@article{SaalfrankFantuzziKupferetal.2020, author = {Saalfrank, Christian and Fantuzzi, Felipe and Kupfer, Thomas and Ritschel, Benedikt and Hammond, Kai and Krummenacher, Ivo and Bertermann, R{\"u}diger and Wirthensohn, Raphael and Finze, Maik and Schmid, Paul and Engel, Volker and Engels, Bernd and Braunschweig, Holger}, title = {cAAC-stabilisierte 9,10-Diboraanthracene - offenschalige Singulettbiradikale}, series = {Angewandte Chemie}, volume = {132}, journal = {Angewandte Chemie}, number = {43}, doi = {10.1002/ange.202008206}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218582}, pages = {19502 -- 19507}, year = {2020}, abstract = {Geringe HOMO-LUMO-Abst{\"a}nde und eine hohe Ladungstr{\"a}germobilit{\"a}t pr{\"a}destinieren die h{\"o}heren Acene f{\"u}r Anwendungen im Bereich der Organoelektronik. Die Leistungsf{\"a}higkeit derartiger Verbindungen steigt hierbei dramatisch mit der Anzahl anellierter Benzolringe. Gr{\"o}ßere Acenmengen sind synthetisch bisher jedoch nur f{\"u}r Acene bis Heptacen verl{\"a}sslich zug{\"a}nglich. Theoretischen Studien zufolge besitzen (Oligo)acene offenschalige Singulettbiradikal- und (Poly)acene polyradikalische Grundzust{\"a}nde. Eindeutige experimentelle Belege f{\"u}r diese Vorhersagen sind hingegen {\"a}ußerst selten. Durch den Einbau von zwei Boratomen in das Anthracengrundger{\"u}st konnten wir den HOMO-LUMO-Abstand von Acenen dramatisch verringern und zwar ohne die Notwendigkeit einer Ausweitung des konjugierten π-Systems. Stabilisierung der Borzentren durch cyclische (Alkyl)(amino)carbene lieferte hierbei neutrale 9,10-Diboraanthracene mit disjunkten, offenschaligen Singulettbiradikal-Grundzust{\"a}nden.}, language = {en} } @article{RangFantuzziArrowsmithetal.2021, author = {Rang, Maximilian and Fantuzzi, Felipe and Arrowsmith, Merle and Krummenacher, Ivo and Beck, Eva and Witte, Robert and Matler, Alexander and Rempel, Anna and Bischof, Tobias and Radacki, Krzysztof and Engels, Bernd and Braunschweig, Holger}, title = {Reduktion und Umlagerung eines Bor(I)-Carbonylkomplexes}, series = {Angewandte Chemie}, volume = {133}, journal = {Angewandte Chemie}, number = {6}, doi = {10.1002/ange.202014167}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224409}, pages = {3000 -- 3005}, year = {2021}, abstract = {Bei der Einelektronenreduktion eines durch eine cyclisches (Alkyl)(amino)carben (CAAC) stabilisierten Arylborylen-Carbonylkomplexes erfolgt die Bildung eines dimeren Borylketyl-Radikalanions, bedingt durch eine intramolekulare Arylmigration zum CO Kohlenstoffatom. Computergest{\"u}tzte Analyse liefert Hinweise auf eine radikalanionische [(CAAC)B(CO)Ar]\(^{.-}\) Zwischenstufe. Weiterf{\"u}hrende Reduktion des entstandenen Komplexes liefert ein hoch nukleophiles (Boranyliden)methanolat.}, language = {de} } @article{SchmidtFantuzziKlopfetal.2021, author = {Schmidt, Paul and Fantuzzi, Felipe and Klopf, Jonas and Schr{\"o}der, Niklas B. and Dewhurst, Rian D. and Braunschweig, Holger and Engel, Volker and Engels, Bernd}, title = {Twisting versus delocalization in CAAC- and NHC-stabilized boron-based biradicals: the roles of sterics and electronics}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {16}, doi = {10.1002/chem.202004619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256636}, pages = {5160-5170}, year = {2021}, abstract = {Twisted boron-based biradicals featuring unsaturated C\(_2\)R\(_2\) (R=Et, Me) bridges and stabilization by cyclic (alkyl)(amino)carbenes (CAACs) were recently prepared. These species show remarkable geometrical and electronic differences with respect to their unbridged counterparts. Herein, a thorough computational investigation on the origin of their distinct electrostructural properties is performed. It is shown that steric effects are mostly responsible for the preference for twisted over planar structures. The ground-state multiplicity of the twisted structure is modulated by the σ framework of the bridge, and different R groups lead to distinct multiplicities. In line with the experimental data, a planar structure driven by delocalization effects is observed as global minimum for R=H. The synthetic elusiveness of C\(_2\)R\(_2\)-bridged systems featuring N-heterocyclic carbenes (NHCs) was also investigated. These results could contribute to the engineering of novel main group biradicals.