proceeding to more complex printings. The fibers showed a sufficient stability which allows the creation of large structures with a height of a few centimeters and a suspended filament up to centimeter. Accordingly, various 3D constructs including suspended filaments were printed successfully with high stackability and shape fidelity. The structure after extrusion was physical crosslinked easily by soaking in CaCl2 solution and, thereafter exhibited a good mechanical flexibility and long-term stability. Interestingly, the mechanical strength and geometry size of the generated scaffolds were well maintained over a culture period of weeks in water, which is of great importance for clinical applications. In addition, the post-printing ionic crosslinking of alginate could also be realized by other di/trivalent cations such as Fe3+ and Tb3+. Subsequently, the cell-laden printing with this hybrid hydrogel and post-printing crosslinking by Ca2+ ions highlighting its feasibility for 3D bioprinting. WST-1 assay of fibroblast suggested no-dose dependent cytocompatibility of the hydrogel precursor solution. The cell distribution was uniform throughout the printed construct, and proliferated with high cell viability during the 21 days culture. The presented hybrid approach, utilizing the beneficial properties of the POx-b-POzi base material, could be interesting for a wide range of bioprinting applications and potentially enabling also other biological bioinks such as collagen, hyaluronic acid, decellularized extracellular matrix or cellulose based bioinks. Although the results look promising and the developed hydrogel is an important bioink candidate, the long-term in vitro cell studies with different cell lines and clinical model establishment are still under investigation, which remains a long road but is of great importance before realizing real clinical application. Last but not least, the improvement to the printability of thermogelling POx/POzi-based copolymers by the clay Laponite XLG was also demonstrated in another thermogelling copolymer PEtOx-b-PnPrOzi. This suggests that the addition of clay may be a general strategy to improve the printability of such polymers. Despite these advances in this work which significantly extended the (bio)material platform of additive manufacturing technology, the competition is still fierce and more work should be done in the further to reveal the potential and limitations of this kind of new and promising candidate (bio)ink materials. It is also highly expected for further creative works based on the thermogelling POx/POzi polymers, such as crosslinking in Ca2+ solution containing monomer acrylamide to prepare printable and mechanically tough hydrogels, research on POx-based support bath material, and print of clinically more relevant sophisticated structures such as 3D microvascular networks omnidirectionally.}, subject = {Funktionsgel}, language = {en} } @phdthesis{WulfertHolzmann2022, author = {Wulfert-Holzmann, Paul}, title = {Die elektrische Leitf{\"a}higkeit des negativen Aktivmaterials moderner Blei-S{\"a}ure-Batterien}, doi = {10.25972/OPUS-29839}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298397}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Diese Doktorarbeit besch{\"a}ftigt sich mit dem Wirkmechanismus der elektrischen Leitf{\"a}higkeit in Blei-S{\"a}ure-Batterien. Obwohl ihm eine zentrale Rolle beim „Kohlenstoff-Effekt" zugeordnet wird, ist der Wirkmechanismus der elektrischen Leitf{\"a}higkeit bislang vergleichsweise wenig untersucht worden und konnte dementsprechend noch nicht vollst{\"a}ndig aufgekl{\"a}rt werden. Mit dem Anspruch, diese Forschungsl{\"u}cke zu schließen, zielt die vorliegende Doktorarbeit darauf ab, den Einfluss der elektrischen Leitf{\"a}higkeit auf die Performance der Blei-S{\"a}ure-Batterie systematisch herauszuarbeiten und so einen Beitrag zur Generierung neuer Entwicklungsans{\"a}tze zu leisten, z. B. in Form von maßgeschneiderten Additiven. Bislang ist noch unklar, ob allein die elektrische Leitf{\"a}higkeit des Aktivmaterials relevant ist oder diese auch durch Additive