@article{OjhaForsterKumaretal.2013, author = {Ojha, Animesh K. and Forster, Stefan and Kumar, Sumeet and Vats, Siddharth and Negi, Sangeeta and Fischer, Ingo}, title = {Synthesis of well-dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram positive and negative bacterial strains}, series = {Journal of Nanobiotechnology}, volume = {11}, journal = {Journal of Nanobiotechnology}, number = {42}, doi = {10.1186/1477-3155-11-42}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132222}, year = {2013}, abstract = {In the present contribution, we describe the synthesis of highly dispersed silver nanorods (NRs) of different aspect ratios using a chemical route. The shape and size of the synthesized NRs were characterized by Transmission Electron Microscopy (TEM) and UV-visible spectroscopy. Longitudinal and transverse absorptions bands confirm the rod type structure. The experimentally recorded UV-visible spectra of NRs solutions were fitted by using an expression of the extinction coefficient for rod like nano structures under the dipole approximation. Simulated and experimentally observed UV-visible spectra were compared to determine the aspect ratios (R) of NRs. The average values of R for NR1, NR2 and NR3 solutions are estimated to be 3.0 ± 0.1, 1.8 ± 0.1 and 1.2 ± 0.1, respectively. These values are in good agreement with those obtained by TEM micrographs. The silver NRs of known aspect ratios are used to study antimicrobial activities against B. subtilis (gram positive) and E. coli (gram negative) microbes. We observed that the NRs of intermediate aspect ratio (R = 1.8) have greater antimicrobial effect against both, B. subtilis (gram positive) and E. coli (gram negative). The NRs of aspect ratio, R = 3.0 has better antimicrobial activities against gram positive than on the gram negative.}, language = {en} } @article{LuxenhoferFetsch2013, author = {Luxenhofer, Robert and Fetsch, Corinna}, title = {Thermal Properties of Aliphatic Polypeptoids}, series = {Polymers}, journal = {Polymers}, doi = {10.3390/polym5010112}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96333}, year = {2013}, abstract = {A series of polypeptoid homopolymers bearing short (C1-C5) side chains of degrees of polymerization of 10-100 are studied with respect to thermal stability, glass transition and melting points. Thermogravimetric analysis of polypeptoids suggests stability to >200 °C. The study of the glass transition temperatures by differential scanning calorimetry revealed two dependencies. On the one hand an extension of the side chain by constant degree of polymerization decrease the glass transition temperatures (Tg) and on the other hand a raise of the degree of polymerization by constant side chain length leads to an increase of the Tg to a constant value. Melting points were observed for polypeptoids with a side chain comprising not less than three methyl carbon atoms. X-ray diffraction of polysarcosine and poly(N-ethylglycine) corroborates the observed lack of melting points and thus, their amorphous nature. Diffractograms of the other investigated polypeptoids imply that crystalline domains exist in the polymer powder.}, language = {en} } @phdthesis{Paasche2013, author = {Paasche, Alexander}, title = {Mechanistic Insights into SARS Coronavirus Main Protease by Computational Chemistry Methods}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79029}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The SARS virus is the etiological agent of the severe acute respiratory syndrome, a deadly disease that caused more than 700 causalities in 2003. One of its viral proteins, the SARS coronavirus main protease, is considered as a potential drug target and represents an important model system for other coronaviruses. Despite extensive knowledge about this enzyme, it still lacks an effective anti-viral drug. Furthermore, it possesses some unusual features related to its active-site region. This work gives atomistic insights into the SARS coronavirus main protease and tries to reveal mechanistic aspects that control catalysis and inhibition. Thereby, it applies state-of-the-art computational methods to develop models for this enzyme that are capable to reproduce and interpreting the experimental observations. The theoretical investigations are elaborated over four main fields that assess the accuracy of the used methods, and employ them to understand the function of the active-site region, the inhibition mechanism, and the ligand binding. The testing of different quantum chemical methods reveals that their performance depends partly on the employed model. This can be a gas phase description, a continuum solvent model, or a hybrid QM/MM approach. The latter represents the preferred method for the atomistic modeling of biochemical reactions. A benchmarking uncovers some