}, language = {en} } @article{RoyTroesterFantuzzietal.2021, author = {Roy, Dipak Kumar and Tr{\"o}ster, Tobias and Fantuzzi, Felipe and Dewhurst, Rian D. and Lenczyk, Carsten and Radacki, Krzysztof and Pranckevicius, Conor and Engels, Bernd and Braunschweig, Holger}, title = {Isolation and Reactivity of an Antiaromatic s-Block Metal Compound}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {7}, doi = {10.1002/anie.202014557}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224447}, pages = {3812 -- 3819}, year = {2021}, abstract = {The concepts of aromaticity and antiaromaticity have a long history, and countless demonstrations of these phenomena have been made with molecules based on elements from the p, d, and f blocks of the periodic table. In contrast, the limited oxidation-state flexibility of the s-block metals has long stood in the way of their participation in sophisticated π-bonding arrangements, and truly antiaromatic systems containing s-block metals are altogether absent or remain poorly defined. Using spectroscopic, structural, and computational techniques, we present herein the synthesis and authentication of a heterocyclic compound containing the alkaline earth metal beryllium that exhibits significant antiaromaticity, and detail its chemical reduction and Lewis-base-coordination chemistry.}, language = {en} } @article{DietschreitWagnerLeetal.2020, author = {Dietschreit, Johannes C. B. and Wagner, Annika and Le, T. Anh and Klein, Philipp and Schindelin, Hermann and Opatz, Till and Engels, Bernd and Hellmich, Ute A. and Ochsenfeld, Christian}, title = {Predicting \(^{19}\)F NMR Chemical Shifts: A Combined Computational and Experimental Study of a Trypanosomal Oxidoreductase-Inhibitor Complex}, series = {Angewandte Chemie International Edition}, volume = {59}, journal = {Angewandte Chemie International Edition}, number = {31}, doi = {10.1002/anie.202000539}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214879}, pages = {12669 -- 12673}, year = {2020}, abstract = {The absence of fluorine from most biomolecules renders it an excellent probe for NMR spectroscopy to monitor inhibitor-protein interactions. However, predicting the binding mode of a fluorinated ligand from a chemical shift (or vice versa) has been challenging due to the high electron density of the fluorine atom. Nonetheless, reliable \(^{19}\)F chemical-shift predictions to deduce ligand-binding modes hold great potential for in silico drug design. Herein, we present a systematic QM/MM study to predict the \(^{19}\)F NMR chemical shifts of a covalently bound fluorinated inhibitor to the essential oxidoreductase tryparedoxin (Tpx) from African trypanosomes, the causative agent of African sleeping sickness. We include many protein-inhibitor conformations as well as monomeric and dimeric inhibitor-protein complexes, thus rendering it the largest computational study on chemical shifts of \(^{19}\)F nuclei in a biological context to date. Our predicted shifts agree well with those obtained experimentally and pave the way for future work in this area.}, language = {en} } @article{MuellerMetaMeidneretal.2023, author = {M{\"u}ller, Patrick and Meta, Mergim and Meidner, Jan Laurenz and Schwickert, Marvin and Meyr, Jessica and Schwickert, Kevin and Kersten, Christian and Zimmer, Collin and Hammerschmidt, Stefan Josef and Frey, Ariane and Lahu, Albin and de la Hoz-Rodr{\´i}guez, Sergio and Agost-Beltr{\´a}n, Laura and Rodr{\´i}guez, Santiago and Diemer, Kira and Neumann, Wilhelm and Gonz{\`a}lez, Florenci V. and Engels, Bernd and Schirmeister, Tanja}, title = {Investigation of the compatibility between warheads and peptidomimetic sequences of protease inhibitors — a comprehensive reactivity and selectivity study}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {8}, issn = {1422-0067}, doi = {10.3390/ijms24087226}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313596}, year = {2023}, abstract = {Covalent peptidomimetic protease inhibitors have gained a lot of attention in drug development in recent years. They are designed to covalently bind the catalytically active amino acids through electrophilic groups called warheads. Covalent inhibition has an advantage in terms of pharmacodynamic properties but can also bear toxicity risks due to non-selective off-target protein binding. Therefore, the right combination of a reactive warhead with a well-suited peptidomimetic sequence is of great importance. Herein, the selectivities of well-known warheads combined with peptidomimetic sequences suited for five different proteases were investigated, highlighting the impact of both structure parts (warhead and peptidomimetic sequence) for affinity and selectivity. Molecular docking gave insights into the predicted binding modes of the inhibitors inside the binding pockets of the different enzymes. Moreover, the warheads were investigated by NMR and LC-MS reactivity assays against serine/threonine and cysteine nucleophile models, as well as by quantum mechanics simulations.}, language = {en} }