@article{DostalFennelKochetal.2018, author = {Dost{\´a}l, Jakub and Fennel, Franziska and Koch, Federico and Herbst, Stefanie and W{\"u}rthner, Frank and Brixner, Tobias}, title = {Direct observation of exciton-exciton interactions}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-04884-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226271}, year = {2018}, abstract = {Natural light harvesting as well as optoelectronic and photovoltaic devices depend on efficient transport of energy following photoexcitation. Using common spectroscopic methods, however, it is challenging to discriminate one-exciton dynamics from multi-exciton interactions that arise when more than one excitation is present in the system. Here we introduce a coherent two-dimensional spectroscopic method that provides a signal only in case that the presence of one exciton influences the behavior of another one. Exemplarily, we monitor exciton diffusion by annihilation in a perylene bisimide-based J-aggregate. We determine quantitatively the exciton diffusion constant from exciton-exciton-interaction 2D spectra and reconstruct the annihilation-free dynamics for large pump powers. The latter enables for ultrafast spectroscopy at much higher intensities than conventionally possible and thus improves signal-to-noise ratios for multichromophore systems; the former recovers spatio-temporal dynamics for a broad range of phenomena in which exciton interactions are present.}, language = {en} } @phdthesis{Erdmann2004, author = {Erdmann, Marco}, title = {Coupled electron and nuclear dynamics in model systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9968}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Subject of this work was to investigate the influence of nonadiabatic coupling on the dynamical changes of electron and nuclear density. The properties of electron density have neither been discussed in the stationary case, nor for excited electronic states or for a coupled electronic and nuclear motion. In order to remove these restrictions one must describe the quantum mechanical motion of all particles in a system at the same level. This is only possible for very small systems. A model system developed by Shin and Metiu [1, 2] contains all necessary physical ingredients to describe a combined electronic and nuclear motion. It consists of a single nuclear and electronic degree of freedom and the particle interaction is parameterized in such a way as to allow for a facile switching between and adiabatic (Born-Oppenheimer type) and a strongly coupled dynamics. The first part of the work determined the "static" properties of the model system: The calculation of electronic eigenfunctions, adiabatic potential curves, kinetic coupling elements and transition dipole moments allowed for a prediction of the coupled dynamics. The potentials obtained from different parameterization showed two distinct cases: In the first case the ground and first excited state are separated by a large energy gap which is the typical Born-Oppenheimer case; the second one exhibits an avoided crossing which results in a breakdown of the adiabatic approximation. Due to the electronic properties of the system, the quantum dynamics in the two distinct situations is very different. This was illustrated by calculating nuclear and electron densities as a function of time. In the Born-Oppenheimer case, the electron density followed the vibrational motion of the nucleus. This was demonstrated in two examples. In the strongly coupled case the wave packet did not exhibit features caused by nonadiabatic coupling. However, projections of the wave function onto the electronic states revealed the usual picture obtained from solutions of the nuclear Schr{\"o}dinger