serious problems for semi-empirical methods when applied in proton transfer reactions. To understand substrate cleavage and inhibition of SARS coronavirus main protease, proton transfer reactions between the Cys/His catalytic dyad are calculated. Results show that the switching between neutral and zwitterionic state plays a central role for both mechanisms. It is demonstrated that this electrostatic trigger is remarkably influenced by substrate binding. Whereas the occupation of the active-site by the substrate leads to a fostered zwitterion formation, the inhibitor binding does not mimic this effect for the employed example. The underlying reason is related to the coverage of the active-site by the ligand, which gives new implications for rational improvements of inhibitors. More detailed insights into reversible and irreversible inhibition are derived from in silico screenings for the class of Michael acceptors that follow a conjugated addition reaction. From the comparison of several substitution patterns it becomes obvious that different inhibitor warheads follow different mechanisms. Nevertheless, the initial formation of a zwitterionic catalytic dyad is found as a common precondition for all inhibition reactions. Finally, non-covalent inhibitor binding is investigated for the case of SARS coranavirus main protease in complex with the inhibitor TS174. A novel workflow is developed that includes an interplay between theory and experiment in terms of molecular dynamic simulation, tabu search, and X-ray structure refinement. The results show that inhibitor binding is possible for multiple poses and stereoisomers of TS174.}, subject = {SARS}, language = {en} } @phdthesis{Kullmann2013, author = {Kullmann, Martin Armin}, title = {Tracing Excited-State Photochemistry by Multidimensional Electronic Spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-81276}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Light-induced excitation of matter proceeds within femtoseconds, resulting in excited states. Originating from these states chemical reaction mechanisms, like isomerization or bond formation, set in. Photophysical mechanisms like energy distribution and excitonic delocalization also occur. Thus, the reaction scheme has to be disentangled by assessing the importance of each process. Spectroscopic methods based on fs laser pulses have emerged as a versatile tool to study these reactions. Within this thesis time-resolved experiments with fs laser pulses on various molecular systems were performed. Novel photosystems, with possible applications ranging from ultrathin molecular wires to molecular switches, were extensively characterized. To resolve the complex kinetics of the investigated systems, time-resolved techniques had to be newly developed. By combining a visible excitation pulse pair with an additional pulse and a continuum probe electronic triggered-exchange two-dimensional spectroscopy (TE2D) was demonstrated for the first time. This goal was accomplished by combining a three-color transient-absorption setup with a pulse shaper. Hence, 2D spectroscopy with a continuum probe was also implemented. Using these methods two different molecular systems in solution were characterized in a comprehensive manner. (ZnTPP)2, a directly beta,beta'-linked Zn-metallated bisporphyrin, and a spiropyran-merocyanine photosystem, 6,8-dinitro BIPS, were characterized. (ZnTPP)2 is a homodimer, featuring strong excitonic effects. These manifest themselves in a twofold splitting of the Soret band (S2). 6,8-Dinitro BIPS exists in one of two possible conformations. The ring closed spiropyran absorbs only in the UV, while the ring open merocyanine also absorbs in the visible. For both molecular systems photodynamics upon illumination were monitored using transient-absorption. However, the obtained results were ambiguous, necessitating more complex methods. In the case of (ZnTPP)2 first the monomeric building block was characterized. There, population transfer from the S2 state into S1 within 2 ps was identified. Afterwards, intersystem crossing proceeds within 2 ns. For (ZnTPP)2 similar pathways were found, albeit the relaxation is faster. The intersystem crossing with 1.5 ns was not only indirectly deduced but directly measured by probing in the NIR spectral range. The excitonic influence of was investigated by coherent 2D spectroscopy in the Soret band. Population transfer within S2 was directly visualized on a time-scale of 100 fs. Calculation of the 2D spectra of a simple homodimer confirmed the results. After this analysis of the distinct excitonic character, this molecule may serve as a building block for larger porphyrin arrays with applications ranging from asymmetric catalysis over biomimicry of electron-transfer to organic optical devices. The second photosystem