beeinflusst wird. Das liegt vor allem daran, dass geeignete Messmethoden fehlen und deshalb der Einfluss von Additiven auf die elektrische Leitf{\"a}higkeit des Aktivmaterials wenig untersucht wurde. Deswegen zielt diese Arbeit auch darauf ab, eine neuartige Messmethode zu entwickeln, um die elektrische Leitf{\"a}higkeit des Aktivmaterials im laufenden Betrieb bestimmen zu k{\"o}nnen. Aufgrund der Vorkenntnisse und Vorarbeiten am Fraunhofer ISC werden die Untersuchungen dabei auf die negative Elektrode limitiert. Insgesamt unterteilt sich die Doktorarbeit in die zwei Abschnitte. Im ersten Abschnitt werden elektrisch isolierende St{\"o}ber-Silica als Additive im negativen Aktivmaterial eingesetzt, um den Einfluss der elektrischen Leitf{\"a}higkeit des Additivs auf die elektrochemischen Eigenschaften der Batterie herauszustellen. Untersucht wird dabei die u.a. die Doppelschichtkapazit{\"a}t, die Wasserstoffentwicklung und die dynamische Ladeakzeptanz. Im zweiten Abschnitt steht die elektrische Leitf{\"a}higkeit des negativen Aktivmaterials im Fokus. Es wird zun{\"a}chst eine neue Messmethodik entwickelt, die ihre in-situ- und operando-Bestimmung erm{\"o}glicht. Nach einer umfassenden Evaluierung und der Betrachtung verschiedener Betriebsparameter wird die Methodik f{\"u}r eine erste proof-of-concept-Messreihe angewendet, um den Einfluss von Additiven auf die elektrische Leitf{\"a}higkeit des negativen Aktivmaterials zu untersuchen.}, subject = {Bleiakkumulator}, language = {de} } @article{BorovaSchluttNickeletal.2022, author = {Borova, Solomiia and Schlutt, Christine and Nickel, Joachim and Luxenhofer, Robert}, title = {A Transient Initiator for Polypeptoids Postpolymerization α-Functionalization via Activation of a Thioester Group}, series = {Macromolecular Chemistry and Physics}, volume = {223}, journal = {Macromolecular Chemistry and Physics}, number = {3}, doi = {10.1002/macp.202100331}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257587}, year = {2022}, abstract = {Here, a postpolymerization modification method for an α-terminal functionalized poly-(N-methyl-glycine), also known as polysarcosine, is introduced. 4-(Methylthio)phenyl piperidine-4-carboxylate as an initiator for the ring-opening polymerization of N-methyl-glycine-N-carboxyanhydride followed by oxidation of the thioester group to yield an α-terminal reactive 4-(methylsulfonyl)phenyl piperidine-4-carboxylate polymer is utilized. This represents an activated carboxylic acid terminus, allowing straightforward modification with nucleophiles under mild reaction conditions and provides the possibility to introduce a wide variety of nucleophiles as exemplified using small molecules, fluorescent dyes, and model proteins. The new initiator yielded polymers with well-defined molar mass, low dispersity, and high end-group fidelity, as observed by gel permeation chromatography, nuclear magnetic resonance spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy. The introduced method can be of great interest for bioconjugation, but requires optimization, especially for protein conjugation.}, language = {en} } @phdthesis{Mueller2022, author = {M{\"u}ller, Melanie}, title = {Untersuchung von Grenzfl{\"a}chenreaktionen von kristallisierenden Glasloten bei der F{\"u}gung von Hochtemperaturbrennstoffzellen}, doi = {10.25972/OPUS-29687}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296871}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {F{\"u}r die F{\"u}gung der Interkonnektoren einer Hochtemperaturbrennstoffzelle wurden in der hier vorliegenden Arbeit glaskeramische Lote entwickelt und untersucht. Es konnte ein hochviskoses Glas gefunden werden, das trotz fehlendem Erweichen bei der F{\"u}gung eine stabile, gasdichte und elektrisch isolierende glaskeramische F{\"u}gung ausbildet. Auch w{\"a}hrend des Betriebs kommt es zu keinem Erweichen der F{\"u}gung. Weiter treten keine feststellbaren Reaktionen mit den potentiellen Reaktionspartnern, den Stahlelementen, auf. Es konnte eine Korrelation dieses Reaktionsverhaltens mit dem Kristallisationsverhalten der Glaskeramik gefunden werden. Das Verhalten