equation involving coupled electronic states. In that case the nuclear motion triggered charge transfer via nonadiabatic coupling. The second part of the work demonstrated that the model system can easily be modified to yield binding situations often found in diatomic molecules. The different situations can be characterized in terms of bound and dissociative adiabatic potential curves. The investigation focussed on the case of an electronic predissociation, where the ground state is dissociative in the asymptotic limit of large internuclear distances. Within our model system we were able to demonstrate how the character of the electron density changes during the fragmentation process. In the third part we investigated the influence of external fields on the correlated dynamics of electron and nucleus. Employing adiabatic potential curves, the structure of absorption spectra can be understood within the weak-field limit. In the above described Born-Oppenheimer case the adiabatically calculated spectrum was in very good agreement with the exact one, whereas in the strongly coupled case the obtained spectrum was not able to resemble the exact one. Regarding the dynamics during a laser excitation process the time-dependent electron and nuclear densities nicely illustrated the famous Franck-Condon principle. The interaction with strong laser pulses lead to an excitation of many bound electronic and vibrational states. The electron density reflected the classical-like quiver motion of the electron induced by the fast variations of the electric field. The nucleus did not follow these fast oscillations because of its much larger mass. The last part of the work extended the original model system by including an additional electron. As a consequence of the Pauli principle, the spatial electronic wave function has to be either symmetric or anti-symmetric with respect to exchange of the two electrons. This corresponds to anti-parallel or parallel electron spins, respectively. The extended model already contains the physical properties of a many-electron system. Solving the time-dependent Schr{\"o}dinger equation for a typical vibrational wave packet motion clearly indicated that the electron density is no longer suited to "localize" single electrons. We extended the definition of the electron localization function (ELF) to an exact, time-dependent wave function and demonstrated, how the ELF can be used to further characterize a coupled electron and nuclear motion. Finally, we gave an outlook of how to define electron localization in the case of anti-parallel electron spins. We derived a quantity similar to the ELF denoted "anti-parallel spin electron localization function" (ALF) and demonstrated that the ALF allows to follow time-dependent changes of the electron localization in a numerical example. [1] S. Shin, H. Metiu, J. Chem. Phys. 1995, 102, 9285. [2] S. Shin, H. Metiu, J. Phys. Chem. 1996, 100, 7867.}, subject = {Nichtadiabatischer Prozess}, language = {en} } @phdthesis{Falge2012, author = {Falge, Mirjam}, title = {Dynamik gekoppelter Elektronen-Kern-Systeme in Laserfeldern}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72889}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der theoretischen Untersuchung zweier Themenkomplexe: der Erzeugung Hoher Harmonischer in Molek{\"u}len und dem Einfluss von gekoppelter Elektronen-Kern-Dynamik auf Ultrakurzpuls-Ionisationsprozesse und Quantenkontrolle. W{\"a}hrend bei der Untersuchung der Hohen Harmonischen die Auswirkungen der Kernbewegung auf die Spektren im Mittelpunkt des Interesses stehen, wird bei der Analyse der gekoppelter Elektronen-Kern-Dynamik das Hauptaugenmerk auf die nicht-adiabatischen Effekte gerichtet, die auftreten, wenn Kern- und Elektronenbewegung sich nicht, wie es im Rahmen der Born-Oppenheimer-N{\"a}herung in der Quantenchemie h{\"a}ufig angenommen wird, voneinander trennen lassen.