was the molecular switch 6,8-dinitro BIPS, existing in two conformations. Merocyanine is the more stable form in thermal equilibrium. Transient-absorption measurements uncovered that the sample consisted of a mixture of two merocyanine isomers, referred to as TTC and TTT. However, both isomers are capable of ring-closure forming spiropyran. The remaining excited molecules return to the ground state radiatively. Conducting 2D measurements utilizing a continuum probe the differing photochemistry of both isomers was examined in a single measurement. No isomerization between these conformations was detected. Therefore, 6,8-dinitro BIPS performs a concerted switching without long-living intermediates. This was confirmed by a pump-repump-probe scan. 6,8-DinitroBIPS can be closed by visible and opened by UV pulses using subsequent pulses and vice versa. These mechanisms via singlet pathways satisfy an important criterion for a unimolecular switching device. A second pump-repump-probe experiment showed that the sample is ionized, resulting in a merocyanine radical cation, when the first excited state is resonantly excited. Furthermore, by implementing TE2Dspectroscopy, it was elucidated that only TTC was ionized. Taking all this into account new techniques were developed and complex molecular systems were characterized within this thesis. Deeper insight into the photodynamics of (ZnTPP)2and 6,8-dinitro BIPS was gained by adapting transient absorption for the NIR spectral range, constructing a 2D setup in pump-probe geometry, and combining it with multipulse excitation to coherent TE2D. All techniques solved the questions for which they were constructed, but they are not limited to these cases. Especially TE2D opens new roads in photochemistry. By connecting reactant, product and the corresponding intermediates, a chemical reaction can be tracked through all stages, making unambiguous identification of the reactive states feasible. Thus, fundamental insight into the photochemistry of molecular compounds is gained.}, subject = {Femtosekundenspektroskopie}, language = {en} } @phdthesis{Gsaenger2013, author = {Gs{\"a}nger, Marcel}, title = {Organic Thin-Film Transistors Based on Dipolar Squaraine Dyes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-80588}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In summary, it can be stated that the herein studied set of acceptor-substituted squaraine dyes can be seen as potent candidates for OTFTs. Furthermore, their transistor performance can be easily tuned to obtain hole mobilities up to 0.45 cm2/Vs from solution and 1.3 cm2/Vs from sublimation by choosing adequate deposition techniques. In the end, a probable structural model derived from studies of the thin-film morphology by methods such as optical spectroscopy, AFM and X-ray even facilitated the clarification of the observed charge transport behavior.}, subject = {Organische Chemie}, language = {en} } @phdthesis{Bollmann2013, author = {Bollmann, Stefan}, title = {Structural Dynamics of Oligopeptides determined by Fluorescence Quenching of Organic Dyes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-92191}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {For determination of structures and structural dynamics of proteins organic fluorophores are a standard instrument. Intra- and intermolecular contact of biomolecular structures are determined in time-resolved and stationary fluorescence microscopy experiments by quenching of organic fluorophores due to Photoinduced Electron Transfer (PET) and dimerization interactions. Using PET we show in this work that end-to-end contact dynamics of serine-glycine peptides are slowed down by glycosylation. This slow down is due to a change in reaction enthalpy for end-to-end contact and is partly compensated by entropic effects. In a second step we test how dimerization of MR121 fluorophore pairs reports on end-to-end contact dynamics. We show that in aqueous solutions containing strong denaturants MR121 dimerization reports advantageously on contact dynamics for glycine-serine oligopeptides compared to the previously used MR121/tryptophane PET reporters. Then we analyze dimer interactions and quenching properties of different commercially available fluorophores being standards in F{\"o}rster Resonance Energy Transfer (FRET) measurements. Distances in biomolecules are determinable using FRET, but for very flexible biomolecules the analysis of masurement data can be distorted if contact of the two FRET fluorophores is likely. We quantify how strong the quenching of fluorophore pairs with two different or two identical fluorophores is. Dimer spectra and association constants are quantified to estimate if fluophores are applicable in various applications, e.g. in FRET measurements with unstructured peptides and proteins.