des Glaslotes wurde {\"u}ber mehrere tausend Stunden unter Betriebsbedingungen beziehungsweise betriebsimulierenden Bedingungen untersucht. Dabei konnte die Kristallisationsentwicklung beschrieben werden. Ein weiterer Aspekt der Arbeit war die Untersuchung des Einflusses der einzelnen Faktoren, denen ein Glaslot w{\"a}hrend seines Einsatzes von der F{\"u}gung bis zum Betrieb ausgesetzt ist, wie die F{\"u}getemperatur, die Viskosit{\"a}t der eingesetzten glasbildenden Schmelze oder die Dualgasatmosph{\"a}re im Betrieb, auf das Gef{\"u}ge und die Diffusion. Hierbei konnte gezeigt werden, dass die F{\"u}getemperatur mit Abstand den gr{\"o}ßten Einfluss auf die Stabilit{\"a}t der Glaslotschicht hat. Diese bedingt nicht nur die Kinetik des Fließens und die Benetzung des Stahls durch das Glas, sondern vor allem, welche Kristallphasen gebildet werden und wie das finale Gef{\"u}ge im Hinblick auf Kristallitgr{\"o}ße und -verteilung aussieht. So kommt es bei h{\"o}heren Temperaturen zu einem gr{\"o}ßeren Restglasphasenanteil und einem geringeren Kristallitanteil, was wiederum die Diffusion der Stahlelemente in die Glaslotschicht beg{\"u}nstigt.}, subject = {Hochtemperaturbrennstoffzelle}, language = {de} } @phdthesis{Haider2022, author = {Haider, Malik Salman}, title = {Structure Property Relationship and Therapeutic Potential of Poly(2-oxazoline)s and Poly(2-oxazines)s based Amphiphiles}, doi = {10.25972/OPUS-28903}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289036}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In the past decade, poly(2-oxazoline)s (POx) and very recently poly(2-oxazine)s (POzi) based amphiphiles have shown great potential for medical applications. Therefore, the major aim of this thesis was to further explore the pharmaceutical and biomedical applications of POx/POzi based ABA triblock and AB diblock copolymers, respectively with the special emphasis on structure property relationship (SPR). ABA triblock copolymers (with shorter side chain length in the hydrophobic block) have shown high solubilizing capacity for hydrophobic drugs. The issue of poor aqueous solubility was initially addressed by developing a (micellar) formulation library of 21 highly diverse, hydrophobic drugs with POx/POzi based ABA triblock copolymers. Theoretically, the extent of compatibility between polymers and drug was determined by calculating solubility parameters (SPs). The SPs were thoroughly investigated to check their applicability in present systems. The selected formulations were further characterized by various physico-chemical techniques. For the biomedical applications, a novel thermoresposive diblock copolymer was synthesized which has shown promising properties to be used as hydrogel bioink or can potentially be used as fugitive support material. The most important aspect i.e. SPR, was studied with respect to hydrophilic block in either tri- or di-block copolymers. In triblock copolymer, the hydrophilic block played an important role for ultra high drug loading, while in case of diblock, it has improved the printability of the hydrogels. Apart from the basic research, the therapeutic applications of two formulations i.e. mitotane (commercially available as tablet dosage form for adrenocortical carcinoma) and BT-44 (lead compound for nerve regeneration) were studied in more detail.}, language = {en} } @phdthesis{Hofmann2022, author = {Hofmann, Michael}, title = {Overcoming Obstacles in the Aqueous Processing of Nickel-rich Layered Oxide Cathode Materials}, doi = {10.25972/OPUS-27378}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-273787}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The implementation of a water-based cathode manufacturing process is attractive, given the prospect of improved sustainability of future lithium-ion batteries. However, the sensitivity of many cathode materials to water poses a huge challenge. Within the scope of this work, a correlation between the water sensitivity of cathode materials from the class of layered oxides and their elemental composition was identified. In particular for the cathode material