}, subject = {Nichtadiabatischer Prozess}, language = {de} } @phdthesis{Fecher2002, author = {Fecher, Frank Erich}, title = {Nichtlineare Dynamik von chemischen Sauerstoff-Oszillatoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-185}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Die vorliegende Arbeit hat zum Ziel, das Antwortverhalten nichtlinearer Reaktionen auf zielgerichtete St{\"o}rungen zu untersuchen. Dabei besch{\"a}ftigt sie sich mit zwei nichtlinearen chemischen Sauerstoff-Oszillatoren. Bei den beiden nichtlinearen chemischen Reaktionen handelt es sich um den Polyacrylamid-Methylenblau-Sauerstoff- (PA-MBO) Oszillator und um die Kupfer(II)ionen katalysierte Oxidation von Ascorbins{\"a}ure durch Luftsauerstoff. Im ersten Fall wird durch selektive Belichtung des Reaktionsmediums die gebildete Geloberfl{\"a}che durch ein computergenerirtes Muster kodiert. Die Systemantwort wird mit Hilfe einer CCD-Kamera aufgenommen und danach einer Analyse unterzogen. Die erhaltenen Ergebnisse werden anschließend durch eine Computersimulation verifiziert. Die zweite untersuchte M{\"o}glichkeit, das PA-MBO-System einer St{\"o}rung zu unterwerfen, ist das Anlegen eines externen elektrischen Feldes. In einer speziell daf{\"u}r entworfenen Anordnung bildet sich ein quasi-eindimensionales Turing-Muster. In dieser quasi-eindimensionalen Anordnung kann die Reaktion leicht elektrischen Str{\"o}men von bis zu 200 mA/cm2 ausgesetzt werden. Die experimentellen Daten werden anschließend der Karhunen-Loeve Zerlegung unterworfen, um die komplexe Dynamik der Systemantwort zu studieren. Die Oxidation von Ascorbins{\"a}ure durch Luftsauerstoff in Gegenwart von Kupfer(II)ionen, wird im CSTR durchgef{\"u}hrt. Dabei l{\"a}ßt sich das Ph{\"a}nomen der stochastischen Resonanz beobachten, wenn man die Flußrate sinusf{\"o}rmig moduliert und dieser Frequenz zus{\"a}tzlich weißes Rauschen {\"u}berlagert.}, subject = {Sauerstoff}, language = {de} } @phdthesis{Fischer2013, author = {Fischer, Kathrin Helena}, title = {Analyse der chemischen Reaktionen unges{\"a}ttigter Verbindungen mit FEL- und Synchrotronstrahlung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79108}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Brilliante Strahlungsquellen werden heute vielfach in der Forschung eingesetzt um Kristallstrukturen, Oberfl{\"a}cheneigenschaften oder Reaktionen zu untersuchen. Als Strahlungsquellen werden daf{\"u}r bevorzugt Freie Elektronenlaser (FEL) oder Synchrotrons eingesetzt, da sie {\"u}ber weite Bereiche durchstimmbar sind und einen hohen Photonenfluss bereitstellen. Im Rahmen der vorliegenden Dissertation werden beide Lichtquellen verwendet um einerseits Isomere von Kohlenwasserstoffradikalen zu identifizieren und andererseits das Verhalten von Borylen und unges{\"a}ttigten Verbindungen bei Photoionisation zu dokumentieren. Als erstes Experiment am FEL wurde ein IR-Spektrum von gasf{\"o}rmigen Allylradikalen aufgenommen. Das Allyl war ein Testlauf, da es als Kohlenwasserstoffradikal mit einer kleinen Dipolmoment{\"a}nderung ein gutes Beispiel f{\"u}r {\"a}hnliche Verbindungen ist. Trotz der kleinen {\"A}nderung des Dipolmoments und der geringen Teilchendichte der Radikale in der Gasphase konnte ein gutes IR-Spektrum mit der IR-UV-Doppelresonanzmethode aufgenommen werden und die beobachteten Banden mit der Literatur zugeordnet werden. Das 3-Trifluoromethyl-3-Phenyl-carben (TFPC) wurde pyrolytisch aus 3-Trifluoromethyl-3-Phenyl-diazirin erzeugt. Dabei kam es beim Großteil der Carbene zu einer Umlagerung zu Trifluorstyrol. Neben dem Hauptprodukt