}, subject = {Fluorophore}, language = {en} } @phdthesis{Duerrbeck2013, author = {D{\"u}rrbeck, Nina}, title = {Photoinduced Charge-Transfer Processes in Redox Cascades based on Triarylamine Donors and the Perchlorinated Triphenylmethyl Radical Acceptor}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-90078}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In this work, a series of redox cascades was synthesised and investigated in view of their photophysical and electrochemical properties. The cascades are based on a perchlorinated triphenylmethyl radical acceptor and two triarylamine donors. Absorption spectra showed the presence of charge-transfer bands in the NIR range of the spectra, which pointed to the population of a charge-transfer state between a triarylamine donor and the radical acceptor. A weak to moderate emission in the NIR range of the spectra was observed for all compounds in cyclohexane. Spectroelectrochemical measurements were used to investigate the characteristic spectral features of the oxidised and reduced species of all compounds. Transient absorption spectra in the ns- and fs-time regime revealed an additional hole transfer in the cascades between the triarylamine donors, resulting in a charge-separated state. Charge-separation and -recombination processes were found to be located in the ps-time regime.}, subject = {Ladungstransfer}, language = {en} } @phdthesis{Skiera2013, author = {Skiera, Christina}, title = {1H NMR spectroscopic determination of deterioration marker compounds in fats and oils}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-95756}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In food and pharmaceutical analysis, the classical indices peroxide value (PV), acid value (AV) and p-anisidine value (ANV) still play an important role as quality and authenticity control parameters of fats and oils. These indices are sum parameters for certain deterioration products (PV for hydroperoxides, AV for free fatty acids, ANV for aldehydes) and are obtained using volumetric or UV/VIS spectroscopic analytical approaches. 1H NMR spectroscopy provides a fast and simple alternative to these classical approaches. In the present work, novel 1H NMR methods to determine hydroperoxides, free fatty acids and aldehydes in fats and oils were developed. Hydroperoxides: The influence of solvent, water, free fatty acids and sample weight on the hydroperoxide group proton (OOH) signal was investigated. On the basis of the obtained results, the sample preparation procedure of the new 1H NMR method was established. A rough assignment of the hydroperoxide group signals in edible fats and oils to methyl oleate, methyl linoleate and methyl linolenate was conducted. Furthermore, to gain information on how many different hydroperoxide species originate from trioleate autoxidation, a kinetic study on trioleate monohydroperoxides was performed. The evaluation of the data strongly indicates that all of the conceivable 18 trioleate monohydroperoxides were formed during trioleate autoxidation. The analytical performance of the NMR method was compared to that of the classical PV approach by means of the so-called "relative sensitivity" according to Mandel. It was shown that both methods exhibit a similar analytical performance. A total of 444 edible oil samples were analysed using both methods. For some oil varieties considerable discrepancies were found between the results. In the case of black seed oil and olive oil two substances were identified that influence the classical PV determination and thus cause positive (black seed oil) and negative (olive oil) deviations from the theoretical PV expected from the NMR values. Free fatty acids: In order to find the optimal solvent mixture to measure the carboxyl group protons (COOH) of free fatty acids in fats and oils, the effect of solvent on the COOH signal was investigated for different mixtures of CDCl3 and DMSO-d6. The comparison of the NMR method with the classical AV method by means of the relative sensitivity revealed that both methods exhibit a similar analytical performance. 