LiNi0.8Co0.15Al0.05O2 (NCA), the processes taking place in aqueous medium were clarified in detail. Based on this knowledge, the surface of NCA particles could be specifically modified, which led to a reduced water sensitivity. As a result, the electrochemical performance of cells with water-based NCA cathodes was significantly improved and a remarkable long-term cycling performance was achieved. The present work contributes to a deeper understanding of the water sensitivity of cathode materials and at the same time presents a promising approach to overcome this obstacle. Consequently, this work advances the successful widespread realization of water-based cathode manufacturing.}, subject = {Elektrochemie}, language = {en} } @article{ChristGlaubittBerberichetal.2022, author = {Christ, Bastian and Glaubitt, Walther and Berberich, Katrin and Weigel, Tobias and Probst, J{\"o}rn and Sextl, Gerhard and Dembski, Sofia}, title = {Sol-gel-derived fibers based on amorphous α-hydroxy-carboxylate-modified titanium(IV) oxide as a 3-dimensional scaffold}, series = {Materials}, volume = {15}, journal = {Materials}, number = {8}, issn = {1996-1944}, doi = {10.3390/ma15082752}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270694}, year = {2022}, abstract = {The development of novel fibrous biomaterials and further processing of medical devices is still challenging. For instance, titanium(IV) oxide is a well-established biocompatible material, and the synthesis of TiO\(_x\) particles and coatings via the sol-gel process has frequently been published. However, synthesis protocols of sol-gel-derived TiO\(_x\) fibers are hardly known. In this publication, the authors present a synthesis and fabrication of purely sol-gel-derived TiO\(_x\) fiber fleeces starting from the liquid sol-gel precursor titanium ethylate (TEOT). Here, the α-hydroxy-carboxylic acid lactic acid (LA) was used as a chelating ligand to reduce the reactivity towards hydrolysis of TEOT enabling a spinnable sol. The resulting fibers were processed into a non-woven fleece, characterized with FTIR, \(^{13}\)C-MAS-NMR, XRD, and screened with regard to their stability in physiological solution. They revealed an unexpected dependency between the LA content and the dissolution behavior. Finally, in vitro cell culture experiments proved their potential suitability as an open-mesh structured scaffold material, even for challenging applications such as therapeutic medicinal products (ATMPs).}, language = {en} } @phdthesis{Nahm2021, author = {Nahm, Daniel}, title = {Poly(2-oxazine) Based Biomaterial Inks for the Additive Manufacturing of Microperiodic Hydrogel Scaffolds}, doi = {10.25972/OPUS-24598}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245987}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The aim of this thesis was the preparation of a biomaterial ink for the fabrication of chemically crosslinked hydrogel scaffolds with low micron sized features using melt electrowriting (MEW). By developing a functional polymeric material based on 2-alkyl-2-oxazine (Ozi) and 2-alkyl-2-oxazoline (Ox) homo- and copolymers in combination with Diels-Alder (DA)-based dynamic covalent chemistry, it was possible to achieve this goal. This marks an important step for the additive manufacturing technique melt electrowriting (MEW), as soft and hydrophilic structures become available for the first time. The use of dynamic covalent chemistry is a very elegant and efficient method for consolidating covalent crosslinking with melt processing. It was shown that the high chemical versatility of the Ox and Ozi chemistry offers great potential to control the processing parameters. The established platform offers straight forward potential for modification with biological cues and fluorescent markers. This is essential for advanced biological applications. The physical properties of the material are readily controlled and the potential for 4D-printing was highlighted as well. The developed hydrogel architectures are excellent candidates for 3D cell culture applications. In particular, the low internal strength of some of the scaffolds in combination with the tendency of such constructs to collapse into thin strings could be interesting for the cultivation of muscle or nerve cells. In this context it was also possible to show that MEW printed hydrogel scaffolds can withstand the aspiration and ejection through a cannula. This allows the application as scaffolds for the minimally invasive delivery of implants or functional tissue equivalent structures to various locations in the human body.