Trifluorstyrol wurde das Triplett TFPC als Nebenprodukt identifiziert. Zus{\"a}tzlich wurden die Isomerisierungsbarrieren f{\"u}r den Triplett- und Singulett-{\"U}bergangszustand berechnet. Die Radikale 1-Phenylpropargyl und 3-Phenylpropargyl sind anhand ihrer IR-Spektren unterscheidbar und lagern sich nicht ineinander oder in Indenyl um. Ausgehend von beiden Radikalen bilden sich die identischen Dimerisierungsprodukte im Massenkanal m/z = 230 (p-Terphenyl) und 228 (1-Phenylethinylnaphthalin (1PEN)). Außergew{\"o}hnlich war die Exklusivit{\"a}t dieser Produkte. Somit m{\"u}ssen deren Reaktionsmechanismen kinetisch viel schneller sein. Die Massen m/z = 230 und 228 waren bereits aus einer massenspektrometrischen Studie ausgehend von Benzol und Ethin bekannt, in der ihre Struktur jedoch nicht gekl{\"a}rt wurde. Somit m{\"u}ssen die gefundenen Dimerisierungsprodukte p-Terphenyl und 1PEN wichtige Intermediate bei der Entstehung von polyzyklischen aromatischen Kohlenwasserstoffen (PAK) und Ruß sein. Von gasf{\"o}rmigen NTCDA wurde mittels der TPEPICO-Methode am Synchrotron Schwellenphotoelektronenspektren aufgenommen. Dabei konnte die adiabatische Ionisierungsenergie (IE(ad)) zu 9.66 eV bestimmt werden. Weiterhin wurden noch f{\"u}nf angeregte Zust{\"a}nde beobachtet, die mittels quantenmechanischer Berechnungen zugeordnet wurden. Es wurde die Photoionisation des Cycloheptatrienradikals (Tropyl) untersucht. Dabei wurde die erste Bande bei 6.23 eV der IE(ad) zugeordnet. Mit einer Franck-Condon Simulation wurden die beiden Schwingungsprogressionen einer CC-Streckschwingung (ν16+) und einer Kombination aus einer Ringatmung (ν2+) und ν16+ zugeordnet. Der erste Triplett- und Singulettzustand des angeregten Tropylkations konnte in {\"U}bereinstimmung mit der Literatur zugeordnet werden. Eine Schulter bei 9.85 eV und die intensivste Bande bei 11.6 eV konnten nicht eindeutig interpretiert werden. Neben dem Tropyl erscheint bei etwa 10.55 eV sein dissoziatives Zersetzungsprodukt, das Cyclopentadienylkation. Die IE(ad) des Borylenkomplex [(CO)5CrBN(SiMe3)2] wurde zu 7.1 eV bestimmt. Mit steigender Photonenenergie wurden alle CO-Liganden sequenziell abgespalten, w{\"a}hrend der Borligand auch bei 15 eV noch nicht dissoziierte. Von den f{\"u}nf abgespaltenen CO-Liganden konnte die Auftrittsenergie bei 0 K unter Ber{\"u}cksichtigung der kinetischen Verschiebung gefittet werden. Durch einen einfachen thermodynamischen Zyklus wurden aus den Auftrittsenergien der Kationen die Bindungsenergien berechnet. Dabei zeigte sich, dass die zweite Bindungsenergie im Kation erheblich st{\"a}rker ist als die erste. Dies deutet einen starken trans-Effekt des Borliganden an. In der Dissertation wurden die adiabatische Ionisierungsenergie der Molek{\"u}le sowie die Auftrittsenergien der Fragmente und die Bindungsenergien bestimmt. Zudem konnten Isomere anhand ihrer IR-Spektren unterschieden und ihre Dimerisierungsprodukte identifiziert werden. Damit wurden mit p-Terphenyl und 1PEN zwei weitere bedeutende Intermediate im Bildungsmechanismus von Ruß strukturell aufgekl{\"a}rt. Die Beteiligung dieser Dimerisierungsprodukte am Bildungsmechanismus der PAK initiiert zuk{\"u}nftige Fragen. Was geschieht z.B. mit p-Terphenyl und 1PEN nach ihrer Bildung? Reagieren sie chemisch zu gr{\"o}ßeren Molek{\"u}len oder setzt bei ihnen bereits die Akkumulation zu Partikeln ein? Zus{\"a}tzlich ist die Frage, ob Phenylpropargyl aus der Reaktion von Phenyl- und Propargylradikalen entsteht noch offen. Die erzielten Resultate haben einen wichtigen Schritt im Bildungsmechanismus der PAK identifiziert und damit die Grundlage f{\"u}r zuk{\"u}nftige Experimente gelegt.