420 edible oil samples were analysed by both approaches. Except for pumpkin seed oil, where slight deviations were observed, there was a good compliance between the results obtained from the two methods. Furthermore, the applicability of the 1H NMR assay to further lipids with relevance in pharmacy was tested. For hard fat, castor oil, waxes and oleyl oleate modifications of the original sample preparation procedure of the NMR method were necessary to achieve comparable results for both methods. Aldehydes: The new 1H NMR method enables the determination of the molar amounts of n-alkanals, (E)-2-alkenals and (E,E)-2,4-alkadienals. It was illustrated that the ANV can be modelled as a linear combination of the NMR integrals of these aldehyde species. A functional relationship was derived on the basis In conclusion, the new 1H NMR methods provide an excellent alternative to of calibration experiments. The suitability of the model was shown by comparing the NMR-determined ANVs with the measured classical ANVs of 79 commercially available edible oils of different oil types. In conclusion, the new 1H NMR methods provide an excellent alternative to the determination of the classical indices PV, AV and ANV. They have several advantages over the classical methods including the consumption of small solvent amounts, the ability to automatize measurement and to acquire several different parameters out of the same NMR spectrum. Especially concerning their selectivity, the 1H NMR methods are highly superior to the classical methods.}, subject = {Fett}, language = {en} } @article{SchuppAliBeegametal.2013, author = {Schupp, Nicole and Ali, Badreldin H. and Beegam, Sumyia and Al-Husseni, Isehaq and Al-Shukaili, Ahmed and Nemmar, Abderrahim and Schierling, Simone and Queisser, Nina}, title = {Effect of gum arabic on oxidative stress and inflammation in adenine-induced chronic renal failure in rats}, series = {PLoS One}, journal = {PLoS One}, doi = {10.1371/journal.pone.0055242}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-95787}, year = {2013}, abstract = {Inflammation and oxidative stress are known to be involved in the pathogenesis of chronic kidney disease in humans, and in chronic renal failure (CRF) in rats. The aim of this work was to study the role of inflammation and oxidative stress in adenine-induced CRF and the effect thereon of the purported nephroprotective agent gum arabic (GA). Rats were divided into four groups and treated for 4 weeks as follows: control, adenine in feed (0.75\%, w/w), GA in drinking water (15\%, w/v) and adenine+GA, as before. Urine, blood and kidneys were collected from the rats at the end of the treatment for analysis of conventional renal function tests (plasma creatinine and urea concentration). In addition, the concentrations of the pro-inflammatory cytokine TNF-a and the oxidative stress markers glutathione and superoxide dismutase, renal apoptosis, superoxide formation and DNA double strand break frequency, detected by immunohistochemistry for c-H2AX, were measured. Adenine significantly increased the concentrations of urea and creatinine in plasma, significantly decreased the creatinine clearance and induced significant increases in the concentration of the measured inflammatory mediators. Further, it caused oxidative stress and DNA damage. Treatment with GA significantly ameliorated these actions. The mechanism of the reported salutary effect of GA in adenine-induced CRF is associated with mitigation of the adenine-induced inflammation and generation of free radicals.}, language = {en} } @article{BuchbergerBoehm2013, author = {Buchberger, Alexander and B{\"o}hm, Stephanie}, title = {The Budding Yeast Cdc48Shp1 Complex Promotes Cell Cycle Progression by Positive Regulation of Protein Phosphatase 1 (Glc7)}, series = {PLoS One}, journal = {PLoS One}, doi = {10.1371/journal.pone.0056486}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96073}, year = {2013}, abstract = {The conserved, ubiquitin-selective AAA ATPase Cdc48 regulates numerous cellular processes including protein quality control, DNA repair and the cell cycle. Cdc48 function is tightly controlled by a multitude of cofactors mediating substrate specificity and processing. The UBX domain protein Shp1 is a bona fide substrate-recruiting cofactor of Cdc48 in the budding yeast S. cerevisiae. Even though Shp1 has been proposed to be a positive regulator of Glc7, the catalytic subunit of protein phosphatase 1 in S. cerevisiae, its cellular functions in complex with Cdc48 remain largely unknown. Here we show that deletion of the SHP1 gene results in severe growth defects and a cell cycle delay at the metaphase to anaphase transition caused by reduced Glc7 activity. Using an engineered Cdc48 binding-deficient variant of Shp1, we establish the Cdc48Shp1 complex as a critical regulator of mitotic Glc7 activity. We demonstrate that shp1 mutants possess a perturbed balance of Glc7 phosphatase and Ipl1 (Aurora B) kinase activities and show that hyper-phosphorylation of the kinetochore protein Dam1, a key mitotic substrate of Glc7 and Ipl1, is a critical defect in shp1. We also show for the first time a physical interaction between Glc7 and Shp1 in vivo. Whereas loss of Shp1 does not significantly affect Glc7 protein levels or localization, it causes reduced binding of the activator protein Glc8 to Glc7. Our data suggest that the Cdc48Shp1 complex controls Glc7 activity by regulating its interaction with Glc8 and possibly further regulatory subunits.}, language = {en} }