}, subject = {Polymere}, language = {en} } @article{HahnBeudertGutmannetal.2021, author = {Hahn, Lukas and Beudert, Matthias and Gutmann, Marcus and Keßler, Larissa and Stahlhut, Philipp and Fischer, Lena and Karakaya, Emine and Lorson, Thomas and Thievessen, Ingo and Detsch, Rainer and L{\"u}hmann, Tessa and Luxenhofer, Robert}, title = {From Thermogelling Hydrogels toward Functional Bioinks: Controlled Modification and Cytocompatible Crosslinking}, series = {Macromolecular Bioscience}, volume = {21}, journal = {Macromolecular Bioscience}, number = {10}, doi = {10.1002/mabi.202100122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257542}, year = {2021}, abstract = {Hydrogels are key components in bioink formulations to ensure printability and stability in biofabrication. In this study, a well-known Diels-Alder two-step post-polymerization modification approach is introduced into thermogelling diblock copolymers, comprising poly(2-methyl-2-oxazoline) and thermoresponsive poly(2-n-propyl-2-oxazine). The diblock copolymers are partially hydrolyzed and subsequently modified by acid/amine coupling with furan and maleimide moieties. While the thermogelling and shear-thinning properties allow excellent printability, trigger-less cell-friendly Diels-Alder click-chemistry yields long-term shape-fidelity. The introduced platform enables easy incorporation of cell-binding moieties (RGD-peptide) for cellular interaction. The hydrogel is functionalized with RGD-peptides using thiol-maleimide chemistry and cell proliferation as well as morphology of fibroblasts seeded on top of the hydrogels confirm the cell adhesion facilitated by the peptides. Finally, bioink formulations are tested for biocompatibility by incorporating fibroblasts homogenously inside the polymer solution pre-printing. After the printing and crosslinking process good cytocompatibility is confirmed. The established bioink system combines a two-step approach by physical precursor gelation followed by an additional chemical stabilization, offering a broad versatility for further biomechanical adaptation or bioresponsive peptide modification.}, language = {en} } @article{HaiderAhmadYangetal.2021, author = {Haider, Malik Salman and Ahmad, Taufiq and Yang, Mengshi and Hu, Chen and Hahn, Lukas and Stahlhut, Philipp and Groll, J{\"u}rgen and Luxenhofer, Robert}, title = {Tuning the thermogelation and rheology of poly(2-oxazoline)/poly(2-oxazine)s based thermosensitive hydrogels for 3D bioprinting}, series = {Gels}, volume = {7}, journal = {Gels}, number = {3}, issn = {2310-2861}, doi = {10.3390/gels7030078}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241781}, year = {2021}, abstract = {As one kind of "smart" material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. In this work, we report a thermosensitive poly(2-oxazoline)/poly(2-oxazine) based diblock copolymer comprising thermosensitive/moderately hydrophobic poly(2-N-propyl-2-oxazine) (pPrOzi) and thermosensitive/moderately hydrophilic poly(2-ethyl-2-oxazoline) (pEtOx). Hydrogels were only formed when block length exceeded certain length (≈100 repeat units). The tube inversion and rheological tests showed that the material has then a reversible sol-gel transition above 25 wt.