}, subject = {Synchrotronstrahlung}, language = {de} } @phdthesis{Flachenecker2002, author = {Flachenecker, G{\"u}nter}, title = {Die Dissoziations- und Rekombinations-Reaktion von Jodmolek{\"u}len in mikropor{\"o}sen Porosil-Kristalliten auf der Femtosekunden-Zeitskala}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-4472}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {In dieser Arbeit wurde die unimolekulare Dissoziations- und Rekombinations-Reaktion von Jodmolek{\"u}len untersucht, die in mikropor{\"o}sen Porosil-Kristalliten eingelagert waren. Hierf{\"u}r wurden sowohl experimentelle Pump-Probe-Experimente als auch theoretische Untersuchungen auf der Femtosekunden-Zeitskala durchgef{\"u}hrt. Die Idee, die diesen Experimenten zugrunde lag, bestand darin, zu erfahren, in welcher Weise und in welchem Maße die Struktur der Umgebung einen Einfluss auf die elementaren dynamischen Prozesse der Reaktion aus{\"u}bt. Die hier untersuchten Systeme I\$_2\$ in DDR-, TON-, FER- und MFI-Porosilen sind Modellsysteme f{\"u}r komplexere Molek{\"u}le, eingelagert in einer mikropor{\"o}sen kristallinen Umgebung.}, subject = {Tectosilicate}, language = {de} } @phdthesis{Flock2021, author = {Flock, Marco}, title = {Velocity Map Imaging-Untersuchung nichtstrahlender Prozesse in polyzyklischen Aromaten und deren van-der-Waals-Clustern}, doi = {10.25972/OPUS-24078}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240786}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Das erste Ziel der vorliegenden Dissertation bestand darin, ein bereits bestehendes TOF-MS-Setup dahingehend zu erweitern, um damit Velocity Map Imaging-Experimente durchf{\"u}hren zu k{\"o}nnen. Dies erforderte zun{\"a}chst die Konzipierung und Programmierung einiger f{\"u}r die Datenaufnahme, -verarbeitung und -analyse ben{\"o}tigter LabView-Anwendungen. Anschließend konnten erste Kalibrierexperimente an Methyliodid, in denen wichtige experimentelle Parameter identifiziert und optimiert wurden, durchgef{\"u}hrt werden. Außerdem gelang es dadurch, die Messgenauigkeit des Setups auf 0.7 \% und dessen Aufl{\"o}sungsverm{\"o}gen auf 4.4 \% zu bestimmen, was im Bereich f{\"u}r VMI-Apparaturen typischer Werte liegt. Zur weiteren {\"U}berpr{\"u}fung der Funktionst{\"u}chtigkeit des Setups wurde in ersten zeitaufgel{\"o}sten Experimenten im Folgenden die Desaktivierung des S1-Zustands von Pyridin untersucht. Neben der Reproduktion einiger bereits literaturbekannter Resultate konnten dabei zus{\"a}tzlich die im Multiphotonen-Ionisationsschritt populierten Rydberg-Zust{\"a}nde identifiziert werden. Anschließend wurde mit Experimenten an bisher weniger gut untersuchten organischen Aromaten und Heteroaromaten fortgefahren. Das Ziel dieser Studien lag in der Aufkl{\"a}rung der photoinduzierten Dynamiken der Verbindungen, wobei das zur Verf{\"u}gung stehende ps-Lasersystem die M{\"o}glichkeit bot, die Desaktivierung elektronisch angeregter Zust{\"a}nde gezielt in Abh{\"a}ngigkeit von deren Schwingungsenergie zu untersuchen. Der darin bestehende Vorteil zeigte sich vor allem in Studien an Tolan und Phenanthridin, deren erste angeregte, optisch aktive Zust{\"a}nde am Origin Lebensdauern im ns-Bereich aufweisen, die sich mit zunehmender vibronischer Anregung jedoch auf bis zu 10 ps verringern. Als Grund daf{\"u}r konnten nichtstrahlende Desaktivierungsprozesse, f{\"u}r deren Eintreten eine energetische Barriere {\"u}berwunden werden muss, identifiziert werden. W{\"a}hrend in Tolan nach Photoanregung ein {\"U}bergang in einen (πσ∗)-Zustand, der zur Ausbildung einer trans-bent-Struktur f{\"u}hrt, erfolgt, ist im Falle von Phenanthridin vermutlich ein El-Sayed-erlaubter ISC-{\"U}bergang in einen 3(nπ∗)-Zustand f{\"u}r die drastische Verk{\"u}rzung der S1-Lebensdauer verantwortlich. Ein solcher konnte weder im zu Phenanthridin isomerischen