@article{KleinJoheWagneretal.2020, author = {Klein, Philipp and Johe, Patrick and Wagner, Annika and Jung, Sascha and K{\"u}hlborn, Jonas and Barthels, Fabian and Tenzer, Stefan and Distler, Ute and Waigel, Waldemar and Engels, Bernd and Hellmich, Ute A. and Opatz, Till and Schirmeister, Tanja}, title = {New cysteine protease inhibitors: electrophilic (het)arenes and unexpected prodrug identification for the Trypanosoma protease rhodesain}, series = {Molecules}, volume = {25}, journal = {Molecules}, number = {6}, issn = {1420-3049}, doi = {10.3390/molecules25061451}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203380}, year = {2020}, abstract = {Electrophilic (het)arenes can undergo reactions with nucleophiles yielding π- or Meisenheimer (σ-) complexes or the products of the S\(_N\)Ar addition/elimination reactions. Such building blocks have only rarely been employed for the design of enzyme inhibitors. Herein, we demonstrate the combination of a peptidic recognition sequence with such electrophilic (het)arenes to generate highly active inhibitors of disease-relevant proteases. We further elucidate an unexpected mode of action for the trypanosomal protease rhodesain using NMR spectroscopy and mass spectrometry, enzyme kinetics and various types of simulations. After hydrolysis of an ester function in the recognition sequence of a weakly active prodrug inhibitor, the liberated carboxylic acid represents a highly potent inhibitor of rhodesain (K\(_i\) = 4.0 nM). The simulations indicate that, after the cleavage of the ester, the carboxylic acid leaves the active site and re-binds to the enzyme in an orientation that allows the formation of a very stable π-complex between the catalytic dyad (Cys-25/His-162) of rhodesain and the electrophilic aromatic moiety. The reversible inhibition mode results because the S\(_N\)Ar reaction, which is found in an alkaline solvent containing a low molecular weight thiol, is hindered within the enzyme due to the presence of the positively charged imidazolium ring of His-162. Comparisons between measured and calculated NMR shifts support this interpretation}, language = {en} } @article{KleinBarthelsJoheetal.2020, author = {Klein, Philipp and Barthels, Fabian and Johe, Patrick and Wagner, Annika and Tenzer, Stefan and Distler, Ute and Le, Thien Anh and Schmid, Paul and Engel, Volker and Engels, Bernd and Hellmich, Ute A. and Opatz, Till and Schirmeister, Tanja}, title = {Naphthoquinones as covalent reversible inhibitors of cysteine proteases — studies on inhibition mechanism and kinetics}, series = {Molecules}, volume = {25}, journal = {Molecules}, number = {9}, issn = {1420-3049}, doi = {10.3390/molecules25092064}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203791}, year = {2020}, abstract = {The facile synthesis and detailed investigation of a class of highly potent protease inhibitors based on 1,4-naphthoquinones with a dipeptidic recognition motif (HN-l-Phe-l-Leu-OR) in the 2-position and an electron-withdrawing group (EWG) in the 3-position is presented. One of the compound representatives, namely the acid with EWG = CN and with R = H proved to be a highly potent rhodesain inhibitor with nanomolar affinity. The respective benzyl ester (R = Bn) was found to be hydrolyzed by the target enzyme itself yielding the free acid. Detailed kinetic and mass spectrometry studies revealed a reversible covalent binding mode. Theoretical calculations with different density functionals (DFT) as well as wavefunction-based approaches were performed to elucidate the mode of action.}, language = {en} } @article{BruneckerMuessigArrowsmithetal.2020, author = {Brunecker, Carina and M{\"u}ssig, Jonas H. and Arrowsmith, Merle and Fantuzzi, Felipe and Stoy, Andreas and B{\"o}hnke, Julian and Hofmann, Alexander and Bertermann, R{\"u}diger and Engels, Bernd and Braunschweig, Holger}, title = {Boranediyl- and Diborane(4)-1,2-diyl-Bridged Platinum A-Frame Complexes}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {39}, doi = {10.1002/chem.202001168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214707}, pages = {8518 -- 8523}, year = {2020}, abstract = {Diplatinum A-frame complexes with a bridging (di)boron unit in the apex position were synthesized in a single step by the double oxidative addition of dihalo(di)borane precursors at a bis(diphosphine)-bridged Pt\(^{0}\)\(_{2}\) complex. While structurally analogous to well-known μ-borylene complexes, in which delocalized dative three-center-two-electron M-B-M bonding prevails, theoretical investigations into the nature of Pt-B bonding in these A-frame complexes show them to be rare dimetalla(di)boranes displaying two electron-sharing Pt-B σ-bonds. This is experimentally reflected in the low kinetic stability of these compounds, which are prone to loss of the (di)boron bridgehead unit.}, language = {en} } @article{SaalfrankFantuzziKupferetal.2020, author = {Saalfrank, Christian and Fantuzzi, Felipe and Kupfer, Thomas and Ritschel, Benedikt and Hammond, Kai and Krummenacher, Ivo and Bertermann, R{\"u}diger and Wirthensohn, Raphael and Finze, Maik and Schmid, Paul and Engel, Volker and Engels, Bernd and Braunschweig, Holger}, title = {cAAC-stabilisierte 9,10-Diboraanthracene - offenschalige Singulettbiradikale}, series = {Angewandte Chemie}, volume = {132}, journal = {Angewandte Chemie}, number = {43}, doi = {10.1002/ange.202008206}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218582}, pages = {19502 -- 19507}, year = {2020}, abstract = {Geringe HOMO-LUMO-Abst{\"a}nde und eine hohe Ladungstr{\"a}germobilit{\"a}t pr{\"a}destinieren die h{\"o}heren Acene f{\"u}r Anwendungen im Bereich der Organoelektronik. Die Leistungsf{\"a}higkeit derartiger Verbindungen steigt hierbei dramatisch mit der Anzahl anellierter Benzolringe. Gr{\"o}ßere Acenmengen sind synthetisch bisher jedoch nur f{\"u}r Acene bis Heptacen verl{\"a}sslich zug{\"a}nglich. Theoretischen Studien zufolge besitzen (Oligo)acene offenschalige Singulettbiradikal- und (Poly)acene polyradikalische Grundzust{\"a}nde. Eindeutige experimentelle Belege f{\"u}r diese Vorhersagen sind hingegen {\"a}ußerst selten. Durch den Einbau von zwei Boratomen in das Anthracengrundger{\"u}st konnten wir den HOMO-LUMO-Abstand von Acenen dramatisch verringern und zwar ohne die Notwendigkeit einer Ausweitung des konjugierten π-Systems. Stabilisierung der Borzentren durch cyclische (Alkyl)(amino)carbene lieferte hierbei neutrale 9,10-Diboraanthracene mit disjunkten, offenschaligen Singulettbiradikal-Grundzust{\"a}nden.}, language = {en} }