\% concentration. Rheological tests further revealed a gel strength around 3 kPa, high shear thinning property and rapid shear recovery after stress, which are highly desirable properties for extrusion based three-dimensional (3D) (bio) printing. Attributed to the rheology profile, well resolved printability and high stackability (with added laponite) was also possible. (Cryo) scanning electron microscopy exhibited a highly porous, interconnected, 3D network. The sol-state at lower temperatures (in ice bath) facilitated the homogeneous distribution of (fluorescently labelled) human adipose derived stem cells (hADSCs) in the hydrogel matrix. Post-printing live/dead assays revealed that the hADSCs encapsulated within the hydrogel remained viable (≈97\%). This thermoreversible and (bio) printable hydrogel demonstrated promising properties for use in tissue engineering applications.}, language = {en} } @phdthesis{Schug2021, author = {Schug, Benedikt}, title = {Untersuchungen zur Ursache und Beeinflussung des Kriechverhaltens von Gips}, doi = {10.25972/OPUS-24650}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246503}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In dieser Arbeit konnte ein weiterer und m{\"o}glicherweise entscheidender Schritt zur Aufkl{\"a}rung des Kriechmechanismus von Gips gemacht und darauf aufbauend Kriterien, Wege und Strategien aufgezeigt werden, um neue Antikriechmittelsubstanzen zu identifizieren oder vorhandene Kriechmittel gezielt zu verbessern. Die G{\"u}ltigkeit und Praxistauglichkeit der Kriterien wurde exemplarisch nachgewiesen. Die Basis der Untersuchungen wurde gelegt mit der Errichtung standardisierter Messaufbauten und Verfahren sowie Parameterauswahl f{\"u}r eine beschleunigte und reproduzierbare Darstellung des Kriechph{\"a}nomens, wobei zun{\"a}chst im Abgleich sichergestellt wurde, dass das beschleunigte Ph{\"a}nomen mit dem langsam {\"u}ber einen Zeitraum von Jahren erzeugten Ph{\"a}nomen deckungsgleich ist. Darauf aufbauend wurden innovative Untersuchungsmethoden entwickelt, um das Kriechverhalten zu charakterisieren und qualitativ sowie quantitativ zu analysieren. Hierzu wurde zun{\"a}chst ein Aufbau und eine Messroutine entwickelt und eingef{\"u}hrt, um morphologische Ver{\"a}nderungen w{\"a}hrend des Kriechvorgangs im Rasterelektronenmikroskop nachzuverfolgen. Im Weiteren wurden Versuchsaufbauten f{\"u}r statische 3-Punkt-Biegeversuche in verschiedenen L{\"o}sungen realisiert und diese ergebnisabh{\"a}ngig optimiert. Hierdurch konnte der Einfluss der L{\"o}slichkeit von Gips in den entsprechenden Medien auf das Kriechverhalten untersuchen werden. Mittels Laserscanning-Mikroskop wurden wiederum diese Ergebnisse untermauert. Als vorherrschender Kriechmechanismus von Gips wurde damit das Abgleiten einzelner Gipskristalle bedingt durch einen L{\"o}sungs-Abscheide-Mechanismus an Orten hoher mechanischer Belastung identifiziert und best{\"a}tigt.}, subject = {Rauchgasgips}, language = {de} } @article{GranathLoebmannMandel2021, author = {Granath, Tim and L{\"o}bmann, Peer and Mandel, Karl}, title = {Oxidative Precipitation as a Versatile Method to Obtain Ferromagnetic Fe\(_{3}\)O\(_{4}\) Nano- and Mesocrystals Adjustable in Morphology and Magnetic Properties}, series = {Particle \& Particle Systems Characterization}, volume = {38}, journal = {Particle \& Particle Systems Characterization}, number = {3}, doi = {10.1002/ppsc.202000307}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224419}, year = {2021}, abstract = {Oxidative precipitation is a facile synthesis method to obtain ferromagnetic iron oxide nanoparticles from ferrous salts—with unexplored potential. The concentration of base and oxidant alone strongly affects the particle's structure and thus their magnetic properties despite the same material, magnetite (Fe\(_{3}\)O\(_{4}\)), is obtained when precipitated with potassium hydroxide (KOH) from ferrous sulfate (FeSO\(_{4}\)) and treated with potassium nitrate (KNO\(_{3}\)) at appropriate temperature. Depending on the potassium hydroxide and potassium nitrate concentrations, it is possible to obtain a series of different types of either single crystals or mesocrystals. The time-dependent mesocrystal evolution can be revealed via electron microscopy and provides insights into the process of oriented attachment, yielding faceted particles, showing a facet-dependent reactivity. It is found that it is the nitrate and hydroxide concentration that influences the ligand exchange process and thus the crystallization pathways. The presence of sulfate ions contributes to the mesocrystal evolution as well, as sulfate apparently hinders further crystal fusion, as revealed via infrared spectroscopy. Finally, it is found that nitrite, as one possible and ecologically highly relevant reduction product occurring in nature in context with iron, only evolves if the reaction is quantitative.