Benzo[h]quinolin, noch in dessen PAH-Muttermolek{\"u}l Phenanthren beobachtet werden, was auf die h{\"o}here energetische Lage bzw. die Abwesenheit des mittels ISC populierten 3(nπ∗)-Zustands in diesen Molek{\"u}len zur{\"u}ckgef{\"u}hrt werden kann. In weiteren im Rahmen der vorliegenden Arbeit durchgef{\"u}hrten Experimente wurden zudem die aromatischen Molek{\"u}le Acenaphthylen und 4-(Dimethylamino)benzethin (DMABE) untersucht. Zeitaufgel{\"o}ste Studien zeigten dabei, dass die Desaktivierung der S2-Zust{\"a}nde beider Molek{\"u}le auf der sub-ps-Zeitskala stattfindet und mit dem vorhandenen Lasersystem daher nicht aufgel{\"o}st werden kann. In Acenaphthylen erfolgt die S2-Relaxation gr{\"o}ßtenteils {\"u}ber einen sequentiellen IC-Mechanismus, innerhalb dem der S1-Zustand des Molek{\"u}ls intermedi{\"a}r besetzt wird. Dessen Lebensdauer konnte am Origin auf 380 ps bestimmt werden, f{\"a}llt mit steigender Schwingungsanregung jedoch auf bis zu 55 ps ab. F{\"u}r die Desaktivierung des S2-Zustands von DMABE konnte hingegen ein paralleles Relaxationsmodell, in dem neben dem S1-Zustand ein weiterer elektronisch angeregter Zustand populiert wird, nachgewiesen werden. Bei diesem k{\"o}nnte es sich m{\"o}glicherweise um einen (πσ∗)-Zustand, dessen Besetzung die Ausbildung einer trans-bent-Geometrie innerhalb der Acetylen-Einheit des Molek{\"u}ls zur Folge hat, handeln. Einen weiteren großen Teil der vorliegenden Dissertation nahmen Experimente an van-der-Waals-gebundenen Clustersystemen ein. Im Fokus der Studien standen dabei Molek{\"u}le mit ausgedehnten aromatischen π-Systemen, da solche eine hohe Relevanz f{\"u}r verschiedene materialwissenschaftliche Forschungsgebiete besitzen. Ein Beispiel hierf{\"u}r ist Tetracen, welches als Modellsystem f{\"u}r die Untersuchung von Singlet Fission-Prozessen angesehen wird. In Kombination mit nichtadiabatischen Surface-Hopping-Simulationen zeigten Experimente an Tetracen-Dimeren, dass nach deren S2-Anregung zun{\"a}chst ein schneller S1←S2-{\"U}bergang (τ < 1 ps), gefolgt von der Ausbildung einer Excimerstruktur, stattfindet. Letztere erfolgt mit einer Zeitkonstante von 62 ps und f{\"u}hrt zu einem Anstieg des transienten Ionensignals, wohingegen die Desaktivierung des Excimer-Zustands von einem abklingenden Signalbeitrag mit τ = 123 ps repr{\"a}sentiert wird. Wenngleich {\"u}ber die weitere Relaxation der Excimerspezies zum gegenw{\"a}rtigen Zeitpunkt keine Aussage getroffen werden kann, besteht damit die M{\"o}glichkeit, dass Excimer-Zust{\"a}nde als Zwischenstufe im SF-Mechanismus isolierter Tetracen-Dimere auftreten. In zeitaufgel{\"o}sten Experimenten an Phenanthren-Dimeren konnte ebenfalls ein Anstieg des transienten Signals mit einer vergleichbaren Zeitkonstante von τ = 86 ps, der jedoch auf einem konstanten Signaloffset endet, gefunden werden. Dies deutet darauf hin, dass auch Phenanthren-Dimere in der Lage sind, Excimerstrukturen, die im Gegensatz zu denen des Tetracens jedoch deutlich langlebiger sind, auszubilden. Studien an den Dimerspezies der Azaphenanthrene Benzo[h]quinolin und Phenanthridin offenbarten hingegen etwas schnellere Relaxationen mit Zeitkonstanten von 15 bzw. 40 ps. Zudem zeigten beide Spezies eine stark ausgepr{\"a}gte Fragmentation, sodass f{\"u}r deren Untersuchung auf die VMI-Detektionsmethode zur{\"u}ckgegriffen werden musste. Dadurch wurde deutlich, dass sich Photoionen-Imaging-Experimente hervorragend f{\"u}r Studien an schwach gebundenen Clustersystemen eignen, da diese die Separation verschiedener Signalbeitr{\"a}ge innerhalb eines betrachteten Massenkanals erm{\"o}glichen.}, subject = {Strahlungslose Desaktivierung}, language = {de} } @phdthesis{Gerlach2023, author = {Gerlach, Marius David}, title = {Spectroscopy of fulminic acid HCNO with VUV- and soft X-ray radiation}, doi = {10.25972/OPUS-32972}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-329722}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die Fulmins{\"a}ure HCNO wurde zum ersten Mal im Jahre 1800 synthetisiert und wurde seitdem immer wieder verwendet, um neue chemische Konzepte und Theorien zu entwickeln. Durch die erstmalige Entdeckung der Fulmins{\"a}ure im Weltall im Jahr 2009 ist die Fulmins{\"a}ure heutzutage vor allem im Bereich der Astrochemie interessant. In dieser Doktorarbeit haben wir die Interaktion von Fulmins{\"a}ure mit interstellar Strahlung, genauer mit VUV- sowie weicher R{\"o}ntgenstrahlung untersucht. In Zuge der Messung mit VUV-Strahlung konnten wir das Photoelektronenspektrum von HCNO mit hoher Aufl{\"o}sung aufnehmen und den Renner-Teller verzerrten Grundzustand des Kations mit Hilfe von Wellenpaketdynamiksimulationen beschreiben. Außerdem konnten wir den Mechanismus der dissoziativen Photoionisation bis zu einer Bindungsenergie von 15.3 eV aufkl{\"a}ren. Mit weicher R{\"o}ntgenstrahlung ist es m{\"o}glich die 1s Elektronen des HCNO zu ionisieren oder anzuregen. Der erzeugte Zustand zerf{\"a}llt anschließend durch einen Auger-Meitner Prozess, bei dem ein Auger-Elektron erzeugt wird. Im Zuge der Auger-Elektronenspektroskopie haben wir die kinetische Energie dieser Elektronen gemessen und konnten mittels quantenchemischer Rechnung die beobachten Signale analysieren. Wir untersuchten außerdem, wie das durch den Auger-Meitner Prozess erzeugte Ion zerf{\"a}llt. Hier konnten wir eine Selektivit{\"a}t des Zerfalls beobachten, je nachdem welches der 1s Elektronen im ersten Schritt angeregt oder ionisiert wurde. Diese Beobachtung konnten wir durch ein einfaches thermodynamisches Argument erkl{\"a}ren. Diese Arbeit gibt also ein vollst{\"a}ndiges Bild {\"u}ber die Interaktion von HCNO mit ionisierender Strahlung. Die erhaltenen Daten k{\"o}nnten f{\"u}r die Beschreibung von HCNO im interstellaren Raum Bedeutung haben.}, subject = {Chemie}, language = {en} } @article{GerlachMonningerSchleieretal.2021, author = {Gerlach, Marius and Monninger, Sophie and Schleier, Domenik and Hemberger, Patrick and Goettel, James T. and Braunschweig, Holger and Fischer, Ingo}, title = {Photoelectron Photoion Coincidence Spectroscopy of NCl\(_{3}\) and NCl\(_{2}\)}, series = {ChemPhysChem}, volume = {22}, journal = {ChemPhysChem}, number = {21}, doi = {10.1002/cphc.202100537}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257322}, pages = {2164-2167}, year = {2021}, abstract = {We investigate NCl\(_{3}\) and the NCl\(_{2}\) radical by photoelectron-photoion coincidence spectroscopy using synchrotron radiation. The mass selected threshold photoelectron spectrum (ms-TPES) of NCl\(_{3}\) is broad and unstructured due to the large geometry change. An ionization energy of 9.7±0.1 eV is estimated from the spectrum and supported by computations. NCl2 is generated by photolysis at 213 nm from NCl\(_{3}\) and its ms-TPES shows an extended vibrational progression with a 90 meV spacing that is assigned to the symmetric N-Cl stretching mode in the cation. An adiabatic ionization energy of 9.94 ± 0.02 eV is determined.