}, language = {en} } @article{HahnLuxenhoferHeltenetal.2021, author = {Hahn, Lukas and Luxenhofer, Robert and Helten, Holger and Forster, Stefan and Fritze, Lars and Polzin, Lando and Keßler, Larissa}, title = {ABA Type Amphiphiles with Poly(2-benzhydryl-2-oxazine) Moieties: Synthesis, Characterization and Inverse Thermogelation}, series = {Macromolecular Chemistry and Physics}, volume = {222}, journal = {Macromolecular Chemistry and Physics}, number = {17}, doi = {10.1002/macp.202100114}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265124}, year = {2021}, abstract = {Thermoresponsive polymers are frequently involved in the development of materials for various applications. Here, polymers containing poly(2- benzhydryl-2-oxazine) (pBhOzi) repeating units are described for the first time. The homopolymer pBhOzi and an ABA type amphiphile comprising two flanking hydrophilic A blocks of poly(2-methyl-2-oxazoline) (pMeOx) and the hydrophobic aromatic pBhOzi central B block (pMeOx-b-pBhOzi-b-pMeOx) are synthesized and the latter is shown to exhibit inverse thermogelling properties at concentrations of 20 wt.\% in water. This behavior stands in contrast to a homologue ABA amphiphile consisting of a central poly(2-benzhydryl-2-oxazoline) block (pMeOx-b-pBhOx-b-pMeOx). No inverse thermogelling is observed with this polymer even at 25 wt.\%. For 25 wt.\% pMeOx-b-pBhOzi-b-pMeOx, a surprisingly high storage modulus of ≈22 kPa and high values for the yield and flow points of 480 Pa and 1.3 kPa are obtained. Exceeding the yield point, pronounced shear thinning is observed. Interestingly, only little difference between self-assemblies of pMeOx-b-pBhOzi-b-pMeOx and pMeOx-b-pBhOx-b-pMeOx is observed by dynamic light scattering while transmission electron microscopy images suggest that the micelles of pMeOx-b-pBhOzi-b-pMeOx interact through their hydrophilic coronas, which is probably decisive for the gel formation. Overall, this study introduces new building blocks for poly(2-oxazoline) and poly(2-oxazine)-based self-assemblies, but additional studies will be needed to unravel the exact mechanism.}, language = {en} } @article{ZahoranovaLuxenhofer2021, author = {Zahoranov{\´a}, Anna and Luxenhofer, Robert}, title = {Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations—An Update}, series = {Advanced Healthcare Materials}, volume = {10}, journal = {Advanced Healthcare Materials}, number = {6}, doi = {10.1002/adhm.202001382}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225833}, year = {2021}, abstract = {For many decades, poly(2-oxazoline)s and poly(2-oxazine)s, two closely related families of polymers, have led the life of a rather obscure research topic with only a few research groups world-wide working with them. This has changed in the last five to ten years, presumably triggered significantly by very promising clinical trials of the first poly(2-oxazoline)-based drug conjugate. The huge chemical and structural toolbox poly(2-oxazoline)s and poly(2-oxazine)s has been extended very significantly in the last few years, but their potential still remains largely untapped. Here, specifically, the developments in macromolecular self-assemblies and non-covalent drug delivery systems such as polyplexes and drug nanoformulations based on poly(2-oxazoline)s and poly(2-oxazine)s are reviewed. This highly dynamic field benefits particularly from the extensive synthetic toolbox poly(2-oxazoline)s and poly(2-oxazine)s offer and also may have the largest potential for a further development. It is expected that the research dynamics will remain high in the next few years, particularly as more about the safety and therapeutic potential of poly(2-oxazoline)s and poly(2-oxazine)s is learned.}, language = {en} }