}, language = {en} } @phdthesis{Gessner2003, author = {Geßner, Ralph}, title = {Untersuchungen an biologischen Proben mit verschiedenen Raman- und SERS-spektroskopischen Techniken}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8626}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Diese Arbeit befasst sich mit der Entwicklung und Erprobung geeigneter Methoden zur Raman-spektroskopischen Untersuchung empfindlicher, insbesondere biologischer Proben. Das Ziel dabei ist, ein Werkzeug zur Verf{\"u}gung zu stellen, mit dem es m{\"o}glich ist, detaillierte Informationen {\"u}ber die Inhaltsstoffe einer Probe und deren r{\"a}umlichen Verteilung zu sammeln. Diese Daten sind beispielsweise f{\"u}r die Qualit{\"a}tssicherung pharmazeutischer Produktionen notwendig. Zu diesem Zweck wurden zwei verschiedene Ans{\"a}tze verfolgt: ein Raman-Spektrometer wurde zum einen mit einer Glasfasersonde, zum anderen mit einer optischen Gradientenfalle kombiniert. Beide Ans{\"a}tze wurden getestet und mit ihnen biologische Fragestellungen bearbeitet. Die Empfindlichkeit biologischer Proben und die geringe Konzentration ihrer Inhaltsstoffe macht es dabei notwendig, besonderen Wert auf probenschonende Messverfahren und eine hohe Nachweisempfindlichkeit zu legen. Die Raman- bzw. SERS-Spektroskopie ist hierzu in der Lage und erfordert gleichzeitig nur eine minimale Probenpr{\"a}paration. Anhand der pr{\"a}sentierten Experimente konnte gezeigt werden, dass sich die SERS-Glasfasersonde besonders zur Untersuchung empfindlicher Proben eignet. Insbesondere erlaubt sie minimal-invasives Arbeiten an biologischen Materialien. Es konnte außerdem gezeigt werden, dass die Sonde aufgrund ihrer geometrischen Beschaffenheit eine gute Ortsaufl{\"o}sung, bis in den Sub-Mikrometerbereich, bei den Messungen erlaubt. Daher eignet sich die Fasersonde besonders zur Untersuchung von hochempfindlichen biologischen Proben bei gleichzeitig sehr geringem Probenbedarf. Mit der optischen Gradientenfalle, als zweite Methode, hat man ein Werkzeug zur Hand, mit dem es m{\"o}glich ist, einzelne Mikroorganismen oder Mikropartikel in Suspension zu vermessen. Bei Arbeit mit der optischen Gradientenfalle ist eine freie, dreidimensionale Manipulation der gefangenen Zellen im Probengef{\"a}ß m{\"o}glich. Auf diese Weise k{\"o}nnen einzelne Zellen {\"u}ber l{\"a}ngere Zeit stabil im Laserfokus gehalten werden, wodurch l{\"a}ngere Integrationszeiten m{\"o}glich werden. Außerdem kann man auf diese Weise eine Immobilisierung der suspendierten Zellen auf einer funktionalisierten Oberfl{\"a}che vermeiden, wodurch unerw{\"u}nschte Effekte auf das zu messende Spektrum, wie z. B. Verschiebungen einzelner Banden oder {\"A}nderungen in den relativen Bandenintensit{\"a}ten, ausgeschlossen werden k{\"o}nnen. Zur Untersuchung partikul{\"a}rer Verunreinigungen ist es nicht notwendig, die L{\"o}sung aus dem Gef{\"a}ß heraus zu pr{\"a}parieren. Vielmehr k{\"o}nnen die Mikropartikel durch die optische Gradientenfalle in der L{\"o}sung festgehalten und spektroskopisch identifiziert werden. Dies erm{\"o}glicht beispielsweise die Charakterisierung von Verunreinigungen in pharmazeutischen L{\"o}sungen, ohne dass daf{\"u}r Ampullen ge{\"o}ffnet werden m{\"u}ssten. Auf diese Weise k{\"o}nnen Kontaminantien identifiziert werden, ohne Gefahr zu laufen, bei der Probenpr{\"a}paration weitere Verunreinigungen zu verursachen und damit die Messungen zu verf{\"a}lschen. Durch die Kombination eines Raman-mikroskopischen Aufbaus mit der SERS-Glasfasersonde bzw. der optischen Gradientenfalle ist es gelungen, Fragestellungen an biologischen Systemen in sehr Proben-schonender, aber gleichzeitig hoch-ortsaufl{\"o}sender Weise zu bearbeiten. Durch die Verwendung nicht-kontaminierender SERS-Sonden ist es m{\"o}glich, zus{\"a}tzliche Verst{\"a}rkungseffekte zu erzielen. Die verwendeten Anregungslaserleistungen k{\"o}nnen daher generell niedrig gehalten werden. Dennoch erh{\"a}lt man aussagekr{\"a}ftige Spektren in einer akzeptablen Zeit. Die Zwei-Laser-L{\"o}sung f{\"u}r die optische Gradientenfalle stellt ein zuverl{\"a}ssiges Werkzeug zur ber{\"u}hrungsfreien Manipulation kleiner Partikel bei gleichzeitiger Flexibilit{\"a}t in Bezug auf die Anregungswellenl{\"a}nge dar.}, subject = {Biologisches Material}, language = {de} }